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ABSTRACT: In this paper, fractional order derivative, fractal 
dimension and spectral dimension are introduced into the 
seepage flow mechanics to establish the flow models of fluids 
in fractal reservoirs with the fractional derivative. The flow 
characteristics of fluids through a fractal reservoir with the 
fractional order derivative are studied by using the finite 
integral transform, the discrete Laplace transform of sequential 
fractional derivatives and the generalized Mittag-Leffler 
function. Exact solutions are obtained for arbitrary fractional 
order derivative. The long-time and short-time asymptotic 
solutions for an infinite formation are also obtained. The 
pressure transient behavior of fluids flow through an infinite 
fractal reservoir is studied by using the Stehfest’s inversion 
method of the numerical Laplace transform. It shows that the 
order of the fractional derivative affect the whole pressure 
behavior, particularly, the effect of pressure behavior of the 
early-time stage is larger The new type flow model of fluid in 
fractal reservoir with fractional derivative is provided a new 
mathematical model for studying the seepage mechanics of 
fluid in fractal porous media. 
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1.  INTRODUCTION 
Chang and Yortsos presented the theoretical 

model for infinite fractal reservoir. Acuna et 
al. ] explained the fractal characteristic of a naturally 
fractured geothermal field. Acuna  reviewed the 
theoretical background of fractal analysis. They also 

demonstrated the application of various diagnostic 
techniques for fractal pressure transient analysis as 
developed by Chang and Yortsos .Tong

]1[

2[

]3[

]1[ [4 7]− give the 
analytical solution of various cases for transient flow 
of fluid through a cylinder-source well of fractal 
reservoir. 

In the flow of fluid in fractal reservoir, the 
dimensionless flow equation is written as  [ ]1
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For the most porous media, the above equation 

can basically reflect the flow characteristics of fluids 
in fractal reserveoir. Acuna studied the flow 
characteristic of fluids in fractal reservoir from theory 
and production practice by using the above Eq. (1). In 
recent years, fractional calculus is as dynamic basis of 
the fractal geometry and fractional dimension. 
Fractional calculus has encountered much success in 
describing the constitutive relationship of viscoelastic 
fluid. The starting point of fractional order derivative 
model of non-Newtonian fluid is usually a classical 
differential equation that is modified by replacing the 
time derivative of an integer order by the so-called 
Riemann-Liouville  fractional  calculus  operators.  

[2,3]
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Thus the description of the fractional order 
constitutive relationship of viscoelastic fluid is more 
extensive. Friedrich ， Huang , Tan ，

Xu [1 and Tong introduced fractional calculus in 
the rheology and analyzed various problems. They 
think that the fractional calculus approach is more 
appropriate for the viscoelastic fluid. Park  
introduced fractional calculus in the flow equation of 
fluid in fractal reservoir. He deem the fractional 
calculus approach tally with real fractal reservoir, 
particularly, the described pressure behavior of the 
early-time stage is more accurate. Jiang  applied 
fractional calculus to the experimental data of the 
viscoelastic glue fluid to obtain a very good fit. 
Generally, fractional derivative is introduced in the 
flow model of fluid in fractal reserveoir, the flow 
equation is written as 

[8] [9] [10]

1,12] [13]

[14]

[15]
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where  xΓ（ ）is Gamma function. While 1=α , it 
may be simplified as Eq. (1). 

The aim of this paper is to study the flow of fluid 
in fractal reservoir with the fractional derivative. 
Whileα is arbitrary fraction, the exact solution for the 
flow equation is obtained by using the Laplace 
transform of fractional order derivative and the 
generalized Mittag-Leffler function. Many previous 
and classical results can be considered as special cases 
of our results. For example when 1=α , ,2=fd  

0=θ our results become Tong’s solution  for the 
flow of fluid in fractal reservoir. The flow 
characteristic and pressure sensitive to parameters of 
the fluids through fractal reservoir with fractional 
derivative are discussed by using the numerical 
inversion of Laplace transform and asymptotic 
solutions. It shows that the pressure characteristics of 
the fluid is sensitive to the order of the fractional 
derivative. 

]4[

 

2.  THE FLOW MODEL OF FLUID IN 
FRACTAL RESERVOIR WITH 
FRACTIONAL DERIVATIVE 

We assume the fractal permeable network 
embedded in impermeable Euclidean matrix, where 
the fractal network dimension is , and the 

Euclidean matrix dimension is 
fd

)3,2,1( =dd . 
Fluid flow only occurs in a fractal network. The 
material balance equation can be derived using 
integral relation [1  4]
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The dimensionless total radial flow is 
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Equation (3) expresses the total radial flow 

passed up to time at distance  from the well as 
a convolution integral of total pressure with the 
diffusion kernel. is fractal dimension and 

Dt Dr

fd θ is 
diffusion exponent. Assuming the stationary process,  
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     We applied the theory of fractional derivative to 

incorporate the memory. Combination of Eqs.(3) 
and (4) gives 
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Eq.(5) can be interpreted as the second type of 

fractional diffusion equation . [14]

Therefore,Eq.(5) can be expressed as the 
following integro-differential equation 
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where 
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with the initial condition             
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the inner boundary condition 
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and the outer boundary condition 
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3. THE EXACT SOLUTION FOR THE FLOW 
MODEL OF FLUID IN FRACTAL RESERVOIR 
WITH FRACTIONAL DERIVATIVE 
3.1 Exact solution for the flow model of fluid in an 

infinite  fractal reservoir 
The initial and boundary value problem Ι that is 

made up of Eqs. (6), (7),(8) and (9) represents the 
case of constant production rate from an infinite 
reservoir. We consider the initial value condition of 
integer order for fractional differential equation. 
The operator Dα is taken as the Miller-Ross 
sequential fractional derivative.Let  

 
 
 

 
Application of the Laplace transformation to 

Eqs.(6),(7),(8) and (9) yields 
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Eq.(18) is reduced to the following form at the 

wellbore ( 1=Dr ) 
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The Weber transformation is given by [1  6]

 

1[ ] ( ) ( , )d
b

f W f fρ ρ ϕ ρ λ ρ
∞

= = ∫  

 
where 

0
( , ) ( , )dDst

D D D D D Dp r s e p r t t
∞ −= ∫  

1 1 ) ( ) (J Y b Y J bν ν ν ν 1 )ϕ ρ λ λρ λ λρ λ− −= −（ ， ） （ ） （

 
Applying the generalized Weber transformation to 
Eqs.(16), (17) yields 
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The inverse of Weber transformation can be expressed 
as  [16]
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Substituting (21) into (15) the following 

expression can be obtained  
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Analytical solution for the initial and boundary value 
problem can be obtained as long as the inverse of 
Laplace transform of the function ),( sA λ . We will 
apply the discrete inverse Laplace transform method 
to give the analytical solution. Firstly, we used the 
following property of M-L function  [17]
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in which  denotes Mittag-Leffler function. 
Using Laplace transform the integral of convolution, 
we get 
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The exact solution for the flow model of an infinite 
formation is obtained by using Eq. (24) 
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If one sets 1=α formula（25）can be reduced to the 
exact solution for the flow of fluid in an infinite 
fractal reservoir   ]4[
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3.2  Asymptotic solution 
(1) By using the property of Laplace transform,  

the following equality holds true for the final state  
(s→0) 
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+
. Substituting the above equations 

into equation (19), the long-time approximate solution 
in real space can be obtained by using the approximate 
formula of the modified Bessel function. 
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where  is Euler’s constant. c

Eq.(27)indicates that the long-time pressure drop 
of crude oil can be used in computing fractal and 
formation parameters  
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Eq. (29) exhibits that a plot of the pressure transient in 
logarithmic coordinates yields a straight line with the 
slope vα  and the interception. log . The analysis of 
the drawdown test gets v .  

1C

(2) At the early-time (s→ ), the following 
equality is tenable 

∞

 

1
2

1
wDp

s
α

+
=  

 
The solution in real space can be given by 
 

2

( 1
2

D
w D

tp

α

αΓ
=

+ )
                      (30)                                   

 
The short-time asymptotic solution shows that a 

plot of the pressure transient in logarithmic 
coordinates yields straight lines with slope 2α . The 
physical meaning of the Eq.(30) is that well test data 
of oil field reveal the effect of fractional derivative in 
a short time. Then the order α  of fractional 
derivative can be determined. 

The pressure distributions are obtained by 
applying the Stehfest’s method of the numerical 
inversion of Laplace transform to Eq.（19） .The 
pressure behavior is described as：  

(1) The dimensionless pressure solution exhibits 
two line segments in the lg-lg plot of the ～ t
（see Figs.1,2） 

PwD D

(a) The straight line with the slope 2α  reflects the 
effect of the fractional derivative. 
(b) The straight line with the slope (1 2)sdαν α= −  
reflects the effect of spectral dimension and the 
interception reveals the effect of the formation 
parameters. 

(2) The pressure curves are influenced by the α . 
The effects of α is on the whole flow stages. In the 

initial stage, the larger the value of α , the smaller 
dimensionless pressure is. With time, the pressure 
curves show sudden variations and pressure curves 
intersect at a point. The dimensionless pressure 
henceforth is smaller for a smaller value of α . This 
is the reason why the pressure at initial stages is larger 
for the smaller order of corresponding fractional 
derivative. The pressure change is slower in the whole 
flow process. The pressure at initial stages is smaller 
for the larger order of corresponding fractional 
derivative. With time, the pressure rises so fast that it 
will exceed the pressure of the smaller order of 
corresponding fractional derivative, thus pressure 
curves appear to change suddenly in the Fig.1.The 
pressure curves diverge from each other in later 
stages.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1  Effect ofα on plot of pressure curve 
 
(3) The effects of spectral dimension  are 

mainly in later stages. The dimensionless pressure at 
any time is smaller for a greater value of (Fig.2). 

sd

sd
 
 
 
 
 
 
 
 
 
 
 

Fig.2  Effect of on plot of pressure curve sd
 
3.3 Exact solution for the flow model of fluid in a 

finite closed reservoir 
The initial and boundary value problem ΙΙ that is  

made up of Eqs. (6),(7),(8) and (10) represents the 
case of constant production rate from a finite closed 
reservoir. With the application of Laplace 
transformation to the initial and boundary value ΙΙ , 
one obtains the boundary value problem that is made 
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up of the Eqs. (12) (13) and (31) 
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In order to gain the analytical solution of 

model , we apply the following finite integral 
transform to the Eq.(12) 
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The application of integral transform (32) to Eq. (12), 

by using boundary conditions (11),(31), we have 
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Substituting Eqs. (34) and (35) into Eq. (33), one 

get 
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The exact solution of the model is obtained by 

using Eqs. (36) and (24) 
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3.4 Exact solution for the flow model of fluid in a 

finite constant-pressure outer boundary 
The initial and boundary value problem III that is 
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made up of Eqs. (6),(7),(8) and (11) represents the 
case of constant production rate from a finite 
constant-pressure outer boundary reservoir. With the 
application of Laplace transformation to the initial and 
boundary value III, one obtains the boundary value 
problem that is made up of the Eqs. (12) (13) and (38) 
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the exact solution of the model III is obtained by using 
The method similar to the finite closed formation 
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