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Contact detection between interacting blocks is of great importance to discontinuity-based numerical methods, such as DDA, 
DEM, and NMM. A rigorous contact theory is a prerequisite to describing the interactions of multiple blocks. Currently, the 
penalty method, in which mathematical springs with high stiffness values are employed, is always used to calculate the contact 
forces. High stiffness values may cause numerical oscillations and limit the time step. Furthermore, their values are difficult to 
identify. The intention of this study is to present a two-scale contact model for the calculation of forces between colliding 
blocks. In this new model, a calculation step taken from the moment of contact will be divided into two time stages: the free 
motion time stage and the contact time stage. Actually, these two time stages correspond to two real physical processes. Based 
on this, we present a new numerical model that is intended to be more precise and useful in calculating the contact forces 
without mathematical springs. The propagation of the elastic wave during collision is of a characteristic length, which deter-
mines the volume of material involved in the contact force calculation. In conventional contact models, this range is always 
regarded as the length of one element, which may lead to an inaccurate calculation of contact forces. In fact, the real scale of 
this range is smaller than the length of a single element, and subdivided elements, which are refined according to the charac-
teristic length and are presented in the new contact model. 
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1  Introduction  

The description of the mechanical features of the collision 
between interacting blocks is typically a complex problem 
in any discontinuity-based numerical method, such as the 
discrete element method (DEM) [1–3], discontinuous de-
formation analysis (DDA) [4–7], the combined fi-
nite-discrete element method (FDEM) [8,9], and the nu-
merical manifold method (NMM) [10,11]. Using an appro-
priate contact model is the key to resolving this problem, 
which is the calculation of contact forces during dynamic 
collision. For conventional contact theory, the contact forc-
es are always calculated using springs with high stiffness 

values. Furthermore, the calculation of the Hertz force 
[12,13] between two elastic balls is a relatively advanced 
method. 

The most general method used in the calculation of con-
tact forces is the application of springs between two contact 
points, and the types of springs are based on the contact 
types. The penalty method is regarded as an efficient ap-
proach to solving this problem and has been used in many 
DDA and DEM models [14–19]. In the penalty method, 
contacting blocks are connected by springs with high stiff-
ness values, and the displacement compatibility condition 
may be satisfied through the continuum condition. Good-
man et al. [19] presented a useful element to calculate the 
stiffness values of the contact springs. It is important to note 
that the mechanical properties of the block system are al-
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tered if springs are added into the calculation. In this man-
ner, the structure layer model [20], which is cut from the 
adjacent element, may be used to solve the aforementioned 
problem. However, the thickness of the layer is not explic-
itly defined. 

The model presented in this study is intended to be a 
useful tool for the calculation of contact forces during colli-
sion. For this model, one calculation step taken from the 
contact moment will be divided into two time stages: A free 
motion time stage and a contact time stage. Moreover, the 
assumption of a perfect inelastic collision is employed at the 
beginning of the colliding process. Unified node algorithms 
are used to calculate the motion of the contact points, and 
the criteria for node separation are also presented. Based on 
this, the concept of subdivided elements is presented to de-
scribe the process of elastic wave propagation within the 
colliding element. 

2  Basic theory of CDEM  

The continuous–discontinuous element method (CDEM) is 
an explicit time-history analysis approach for finite differ-
ence principles, and a forward difference approximation is 
adopted to calculate the progressive process through a 
time-marching scheme. CDEM is the combination of the 
finite element method (FEM) and discrete element method 
(DEM), which contain two types of elements, blocks and 
contacts [21]. 

The equations of motion are obtained from equilibrium 
conditions of all forces acting on the nodal masses, resulting 
in a system of equations of the form, 

 ( ) ( ),t t   Mu Cu F P  (1) 

where u, u , and u denote vectors containing the nodal 
displacements, velocities, and accelerations, respectively. M 
and C are the mass and damping matrices, and the vectors 
F(t) and P(t) contain the internal and external nodal forces. 

To solve the large rotation and deformation of the blocks, 
the incremental method should be adopted, and strain ma-
trix [B] (instead of stiff matrix [K]) should be used to cal-
culate the deformation forces. Furthermore, the strain ma-
trix should be renewed at each time step. The main equa-
tions used to calculate nodal forces using a strain matrix 
incremental method are written as 
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where [B]i, [∆ε]i, [∆σ]i, wi, and Ji are the strain matrix, in-
cremental strain, incremental stress, integral coefficient, and 

Jacobian determinant, respectively, at the Gaussian point i; 
[D], {∆u}e, and {F(τ+∆τ)}e are the elastic matrix, incre-
mental displacement vector, and new node force vector of 
the element, respectively; and, N is the total number of 
Gaussian points. 

For contact detection between the arbitrary convex poly-
hedral blocks in the CDEM, a shrunken edge algorithm is 
employed [21]. In the algorithm, a pair of contacting blocks 
are identified as a main block and a target block. As shown 
in Figure 1, shrunken edges are formed by shrunken points 
on the main block.  

Three-dimensional contact detection is then performed 
by determining the geometric relationship between the 
shrunken edge and its approaching face on the target block 
(Figure 2). From the three possible geometric relationships, 
all six three-dimensional contact types may be precisely 
identified.  

If two-dimensional problems are considered, this algo-
rithm will be simplified. The contact detection process may 
be performed simply by determining the relationship be-
tween vertices on the main block and edges on the target 
block, as shown in Figure 3. Based on the distance, dn, and 
contact tolerance, dtol, the contact state and contact points 
may be obtained. After the contact points have been ob-
tained from the detect process, the contact forces, which 
include normal, shear, and frictional forces, are calculated 
using incremental displacements and the penalty method. 

 
Figure 1  Shrunken edge model. (a) Shrunken points; (b) shrunken edges. 

 

Figure 2  Contact detection between the shrunken edge and target face. 

 

Figure 3  Contact detection between the main vertex and target edge. 
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3  The concept of two time stages 

In the current approach, contact forces are calculated ac-
cording to the relative incremental displacement between 
the contact points in a single calculation step. If the two 
blocks are actually in contact at the beginning of this step, 
the results are reasonable. However, this condition may not 
always be satisfied. Considering the numerical discretiza-
tion of time, it is very common in the calculation that the 
two blocks are in contact at the end of the step, but are in a 
separating state at the beginning of the step. In fact, the real 
physical process for the contact between two blocks consists 
of two stages: the free motion stage and the contact stage, 
and only the contact stage will generate contact forces. Fig-
ure 4 shows a schematic that describes these two stages.  

In the calculation of the embedding value, ∆dn, a hy-
pothesis is employed, in which a target element will not 
provide counter-forces during the contact stage. The em-
bedding value obtained using this approach is overestimated. 
In order to decrease the deviation, a smaller contact toler-
ance and time step should be employed during the calcula-
tion. This will have a significant influence on the efficiency 
of the process. 

In order to solve the aforementioned problem, a calcula-
tion time step, ∆t, in the contact moment will be divided 
into two time stages for the new contact model. The free 
motion time duration is denoted as ∆t1, and the contact time 
duration as ∆t2. In the meantime, the time step of the other 
nodes maintains ∆t. 

Let t0 be the present moment. From time interval t0 to t0 + 
∆t1, it is assumed that N collisions will occur in the entire 
region, denoted as I1, I2,···, Ii,···,IN. vi0 represents the relative 
velocity of two colliding elements (one is a main element 
and the other is a target element) at time t0. cmi and cti rep-
resent elastic wave velocities in the main element and target 
element, respectively. ∆ti1 and ∆ti2 represent the time dura-
tion of free motion before collision, and the time duration of 
contact, respectively. The velocity of free movement is as-
sumed constant during ∆ti1. Take the two-dimensional colli-
sion, Ii, as an example. The procedures for the division of 
one time step are explained as follows. 

(1) At time t0, the intending collision, Ii, which will  

 

Figure 4  Two physical stages in one calculation step. 

occur after ∆t is searched for and predicted based on a con-
tact detection algorithm. As shown in Figure 5, if the dis-
tance, ∆dn, is less than the contact tolerance, dtol , the ele-
ments will contact. 

(2) Based on the geometric position of two colliding el-
ements at times t0 and t0 + ∆t, the collision curve Li and 
point Pi can be obtained. Here, Pi is the intersection point 
between Li and the edge of the element. Take Pi as the ini-
tial position of the contact, as shown in Figure 6. 

(3) The collision curve, Li, will be divided into two seg-
ments by Pi, i.e., Li1 and Li2. The corresponding relationship 
will be Li1 = vi0∆ti1. As the values of vi0 and Li1 can be ob-
tained, the values of ∆ti1 and ∆ti2 can then be calculated. 
The starting time of the collision will be defined as t + ∆ti1. 

(4) The time step, ∆t, will be used to calculate the 
movement of nodes that are not in contact with one another. 
Additionally, ∆ti1 is used as a time step to calculate the free 
motion stage of the contact nodes and ∆ti2 is used as a time 
step in the contact stage. 

 

 
Figure 5  The intending collision between the main block and target 
block at time t0 + ∆t. 

 
Figure 6  The collision curve Li, and point Pi. (a) Geometric position at 
times t0; (b) geometric position at t0 + ∆t. 



 Li S H, et al.   Sci China Tech Sci   September (2015) Vol.58 No.9 1599 

4  The calculation of contact with a unified node 

In many conventional contact models, the penalty method is 
used to calculate the contact forces. However, the properties 
of these types of springs are difficult to identify. For springs 
with high stiffness values requiring a small time step, and 
because of numerical oscillations, it is not convenient for 
the efficiency and stability of the contact model. In fact, 
contact forces are caused by the deformation of target ele-
ments than of contact springs. A new solution without con-
tact springs may be developed based on the assumption that 
the collision of contact points is completely inelastic. This 
solution contains two stages. The first stage is for interval t0 
+ ∆ti1 to t0 + ∆t, and the second stage is for interval t0 + ∆t 
to separation time of the contact points. 

4.1  Process for interval t0 + Δti1 to t0 + Δt 

To begin with, we assume that no slipping occurs between 
these two contact points in the interval t0 + ∆ti1 to t0 + ∆t. In 
this manner, the two contact points may be treated as one 
continuous node with the same velocity. This continuous 
node may be referred to as a clone node (Figure 7). The 
mass of the clone node is Mi and its corresponding element 
force vector, Fi, may be defined as 
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where Mmi and Mti are the masses of the two contact points. 
Fmi and Fmi are their respective force vectors. 

After collision occurs, the initial condition of the contact 
points is derived from the momentum conservation equation 
of completely inelastic collisions, and the fact that the two 
contact points have the same velocity. 

 0 0 ( ) ,mi mi ti ti mi ti iM M M M  v v v  (4) 

where vmi0 and vti0 are the velocity vectors of the two contact 
points at time t0, respectively. vi is the velocity vector of the 
clone node at t0 + ∆ti1. Since the process of collision is so 
rapid, the elastic wave is still at the contact point and the 
other nodes of the element are not affected at t0 + ∆ti1. In 
addition, conditions remain unchanged during the interval t0 
to t0 + ∆ti1, so the velocity and stress of the other nodes at t0 
may be used as initial values. The clone node is treated as a 
single node until separation occurs. 

However, it may be noted that the assumption of com-
pletely inelastic collision causes mechanical energy losses, 
which may be defined as ∆E. 
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According to the above equation, the loss in mechanical 
energy decreases as the mass of the contact points decreases,  

 

Figure 7  The clone node between two blocks after collision. 

and ∆E is zero if the mass is zero, which generates a com-
pletely elastic collision. We can achieve collisions with dif-
ferent energy losses by adjusting the mass of the contact 
points. As the mass of the contact points is identified, the 
masses of other nodes may be acquired according to tradi-
tional methods. 

In fact, the assumption of a completely inelastic collision 
is reasonable if we consider the colliding body as an assem-
bly consisting of many very thin layers parallel to the con-
tact face during a real collision. The layer is thin and its 
mass is very small, so even a small force can make it accel-
erate very quickly. The normal velocity of the surface layers 
adjacent to the impact point becomes the same as soon as 
the collision occurs. This process is truly and completely 
inelastic. 

4.2  Process from t0 + Δt till the time of separation 

The clone node still exists at t0 + ∆t. During the following 
simulation, it is treated as a continuous node until the nor-
mal contact force satisfies 

 ( )n
c t cF A      . (6) 

Thus, both the normal and shear forces are set to zero. In 
the above formula, σt is the contact tensile strength and Ac is 
the contact area. Otherwise, the maximum shear force is 
calculated as 

 max tans n
c c cF F cA  , (7) 

where φ is the friction angle and c is the contact cohesion. If 
the absolute value of the shear force given by 

 ( ) ( ) ( )s s s
c ci ciF F F             (8) 

is greater than the maximum shear force, i.e., 

 max( )s s
c cF F     (9) 

and the shear force is therefore reduced to the limiting value 
as follows: 

  max( ) ( ) / ( )s s s s
ci ci c cF F F F            . (10) 

Since the contact spring has not been introduced, the in-
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teraction forces between contact points instead of spring 
force are calculated according to eq. (11) (Figure 8). 
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where ai is the acceleration of the clone node, and Fmt is the 
force between contact point m and contact point t. Thus, Fmt 
is decomposed along the normal and the tangents as the 
normal and shear forces used for the above criteria. If the 
criterion in either eq. (6) or eq. (9) is satisfied, then the 
clone node is removed and the subdivided elements will be 
deleted. 

5  The concept of two space scale elements 

In the unified node model described in the previous section, 
contact forces are calculated according to the deformation 
of the main and target elements. When a collision occurs, 
the elastic wave will propagate from the contact nodes. Let 
the velocity of elastic wave be denoted as c. As mentioned 
above, during the contact moment in one calculation step, 
the real contact time is ∆ti2 , which is shorter than ∆t. The 
region for the propagation of this wave may be denoted as 
c∆ti2 , which is the characteristic length of the collision. 
Therefore, c∆ti2 is smaller than c∆t. Let ∆xi be the charac-
teristic length of the element. In order to maintain the con-
vergence of an explicit time-history analysis approach, c∆t 
must be smaller than ∆xi. Therefore, c∆ti2 is smaller than ∆xi 
accordingly, which means that the accurate range affected 
by the collision is smaller than c∆t and also smaller than ∆xi 
(Figure 9). However, the region used to calculate contact 
forces in the current method measures one element length, 
which is larger than the real zone and leads to a lower stiff-
ness value and a larger mass. Furthermore, this will lead to 
an inaccurate calculation of contact forces. 

In order to precisely describe the process of propagation 
of elastic waves and obtain more accurate contact forces, an 
approach of two space scales has been developed. In this 
new approach, two colliding elements are subdivided after 
t0 + ∆ti1 based on the collision characteristic length, c∆ti2. 
The subdivided elements are calculated independently, and  

 

Figure 8  Interaction forces between contact points. 

 
Figure 9  Characteristic length of the collision, denoted as c∆ti2. 

the interactions with other elements are calculated using the 
initial nodes of the two elements. In summary, the node 
velocities of subdivided elements in the present step are 
obtained from the initial node information of the two ele-
ments. In this manner, the simulation of subdivided ele-
ments may be treated as an initial value problem of contin-
uous mechanics with velocity boundary conditions. Based 
on the results of the calculation from subdivided elements, 
element forces are transferred to the initial nodes of the two 
elements. In order to satisfy the convergence condition, 
calculation steps of the subdivided elements may be 
adapted. 

Specifically, subdivisions will only be implemented in 
the elements where collisions occur during time interval t0 + 
∆ti1 to the time of separation of the contact points. In this 
manner, local subdivisions will be employed so as to not 
influence the resolution of the entire region. The procedures 
for two-space scales may be described as follows. 

(1) Pi represents the center of the circle, and cmi∆ti2 and 
cti∆ti2 represent the radii. Circles Omi and Oti may be ob-
tained. The characteristic velocity, cmi or cti , of elastic 
waves in the element may be identified as /E   for each 

element. The region of subdivisions is shown in Figure 10. 
(2) For each colliding element, all of the initial nodes are 

calculated using the time step ∆t, and its velocities may be 
obtained. 

 

Figure 10  Process of identifying the refined zone. 
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(3) Transfer the velocity of the initial nodes to their cor-
responding inside nodes, and fix the velocity of these nodes. 
The solution of the subdivided elements may then be re-
garded as an initial value problem of continuous mechanics 
with velocity boundary conditions, as shown in Figure 11. 
The equation for this problem may be described as follows:  

 
2

2

d

d
j

j kj k
k

m K
t
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u

u , (12) 

where j is a node belonging to the sub-element, mj is the 
mass of the node, k is the related node, and ui and uj are the 
displacements of i and j, respectively. Kij is the stiffness 
coefficient matrix for nodes k to j, which is an accumulation 
of the corresponding coefficients of related element stiff-
ness matrices. In general, as the subdivided elements are 
defined according to cti∆ti2, the coordinates of these ele-
ments will include this particular characteristic length. That 
is to say that cti∆ti2 will appear in Kkj, and different colli-
sions will present different formats. 

(4) Solve eq. (12) with a time step of ∆t/n and duration of 
∆t. Then, the forces of the element on the subdivided ele-
ments may be obtained. 

(5) Transfer the forces of the elements to the initial nodes, 
and the force values for the whole element may be acquired. 

6  Verification examples 

The algorithm described in the previous sections was im-
plemented using a VC++ program. An example is shown in 
the following section.  

As shown in Figure 12, this case involves a system of 
two triangular prism blocks. Both of them are free, and 
block i moves towards and impacts block j. The values of 
Young’s modulus, Poisson’s ratio, and mass density for 
each block are E = 40 GPa, ν = 0.25, and ρ = 2 700 kg/m3, 
respectively. The time step is 5 × 104 s. The tolerance of 
the contact search is 5 × 103 m. The initial velocity of 
block i is 3.0 m/s, and that of block j is 0.0 m/s in the 
x-direction. Their initial distance is 1 m in the x-direction. 

 

Figure 11  Subdivided elements during the collision. 

 

Figure 12  Geometric model of two colliding blocks. 

Figure 13 shows the motion process from 0.0 s to the 
precise moment when the collision occurs. As shown in the 
figure, block i moves towards block j at a constant velocity. 
At a time of 0.3333 s, vertex A of block i touches the edge 
of block j. Here, the time of 0.3333 s is in the step from 
0.3335 to 0.3340 s, and its value is obtained using the two- 
stage approach mentioned above. 

After the precisely touched moment at 0.3333 s, the uni-
fied node and subdivided elements are established to calcu-
late the contact forces. As shown in Figure 14, the illustrat-
ed collision process is from time 0.3335 to 0.3400 s. The 
unified node exits during the process, and subdivided ele-
ments are used to calculate the interaction between block i 
and block j. In addition, the propagation of elastic waves 
during the process may also be observed from this result. In 
this stage, contact forces act on block j, which undergoes an 
acceleration process. The velocity of block j is increased 
from 0.0 to 3.205 m/s (Figure 14(c)). 

As block j accelerates and block i decelerates, the criteria 
established for the unified node will come into effect. If the 
criteria are satisfied, then the unified node will be separated, 
which can be seen in Figure 15.  

The resulting displacement in the x-direction of the two 
elements is shown in Figure 16, and may be used to quanti-
tatively analyze the numerical results. From the gradients of 
these two displacement curves, we may conclude that the 
velocity of block j after collision is approximately equal to 
the initial velocity of block i. A little energy loss occurs  

 

Figure 13  Geometric model of two colliding blocks. 
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Figure 14  Collision process calculated using the unified node and subdi-
vided elements. (a) 0.3335 s; (b) 0.3340 s; (c) 0.3400 s. 

 

Figure 15  Separation of the unified node, and the two blocks. (a) 0.3405 
s; (b) 0.4960 s. 

during the collision process, as a result of momentum con-
servation applied. This is reasonable when considering true 
physical processes. 

 

Figure 16  Displacement in the x-direction of the two blocks during colli-
sion. 

7  Conclusion 

In this study, the precise time of collision was considered to 
be a characteristic time, and the precise range of the elastic 
wave caused by collision was considered to be a character-
istic length. A new contact model was presented to divide 
the time step of the contact node and refine the elements 
adjacent to the contact point according to this characteristic 
length. Finally, a method for calculating the contact forces 
without contact springs was introduced to solve the collision 
problem. A combination of these two methods provided a 
new way to solve the problem of the scale of the elements 
involved in a collision and to assess the issues caused by 
contact springs, which are of great importance. 

The idea of a two-space scale contact model with no use 
of mathematical springs was a new way to simulate contact 
processes. In this study, emphasis was placed on developing 
the two-space scale contact model systematically, rather 
than through accomplishment of all the details. Nevertheless, 
more work needs to be done to study and further research 
these details for engineering problem applications. 

These works mainly include the control of local mesh 
equality, the mesh refinement algorithm when there are 
many contact nodes, tangential sliding contact nodes, and 
the parallel algorithm for local mesh refinement. 
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