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ABSTRACT:

has been derived from a vertically oscillating circular cylindrical

The natural frequency of surface wave, which

vessel in inviscid fluid was modified by considering the influence
of surface tension and weak viscosity. Many flow patterns were
found at different forced frequencies by numerical computation.
In addition the nonlinear amplitude equation derived in inviscid
fluid was modified by adding viscous damping and the unstable

regions were determined by stability analysis.
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1. INTRODUCTION

The hydrodynamic instability of vertically
driven surface waves was first studied experimen-
tally by Faraday! " . He realized that these surface
waves have a frequency equal to one half of the ex-
citing one and belong to subharmonic resonance.
Benjamin and Ursell? demonstrated that the lin-
ear behaviour of inviscid surface waves can be un-
The
Faraday resonance was an ideal model to study

derstood in terms of a Mathieu oscillator.

nonlinear pattern formation, bifurcation, and

chacs. A review on this subject was given by Miles
and Henderson'” . Many problems associated with
the Faraday instability have been solved in inviscid
fluids. Miles *” has studied nonlinear effects of
this problem adopting a variational approach in in-
viscid fluids. However,

until now, no reasonable

nonlinear theory for strongly damped surface

waves has been established. Difficulties arise due
to the interplay of intricate nonlinear boundary
conditions at the free surface and the external exci-
tation, which makes the problem non-autonomous.

In the last two decades, many flow patterns,
which
quasi-periodic pattern, two-dimensional quasi-crys-

include hexagons, triangles, twelvefold

tal, supper-lattice patterns, etc., were observed in
experiment with one or two-frequency drivel ™9 .
Faraday s instability has been extensively in-

vestigated for weakly viscous fluids in confined and

9

extended systems ', secondary instabilities and

0]

transition to spatio-temporal chaos ', and turbu-
lence' 'V,
E et al.l"*" carried out the flow visualization

experimentally on surface wave patterns in a circu-
lar cylindrical vessel by vertical external vibra-
tions. They obtained many elegant pictures of free
surface patterns in wider range of driven frequen-
cies, and most of them have not been reported be-
fore.

Recently, Jian el al.l”! proposed a mathe-
matical formulation associated with the flowing vi-
sualization of Refs. [ 12-14], from which the sec-
ond order free surface elevations and their contours
were obtained by two-time scale singular perturba-
tion expansion. Due to ignoring surface tension
and viscid dissipation in their theoretical analysis,
there existed large discrepancies in the forced fre-
quency between theoretical and experimental re-
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sults although the numerical contours of free sur-
face waves agreed well with those of the experi-
mental visualization.

In this paper, we present some flow patterns
obtained in a theory including the effect of surface
tension and weak viscosity. In addition, the non-
linear amplitude equation is modified by adding
viscous damping and its instability is demonstrated.

2. MATHEMATICAL DESCRIPTION

We still consider surface waves excited by the
vertical motion of a circular cylindrical basin filled
with fluid. AIll parameters and the choice of the
coordinate system are the same as in Ref.[ 15].

Similarly, when surface tension is considered,
we can obtain the following velocity potential and
free surface elevation:

(P(r, 69 Zy t, T>: €@1+€2(1027
Ny 0, o T)= e+ (D

The first order velocity potential ¢(r, 0, z, ¢, ©)
and free surface elevation M (7, 0, ¢, T) are

P1 = Jm (Ar)cosh[ (Az + h/ R )] °[p(f)eiQt +

2

¥z (T)eiiﬂt] cosm 0
0= A Gy sinh (W R = [ p (0 —

P (T)eiiﬂt] cos m0 3
where the meaning of all parameters are the same
as in Ref.[ 15] .

Moreover, the dispersion relationship is

&= >\mrzt2111}1(>\ry1nl’l/R) ° (1+Fl_‘>\mn2): anZ 4

where {2 is the natural frequency of the surface
lis the surface tension coefficient, and € is
the mass density.

The second order velocity potential ¢ (r, 0, ¢,
) and free surface elevation M.(r, 0, #, T) can be

wave,

expressed as

(102 (}’a 6329 t, T) - + XZ(F?
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where the detail expressions Yi(r), Y2(r),

Xi(r,z) and X, (r, z) can be found in Ref.[17]

and they are omitted in this paper.
With the so-called solvability condition, a
nonlinear amplitude equation can be written as

dp(o) _

1 Mip*(Dp ()4 Me*"p ()

i D
where i is the unit of imaginary number, and M,
and M, are constants. Although the form of Eq.
(7) is equivalent to Eq. (65) in Ref.[15], the for-
mer includes the effect of surface tension.

In fact, the damping will appear in actual
physical system due to the viscous dissipation of the
fluid. Jian' ' obtained a analytical expression of
damping coefficient in weak viscous fluid by divid-
ing whole fluid fields into outer potential region
and inner boundary layer region. The detailed ex-
pression of damping coefficient 3 can be found in
Ref.[ 18] .

Henderson! '’

pointed out that the real and the
imaginary parts of the damping coefficient 3 mean
damping and “frequency shift” respectively. The
damping causes the attenuation of the surface
wave, while the “frequency shift” changes the nat-
ural frequency of the surface wave.

By taking the effect of weak viscosity into ac-
count, the dispersive relation Eq. 4) can be modi-
fied by adding viscous damping and it becomes to

A
O= Q— B, (8

where P2 is the imaginary part of the viscous
damping coefficient f3 and its detailed expression is

8, = {Msinh<2kh/R)+zkh/R1 4
: 8 Qcosh>(Mi/ R)
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3. INSTABILITY ANALYSIS

Substituting the real part B1of the damping co-
efficient Binto the left hand of nonlinear evolution
Eq. (7), we obtain the modified amplitude evolu-
tion equation

i<(%+51>p(r): M p*(Op (O + Mae?™p () (10)

where o, 81, M1 and M, are real numbers.

For the convenience of solving the modified am-
plitude Eq. (10), we make a transformation for a un-
known function p () , letting
g(O=p(e '~ an
and then Eq. (10) becomes

498 i g (0 + sg (O + Mg (Dg (D +

Mg (O 12
It can be shown that the stable property of the am-
plitude p (t) and ¢ (7) is equivalent. Divide the un-
known variable into real and imaginary parts, and
the amplitude Eq. (12) yields the following nonlin-
ear ordinary differential equations

dqoi(rr) = Bigi (O + (6= M) ga(t)+ Mig: (O

[g1°(O+ ¢’ ()] 13)

dg2()

1t Biga () — o+ M) g1 (t)— Miq1 (T

[ 17 (O + @ ()] 14
The instability analysis includes linear instability
and nonlinear instability. Linear instability means
that when the forced energy exceeds a threshold
value, the surface wave will appear at the free sur-
face. While nonlinear instability is associated with
whether the surface waves will lost their stability,
namely the so called “secondary instability”.

By linear instability analysis, it is easy to
prove that when the condition

M22> 62_|_B12 as

is satisfied,  the surface, wave, appears, at the free

surface. However, the free surface keeps plane if

M22< (52, or 02< M22< Gz+§12 (16)

As to the nonlinear instability, the derivative
with respect to time equals to zero in Eq. (12), the
equilibrium solution yields

iBig(v) = ag()+ Mig*(Dg(t)+ Myg(t) (D

Letting go = aoeio 7# 0 (where ao is a real num-
ber) is an equilibrium solution of Eq. (17), and
taking go into Eq.(17), we have

—o & JMzz_ Blz] )

M,

B
M

(18

ao= | , sin20=—

Supposing q/(r) is an infinitesimal disturbance as-
sociated to the equilibrium solution ¢o , taking dis-
turbed expression qi(t) = ql(r) + qo into Eq.
(12), and ignoring the nonlinear term of infinitesi-
mal disturbance, we can rewrite the disturbed e-

quation as

i—qf:—iﬁlq’uw oq' (O + Mag' (o) +

Mi[q0*q (O+2 | g0 Pg' (o) 19

We separate Eq. (19) into real and imaginary
parts, let ¢ (t)= A;(t) +id2(t), and take it in-
to Eq. (19), and the following ordinary differen-
tial equations will be satisfied.
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The eigenfunction of Egs. (20) and (21) can be given
as

(SF B = 4(M>2— %Blz To M— B2 @)

It can be shown that, whenever M1=> 0 or M,
< 0, if the condition M2"> o+ Blz is obeyed,
the formed surface waves is stable.

4. COMPUTATIONAL RESULTS
4.1 Mode selection of the surface waves

If the forced amplitude is prescribed, differ-
ent forced frequencies will produce different sur-
face wave modes. When the forced amplitude is
11. 4*m and forced frequencies are 8.73, 10.92 and
17.85Hz the contours of the free surface eveva-
tions and corresponding three-dimensional surface
determined by Eq. (1), are plotted in Fig. 1 at the
time ¢t = 215.9s. In Fig.1, the effects of surface
tension and weak viscosity have been included, and
the meaning of solid lines, dased lines and para-
metrical couple (m, n) are the same as in Ref.
[15] .

It can be shown that the shapes of the excited
modes of the surface waves become more and more
complex with increasing forced frequency.

4.2  Unstable regions and nonlinear evolution of the
modified amplitude equation

The results of instability are illustrated in Fig.
2 and the unstable regions are determined by Eq.
(15). The shaded regions in Fig.2 are unstable re-
gions. When the parameters enter these regions,
the surface wave can be excited due to the first in-
stability.

The evolutions of the amplitude Egs. (13) and
(14) with time and the phase-plane trajectory are
depicted in Fig.3. When the parameters satisfy the
first condition of Eq. (16), the stable surface wave
can not be formed. This situation is plotted in
Figs. 3(a) and 3(b).

I't can be easily seen from Fig. 3 that the am-
plitude decreases gradually and tends to zero even-
tually under the prescribed initial conditions. This
indicates that the external driven energy can not
overcome the viscous dissipation, and the stable
surface wave can not be formed.
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1Ca) The forced frequency f = 8. 73 Hz, and the mode of

surface waveis (1, 2)

1

0.5

y=rsing
o

1(b)  The forced frequency f= 10.92Hz the mode of sur-

face wave is (3 2)

Similarly, when the parameters satisfy the
second condition of Eq. (16), the stable surface
wave still can not be formed. However, when the
parameters yield instability condition (15), the in-
stability will happen and the surface wave will ap-
pear.

Figure 4 illustrates the evolution of the ampli-
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y=

1(e)  The forced frequency f= 17.85Hz the mode of sur-
face wave is (5, 4)
Fig.1 Contours (up) and three-dimensional modes (down)

of the excited surface wave at different forced fre-
quencies (depth of fluid A= 1.0 c¢m, radius of circu-
lar cylinder R = 7.5 am, forcing amplitude 4 = 11.
40'm, viscosity coefficient v= 10 m®/s, surface ten-

sion coefficient I'=

0. 072716N/m, density of fluid = 10’Kg/m®)

2(a)  Unstable region determined by damping coefficient 3

and excited coefficient M>(c = 0. 02 )

tude with time and corresponding phase-plane tra-
jectory. It can be seen from Fig.4 that the ampli-
tude tends to a constant and a fixed point with the
development of time from Figs.4(a) and 4(b) re-
spectively. In this condition, stable surface wave is
formed.

0. 06 1

0.03 1

ko

i=ep))”

d=(ohg))”

~0,08 0 0.03 0.06

2(bh)  Unstable region determined by frequency difference co-

efficient 0 and excited coefficient M,(3; = 0. 0D)

Fig. 2 Unstable region determined by damping coefficient
B1, frequency difference coefficient ¢ and excited
coefficient M

— g[8
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-
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3(a) Evolutions of the amplitude with time
0.6 a,0)=40.2
7,{0)=0,4
0.24
S 04
©
.34
0.6 = T r
0.4 0 0.4

2t

3(b)
Fig.3 The evolution of the amplitude with time and phase-

Phase-plane trajectories

plane trajectories
(6= 0.5 M= 10, M= 0.4, B;=0.02)
5.  CONCLUSIONS
From above analysis, the following results can
be drawn:
(1) The method of two-time scale expansion is
effective to resolve the problem of considering sur-
face tension and weak viscosity in vertically oscil-
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Fig.4  Evolution of amplitude with time and phase-plane tra-

jectories

(0':0.4; M, = 10 M, = 1, 31:0.02>

lating circular cylindrical container.

(2) The analytical expression of the damping

coefficient is obtained, and the nonlinear ampli-
tude equation is modified by it.

(3) An unstable condition of appearing sur-

face wave is determined and the critical curve is
obtained analytically. Moreover, the analytical re-
sults are testified by numerical computation.
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