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Inviscid transonic flow field analysis 
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Abstract. This paper describes a method for analysing inviscid transonic flow. This 
method is based on the fact that the angle made by the streamline of the transonic flow 
and of the .corresponding incompressible flow is usually small. By using curvilinear 
coordinates, the differential equation of the .stream function of an inviscid com- 
pressible flow is simplified and a general solution of the equation obtained. 

As examples of the method, transonic solutions are given for flow through two- 
dimensional and axisymmetric Laval nozzles of different throat wall radii together 
with sonic lines and iso-Mach lines. To determine the discharge coefficients of Laval 
nozzles, an integral relation is developed. The general behaviour of the transonic 
flow in the throat region is presented, and the effect of the mass discharge on the 
Mach number distribution in the nozzle analysed. The effects of the ratio of  the specific 
heats on the cb.aracteristics of the flow in the throat region are discussed. For tran- 
sonic flow around a circular cylinder and a sphere, sonic lines and iso-Mach lines 
are presented for free-stream Mach number varying from the subcritical to the 
supercritical, including a free-stream Mach number of one. 

Part of the results obtained are compared with those available in current literature. 
For the two-dimensional hyperbolic Laval nozzles, the iso-Mach lines are com- 
pared with those given by Cherry (1959) and Serra (1972). For. axisymmetric Laval 
nozzles, the discharge coefficient and the Mach number at the throat'section for various 
throat wall radii are compared with those given by Saner (1944), Hall (1962), Kliegel 
& Levine (1969), and Klopfer & Holt (1975). The theoretical discharge coefficients 
are compared with the experimental results by Back et al (1975), Durham (1955), 
Norton & Shelton (1969) etc. For the transonic flow around a circular cylinder, the 
iso-Mach lines are compared with Chcrry's exact solution for the quasi-circular 
cylinder for M~ equal to 0.51. The Mach numberdistributions on the surface of 
the circular cylinder are compared with those given by Imai (1941) for Moo equal to 
0.4, by Cherry (1947) for Moo equal to 0.51, by Dorodnicya (1956) for Moo equal to 1, 
and by Hafez, South & Murman (1979) for M~ equal to 0.51. 

The present method has a much wider scope of application, requires simpler com- 
putation and gives results with good accuracy. It is being used to analyse supercriti- 
cal wings and cascades, and we expect to extend its application to the field of transonic 
unsteady flow. 

Keywords. Transonic flow; Laval nozzles; flow field computations; flow past circular 
cylinder. 

1. Introduction 

A cen tury  has  passed  since D e  Lava l  (1883) invented  the  convergent -d ivergent  nozzle,  
a n d  Reyno lds  (1886) deve loped  the  one -d imens iona l  subsonic-supersonic  nozzle  
f low theory .  A n  inves t igat ion o f  the  represen ta t ive  works  o f  the  pas t  cen tury  shows 
t ha t  the  deve lopmen t s  in this  field m a y  be  roughly  d iv ided  into  th ree  pe r iods  (see 
figure 1). 

F o r  the  first sixty years ,  i .e. ,  f rom the  ear ly  1880s to  the  la te  1930s, the  p rob lem 
o f  t r anson ic  flow was for  the  first t ime p r o p o s e d  a n d  some f tmdamenta l  invest igat ions 
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essential to the founding of this branch of science were made. Notable contributors 
of this period include Chaplygin (1904), Meyer (1908), Tricomi (1923), Taylor (1930), 
and G6rtler (1939). The hodograph method (Chaplygin 1904), the series expansion 
method (Meyer 1908; Taylor 1930; Gdrfler 1939), arid the simplified transonic 
flow equation (Tricomi 1923) were introduced, and a number of transonic flow solu- 
tions obtained. However, the development was slow relative to the time span involved, 
as is the case with most of the virgin fields of study. 

In the early forties, the speed of the aeroplane increased rapidly and approached 
that of sound. Owing to the so-calk d 'sonic barrier', growing attention was accorded 
to transonic flow research. Many aerodynamieists and mathematicians took part in 
this work, and remarkable progress was made. However, with the overcoming of the 
'sonic barrier' through engine thrust, the next 15 years witnessed an obvious 
decrease in the research, followed by a state of low activity. These 25 years might be 
considered as the second period of transonic flow research. This notable upsurge and 
subsequent decrease in the activities of research is graphically shown in figure 1. 

In this period the analytic methods of the early days, such as the hodograph method 
(Von Ringleb 1940; Frankl 1945; Lightill 1947; Goldstein et al 1948; Cherry 1947, 
1949a, b, 1950, 1959; Tsien & Kuo 1946, Kuo 1948, 1951; Tomotika & Tamada 
1950) and the series expansion method (Sauer 1944) were taken over and further 
developed. In addition, a number of distinct approaches were proposed, such as the 
small parameter expansion method (Imai 1941; $imasalsi 1956; Hall 1962; Kliegel & 
Levine 1969), the relaxation method (Green & Southwell 1944; Emmons 1946, 1948) 
the law of transonic similarity (Von Karman 1947; Lin et al 1948), the integral equa- 
tion method (Oswatitsch I950; Gullstrand I95Ia, b; Spreiter & Alksne 1955), the time 
dependent method (Von Neuman & Richtmyer 1950; Lax & Wendroff 1964; Crocco 
1965; Moretti & Abbett 1966), and the strip integration method (Dorod~ffsyn 1956; 
Chushkin 1957; Holt 1962). All this not only improved and enriched the analytic 
methods of the earlier days, but also provided a theoretical basis for the numerical 
methods characteristic of the period to come. 

In the fifteen years since mid-sixties, the pendulum seems to have swung back. The 
problem of transonic flow has once again claimed the attention of many researchers. 
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Figure I. Development of traIlsonic studies. 
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This second ups~ge in transonic researc5 has been necessitated by the urgent 
demand in air transport and space exploration for greater payloads; better cruising 
performance of large transport and shuttles, and higher efficiencies of jet engines, 
turbo-machines, and cascades. Flights in the transonic realm, once'deliberately 
avoided, have become the object of intensive study with their inlterent advahtages 
being maximo, lly exploited. Tiffs trend in research has been further accelerated by 
the recent energy crisis in the industrial world. 

One of the dominant features of transonic flOW study during this period is the rapid 
development and extensive application of numerical methods. Many of the 
transonic flow problems that used to be tackled with wind tunnels, are being 
solved with the aid of digital computers. The main numerical methods being 
developed are the hodograph method (Nieuwland 1967; Boerstoel & Uijlennoel 
1970; Boerstoel 1974; Takanashi 1973; Garabedian & Lieberstein 1958; Swenson 
1968; Korn 1969; Garabedian & Korn 1971; Bauer et al 1975; Sobieczky 1972), 
the relaxation method (Murman & Cole 1971; Murman 1973; Krupp 1971; 
Krupp & Murman 1972; Jameson 1971, 1974, 1975a, b; Hofez & Cheng 1977a, b; 
Cheng & Hafez 1976), the time-dependent method (Magnus et al 1968; Magnus 
& Yoshibara 1970; Moretti 1969, 1970; Grossman & Moretti 1973; Serra 1972; 
Cline 1974), the integral equation method (N~rstrud I973; Hansen 1975; Nixon 
1975, 1978; Chakrabarty 1978), the integral relation method (Holt & Masson 
1971; Gross & Holt 1975; Klopfer & Holt 1975), and the finite element method 
(Chan & Brashears 1974; Shen 1975, 1977; Norrie & de Vries 1975; Chan 
et al 1975). These methods, though inherited from the previous period, have taken 
on a new character by the introduction of numerical procedures. This period, which 
might conveniently be called the third stage of transonic research, has made a promis- 
ing start and has up to now shown no signs of abatement. 

In fact, transonic flow research is currently in a state of fast development, with new 
findings appearing in rapid succession. However, along with the fruitful results 
achieved, a series of new problem, have also emerged. First of all, as the general line of 
attack has been the search for adequate computing schemes, based on the theories 
of the previous period, greater effort has been made from the viewpoint of numerical 
computation than from that of the physical characteristics of the flow. Besides, for 
the purpose of obtaining convergent solutions some man-made factors, such as 
artificial viscosity, are being introduced in numerical computation, and this tends to 
affect the accuracy of the results. Moreover, while notable success has been made with 
respect to thin wings, relatively little has been achieved for thick bodies. For example, 
in respect of transonic flow about a cylinder, the sonic lines and the iso-Mach lines 
for different free-stream MacJa numbers, especially for free-stream Mac& mtmber 
equal to 1, have not been made clear~ in spite of the many interesting papers published 
on the topic. In the case of transonic flow about a sphere, the situation also calls 
for further study. Another feature characteristic of current research is by and large 
the use of the potential function rather than the stream function as a means of solving 
transonic flow problems. One of the main reasons for this prevailing preference 
has been the difficulties in solving the many-valued function with the stream-function 
approach. But as a matter of fact the stream-function, with its more obvious 
physical property, may, when properly used, well prove to be a more efficient 
approach both in theoretical analysis and in numerical computation. 
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In view of all this, the present paper proposes to adopt the stream-function 
approach for the solution of transonic flow problems. A method has accordingly 
been developed for analysing transonic flow, based indeed on the simple but 
neglected physical fact that the angle made by the streamline of the transonic flow 
and that of  the corresponding incompressible flow is usually small. By using curvi- 
linear coordinates, the differential equation of the stream function of a compressible 
flow can be simplified and a general solution obtained. 

As examples of the application of the method, a number of specific transonic flow 
problems are analysed and solutions, including sonic lines and iso-Mach lines of 
the flow fields, are given. In the case of internal flow, the flow felds through two- 
dimensional and axisymmetric Laval nozzles of different contraction ratios and 
different throat wall radii arc analysed for various mass flow rates. In the case of 
external flow, the flow fields about a circular cylinder and about a sphere arc 
analysed for frcc stream Mach number Moo varying from the subcritical to the 

supcrcritical including Moo equal to I. 

Some of the results obtained by the present method are compared with those 
available in current literature. It will be found that the present method has a much 
wider scope of application, requires far simpler computation and gives re, sults of 
good accuracy. 

The present method is being used to analyse supercritical wings and cascades, 
and we cxpeot to extend its use to the study of transonic unsteady flow. 

2. The basic equation and the solution 

We shall confine our discussion to the study of the steady-state, irrotational, isen- 
tropic, two-dimensional or axisymmctric flow of an ideal gas. The non-dimensiona- 
lized quantities are signified by a bar placed over the corresponding symbols: 

~c = x / b  f ,  = p / p ,  7 

= y l b  p = p /p ,  

= ~ + ~  ~ = : r / r ,  

fi = u /a ,  ~ = ~/a*bOrb)r ,. (1) 

=- v i a ,  = 4 , / a , p , ( , , b )  

~t = q[a, M = ~[it 

?t = a /a ,  ~ = rib 

3 

Here b denotes characteristic length and the asterisk denotes sonic condition. 
As only non-dimensional quantities are to be used in this paper, the bar over the 
symbol is invariably left out. 
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For the two-dimensional or axisymmetric irrotational flow of  ideal gas, the mass, 
momentum and energy conservation relations can be respectively represented in 
orthogonal eurvilinear coordinates (Tsien 1958) as follows: 

(y" H~ pu)~ + (y" H x po)~ : O, 

(ICe v)e - -  ( ~  u),7 = O, 

1 4 -  1 4 - 7  7 r - -  -____= - - - _ - - = q 2 ,  
2 2 

H 1 -----(x~ q- y~)l/Z, H~=(x~ --1- y,~) ~ 1/3. 

l (2) 

In the above equations H I and H 2 are the inverse of  the Lam6 coefficients (1934) 
for the transformation between the ortlaogonal cttrvilinear coordinates (~, 7, 0) 
and the orthogonal coordinates (x, y, 0); u and v are the velocity components along 
~, ~7; p and T express respectively the density and absolute temperature of  the gas; 
E = 0 denotes plane motion, and ~ ----- 1 denotes axisymmetric motion. 

The equation of  state of  a perfect gas, the adiabatic flow relation and the relation 
between temperature T and sonic velocity a under adiabatic conditions, wlaen ex- 
pressed in the non-dimensionalized variables chosen for this paper, may be written 
as follows: 

p = pT ,  p = pr,  a = T i n  . (3) 

From (2) and (3), the relations between either density p or Ma th  number M and the 
velocity q are obtained respectively as 

P =  2 2 . 
(4) 

From equations (2a, b)* one can define stream function ff and potential function ff as 
follows: 

`be = - py" Hx v, ~ = pv~H~v, 1 
'be = t t l  u '  '/',7 = H~ ,,. 

(5) 

Using (3) and (4) and the definition given in (5), equation (2) gives the stream-func- 
tion equation for two-dimensional or axisymmetric flow as 

*The letters a, b etc. attached to the Arabic number indicate the sequential order of the formulas 
each equation. 
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(y~' H~ a ~ p~ --  ~ )  $ ~  + 2 r $,~ $ ~  + (y~* H~ a s p~ --  ~ )  $~n 

, H, 1 H t 1 

(,,. 
& 

(6) 

When H t = Hz = H, this equation can be simplified. For axisymmetric flow, 
c = 1, equation (6) becomes 

(y2 H z a a p2 _ ~b~) ~ + 25~ ~,7 $~,7 + (y~ H~ as p2 _ $}) ~b7,7 

l ( ~ + ~ b ~ )  (H e ~b~+Hn ~b)- -y  H a a ~ pa (y~ ~b~+y,7 ~b )=0.  (7) i 

For two-dimensional flow ~ = 0, equation (6) becomes 

(H 2 a s p2--~b~) ~bg~ + 2 5 ~  ~b,1 $ ~ n + ( H  2 a z pa--~b~) ~b,v 7 

_ 1 ( r 1 6 2  (/_/e ~+/~ ~) O. (8) 

When H 1 = He = H one can utilize the conformal relations between the two coordi- 
nate systems (x, y) and (~, ~). According to the complex variable theory (Riemann 
1851) the following relations are obtained: 

z =f(0, 
z = x + i y ,  I 

~= ~+in' I (9) 

where f (O  is an analytic functions of g. 
Equation (6) is valid for any orthogonal curvilinear coordinated system. It is 

obvious that to solve this equation mathematically is very difftcult, especially under 
transonic conditions. For this reason, fluid dynamicists have often made use of the 
physical characteristics of the flow, simplified the flow equation through an order-of- 
magnitude analysis, and obtained approximate solutions with a certain degree of 
accuracy. For instance, Oswatitsch (1950) and von Karman (1947), by making such 
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an analysis for transonic flow in rectangular coordinates, gave the small disturbance 
equation as 

a ,  

By employing a similar method in the velocity plane, Tricomi (1923) obtained a 
simplified transonic equation 

Their efforts have contributed greatly to the solution of the transonic small disturb- 
ance problem. But as regards the flow in a nozzle with a comparatively large throat 
curvature (figure 2), or the flow past a eompartively thick body (figure 3), the simpli- 
fied transonic flow equations described above are no longer valid. Some authors did 
solve the transonic problem by rr~aking one of the curvilinear coordinates coincide 
with the body surface. This, of  course, helps tackle the boundary conditions in a 
convenient manner. But it fails to give a satisfactory and definite order-of-magni- 
tude relation (figure 3a) between the velocity components in the whole flow field, 
and cannot provide a simplified flow equation. 

It was against this background that we began to examine the problem of transonic 
flow through a nozzle (figure 2) and the flow past a circular cylinder (figure 3) and we 
note the important fact that the angle made by the stream lines of  a compressible 
flow and those of the corresponding incompressible flow is usually small. In other 

Y,  

X 

Figure 2. Laval-r~ozzle coordinates and the flow pattern. 

. I  ' /  ' " ~  

Figure 3(a). Elliptical coordinates. 

I I 

Figure 3(b). Incompressible-flow coordinates about 
an ellipse. 
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words, with u as the velocity component along 7 and o the one along ~, u is far 
greater than v. Therefore, selecting the equipotential lines and the streamlines of a n  
incompressible flow as the ($, 7) coordinates, (6) can be successfully simplified. 
Assuming u ~, v, and using (5) we obtain I ~b [ ~ I ~bfl ; by omitting ~bf and its 
derivatives from (6), we obtain the simplified stream function equation, 

y2~ 1-11 a z pZ ~'~I y" H---'~ ~b + y~E Hz a ~ P' \ye H~I~ ~ = O. (10) 

This equation is a nonlinear ordinary differential equation in ~, with ~ as a para- 
meter. Utilizing (4a) after differentiating it with respect to '7 and substituting it in 
(10), we eliminate ~b n and obtain the first integral of (10), 

= Y" (~:, 7) P (~, 7) g (~) H~ (~, 7) (~, ~)" /h  
(,11) 

Here yE (f, 7) is a known function whereas g (~) is a function to be determined. For 
flow through a nozzle, g (~) is related to the mass discharge; for flow around a body, 
g (~) is related to the free-stream Mach number. For convenience, g (~) can be desig- 
nated as a 'discharge function' with ~/= ~/t as the null stream line i.e. 4J (~, 71) = 0. 
Substituting (4a) in (11), one obtains a general solution for ~b (~, ~7): 

~b (~, 7) ~---~ (~ ~---~1) ~'-1 
1 1 

, . )  f" r.m 

Ha (6  ~) , (r ~) dn. (12) • - - - - - ~ y  
nl(~, 

Here Ht (f, 7), H2 (~, 7/)and y (~, ~) are determined once the coordinate trans- 
formation is chosen, and only g ( 0  is to be sought. The determination o fg  (~) will 
be discussed later in this paper with reference to specffie examples. 

With g (~  determined, the corresponding transonic flow field is established. In 
accordance with the stream ftmction defined by (5), one obtains the velocity distribu- 
tion in the flow field as 

_ Ce 
u(~, ~/) -- g(~) o(~, ~/) = (13) 

H1 (r 7)' PHi(c, 7)Yr (~, 7)" 

3. Internal flow 

In what follows, the above method is applied to transonic flow in a Laval nozzle. 
Given the nozzle coordinates, we analyse th~ maximum mass discharge and study 
the transition from the subsonic through the sonic to the supersonic regime in the 
throat region. A series of two-dimensional and axisymmetric sample flow fields 
in the throat region are presented, and the influence of the specific heat ratio ~ is 
obtained. 
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3.1 Nozzle coordinates 

In accorde,nce with the incompressible potential flow and the complex variable theory, 
by selecting a slitted symmetrical biconvex wing section in the velocity plane, one 
obtains a symmetric nozzle in the physical plane. The mapping relation f ( 0  (Lin 
Tong Ji and Jia Zhen Hue 1978) between plane z and plane ~ is given as 

z = - ~ -- (1 -- tr) coth A In [cosh (14) 
) 

.b  t c o s h  �89 (a - ~3 ~" 

In this formula, A, or, % are nozzle shape factors and n is the nozzles contraction ratio. 
By separating the ree,1 and imaginary parts of (14), we obtain the relation between the 
(x, y) and the (r ~) coordinates as 

x(L~)  n ~:--�89 
,b L -osh G-- t (15) 

Y(.~, ~7) ~ ~ -- (1 -- or) coth A ~cosh~+coshAcosrllj.  3 

By selecting corresponding shape factors A, a, ~Tb according to the w.lues of the throat 
waU radius r, contraction ratio n and contraction angle 81 of the nozzle, one obtains 
the required profile of the nozzle. 

3.2 Maximum discharge 

For the flow through a nozzle, the maximum discharge is one of the most significant 
parameters. It is essential in determining the transition of the flow field from the 
subsonic to the supersonic region in the throat. No satisfactory answer, however, 
has been given to the problem involved. As a solution to this problem an integral 
relation equation for determining the maximum discharge is presented below. 

With the streamlines and equipotential lines of the corresponding incompressible 
flow as the coordinates, the boundary conditions can be expressed as follows: 

--- n l :  ~ (~ ,  nx) = 0 .~. 
(16) 

In these equations, ~b is the discharge through the nozzle; its value cannot be 
arbitrarily selected. For a given nozzle there exists a maximum value of fib, namely 
the maximum discharge. 

Given the throat section coordinates ~ = ~,  from equations (12) and (16), the 
maximum discharge ~b~ through the throat area is obtained as (Lin Tong Ji & 
Jiazhen Xue 1978) 

1 1 

~,= 72-i g~ l -  

• .Hs (e , ,  L)y ,  (~., ~7) d~7, (17) 
/ t l  (~,, n) 
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in which g~ satisfies the relation 

• ,1)y, d,7 = o .  (18) 

The roots of equation (17), g~, are multi-valued, the smallest of which corresponds to 
the maximum discharge fla. For the flow through the nozzle, ~b b cannot be greater 
than ~ .  For a given value of ~b, from the boundary condition (I6), one obtains the 
integral relation that determines the discharge function g (~) as follows: 

1 1 

• HI( ,H  ,) dn. (19) 

Equation (18) is an integral relation equation for g(~) with ~ as a variable parameter; 
for a given value of ~, g(~) is multivalued. In order to ensure the continuity and the 
non-occurrence of a negative density in the solution, g(~) has to be selected as follows: 
for subsonic flow in the nozzle, ~bb < ~b s, the smallest positive root of g(~) should 
be taken for the entire range of ~; for supersonic flow through the nozzle, $~ = ~hs, 
the selection o fg  (~) is dependent upon the range of ~. When ~ < ~,, the smallest 
positive root of g(~) should be taken, and this corresponds to the flow through the 
contracted portion. When ~ -- ~,, the smallest positive repeated root should be 
taken, which corresponds to the flow in the throat section. When ~ > ~,, the 
second positive root of  g (~) should be taken, which corresponds to the flow through 
the expanded portion. Figure 4 gives the variation ofg  (~) with ~ for various portions 
of the nozzle. 

3.3 Transition of the nozzle throat flow field 

For a given nozzle, there exists a maximum discharge. When the inlet discharge is 
smaller than the maximum discharge, i.e., the discharge eoetficient (factor) k = ~ba[ ~b~ 
is smaller than 1, the flow through the nozzle is of a subsonic symmetric type. When 
k = 1, the flow is of  a supersonic type. How the flow field in the throat region of a 
nozzle changes from the subsonic symmetric type to the supersonic type is one of the 
most significant problems of nozzle flow field investigations. Tomotika & Tamada 
0950) applied the hodograph method to an artificial gas and explained qualitatively 
the relationship between the flow field transition and the discharge in the throat 
region. In this section the same problem is discussed quantitatively, and with 
reference to an ideal rather than artificial gas. 

In accordance with the general solution of nozzle flow given above, proper selections 
can be made for the contraction ratio n of the nozzle, the maximum angle 01 of in- 
clination of the wall surface, and the radius of curvature r of the throat wall. Our 
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Figure 4. 
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The "discharge correlation function" g (~:). 

analysis demonstrates that the variation in the value of  7, the ratio o f  specific heats, 
hardly affects the flow field in the throat region. In view of  the fact that when ~, equals 
2, the analytical expressions for the flow fields in the throat assume a simpler form and 
that water table tests also yield a flow condition with 7 = 2, one can more conve- 
niently explain the general properties of  the throat flow field transition by making 

= 2. When ~ = 2, the analytical solution (Lin Tong Ji & Jiazhen Xue 1978) 
of the throat flow field is 

g ( 0  = 2 ~  z/' Ei  -z/= ( f ,  ~) cos �89 0 

cos -1 [kET" (0, ~ )  E11~' (~, ~)1 }, 

+ a n  (~, - ,0 N1 i f ,  , 7 , -  a)], 

Bl1(~ r a) = 1  + coth a coth ~ ( tanh'  ~ 1 --q q so~h' ~r 

N z (~, ~/, a) = tanh a + tanh 2 

k = 4,d,/,,, ~, = ,7~/' g i  -1/' (0, ,7~), 

cosh a = g cosh h. 

(20) 
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When contraction ratio n ~ 2 and the throat  wall radius r = 2, the relation between 
the throat flow field and the discharge coefficient k is worked out according to equa- 
tions (19) and (20). Figure 5 gives the iso-Mach number line distribution in the throat 
with the values of  k ---- 0.5, 0.9, 0.98 and 1.0 etc. respectively. For  k = 1.0 sonic 
line AE, limiting characteristic line BE, dividing line DE and influence line CF are 
also given. F rom figures 5(a) and 5(b), one can see that when k ---- 0.5, the flow field 
as a whole can be approximately considered as incompressible, or low subsonic. 
When k = 0.9, the influence of  c~mpressibilit~ has to be considered, but the nozzle 
flow field as a whole is still subsonic; when k = 0.98, local supersonic regions occur 
in the vicinity o f  either side o f  the throat  wall; when k = 1.0, a breakoff oecurs in 
the local supersonic region mentioned above and the sonic lines on the two sides 
extend until they meet on x-axis at the downstream of  the throat. The throat  flow 
is thus divided into two parts:  the upstream subsonic flow and the downstream super- 
sonic flow. This is the state of flow generally known as the supersonic nozzle flow. 

For  y = 1"5, 1.33 . . . .  equations (86) similar to equation (20) can be obtained; 
for any value of  y, a corresponding result can be obtained by using the integral rela- 
tion equations (16)-(19). Figure 6 gives the relation between the Mach number at 
the throat wall and the discharge coefficient k with ~, = 1.40 and the throat  wall 
radius, 1, 2 and oo. From the figure, we can see that for any given throat wall radius, 
the throat  wall Mach number steadily increases with k. The larger the value of  k, 
the greater is the rate of  the inclease. 

3.4 Nozzle flow field 

In the study o f  transonic flow, the hyperbolic nozzle, being a typical example, is o f  
great significance both  in theory and in practice. It  has been studied by many scholars 

(a) 

u 7 

- 2  -1 0 1 
X X 

Figure 5. (a) Relation between the Mach number distribution and the discharge 
coefficient k (for k = 0.5 and 0.9). Co) Relation between the Mach number distri- 
bution and the discharge coefficient k (for k = 0.98 and 1.0). 
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Figure 6. Relation between the maximum Mach number at the nozzle throat and 
the discharge coefficient k. 

using various methods: Emmons (1946) used the relaxation method, Cherry (1959) 
the hodograph method (obtaining an accurate solution), Hall (1962) the small para- 
meter method, and Seria (1972) the time-step correlation method. Most of  these 
studies, however, only concentrated on one or two specific examples. Hall (1962) 
did discuss general conditions, but his method can only be applied to a nozzle with a 
relatively large wall radius of curvature. In what follows, we will apply the present 
method to the determination of  the transonic flow (Jiazhen Hue and Lin Tong Ji 
1979) in the throat region, taking the hyperbolic nozzle as an example. 

By using the function of  a complex variable, the hyperbolic nozzle coordinate 
relation between z and g, and the inverse of  Lam6's coefficients H for the coordinate 
transformation, can be represented as 

z - - c o s e c  '1~ sinh ~, z = x + i y ,  ~=$~-i~,~ 
f 

H (~, 7/) = cosec ~b (sinh ~ s r + cos ~ ,/)z/,., ) 
(21) 

in which the constant cosec ~b involves the half-height of  the throat. In this coordinate 
system, when the ratio of  specific heats ~, equals 1 + 1/v of  and v is a positive inte- 
ger, the flow field at the throat has a simple analytical solution. For any value 
of  ~,, the computations can be carried out on the basis of  formulae (16)-(19). Part 
of  the typical results are given below. 

Figure 7 gives the wall contours and the corresponding throat sonic lines for 
y = 1.40 and wo.ll radius r = 10.6, 5, 1, 0.22 respectively. The figure shows that for 
a comparatively large value of r, the sonic line has only one turning point located 
at its centre; when r is less than 1.1, an additional turning point occurs in the 
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vicinity of  both sides of  the wall surface. Within the range given in the figure, the 
distance between the centres of  the sonic line and the throat section increases mono- 
tonically as r decreases, but with the continuous decrease in the value o f  r below 
0-18, the distance begins to decrease. 

Figure 8 gives the Mach number distribution on the central streamline for 7 ----- 1.4 
and r ---- 10"6, 5, 1"0, and 0.22 respectively. It is evident from the figure that all 
Much number distribution curves intersect at one point, whose location is given 
approximately as x=0.37 and M--1.08. Reduction in the value of  r is accompanied 
by rapid variation in the airflow acceleration. 
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Mach number distribution along the axis of hyperbolic Laval nozzles. 
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Figure 9 demonstrates the influence of V upon the iso-Mach number distribution in 
the throat flow. The dotted lines are for y ---- 1-2 and the solid lines are for 7 ---- 1-667. 
It is obvious from the figure that the larger the value of y, the closer the iso-Mach 
l/he is to the throat. 

Figure 10 gives the comparison between the results obtained by the present method 
and those obtained by Cherry (1959) and by Seria (1972) at 7 ----- 1.40 and r --~ 2. 
Cherry, using the hodograph method, obtained the exact solution for the quasi- 
hyperbolic contour; Seria using the time step correlation method, carried out the 
calculations for the hyperbolic nozzle. The figure shows that the results obtained by 
the present method and those by Seria coincide for the iso-Mach lines when 
M = 0.46 and 1.90. When M ---- 0.75, 1.32 and 1.68 our results lie between those 
obtained by Cherry and Seria, and our results for the sonic line coincide with those 
obtained by Cherry. But compared with both Cherry's and Serra's method, the 
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Figm'e 9. Influence of the ratio of specific heats upon the flow-field. 
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Figure 10. Iso-Mach line distribution for a hyperbolic nozzle. ----  Present results; 
--,. --  Cherry (1950); - -  --  - -  Seria (1972). 
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present method is much simpler, and furthermore, the nozzle throat contours can 
be selected according to need. 

3.5 Axisymmetric nozzle flow field 

The method given in this paper is also applicable to the axisymmetric nozzle 
throat flow with any wall contour. In view of  the extensive use o f  the circular arc 
throat, this section intends to analyse briefly the transonic flow for this type of  
nozzle. 

For this purpose, the employment of  double circular coordinates (Lamb 1932) 
will prove convenient. The coordinate relations, and H(r rt), the inverse of  Lam6s 
coefficients for the coordinate transformation, are respectively 

z = c o t h % t a n ~ ,  z = x + i y ,  ~ = ~ - + - i ~ , ]  

2 coth *Tn 
/ 

H(~, 7/) = oosh 2~7-)-0os 2r J 
(22) 

The constant coth ~7~ is so chosen that the throat radius is 1. Using the above-men- 
tioned conformal curvilinear coordinates and applying the equations (16)-(19), 
one obtains the transonic flow field solution for the circular arc throat region. For 
some common ratios of  specific heats, e.g. for r = 1.1, 1.667, 1.2 etc., the throat flow 
field solution can be expressed by simple analytical equations (Jiazhen Hue and Lin 
Tong Ji). For instance when y = 1.4, the resulting formulae are 

~(~:, ~7) --/ca g(~:) IF(h) - -  F0zA)], -I 

F(a) = ~ (23--11A+3~ ~) ( l - -h)  ~/~ --  2 tanh -x (1--),) ~/2, 

k, g(~) [r(ab) - -  r(Izb ab)] =/z~, 

~b s = 4 ~ ko r ( l + 2 r )  -1/2 ~]/2 [(1--/x, ~,)5/2 _ (1_~)5/2], 

F(A~) - -  F(/z~ ~,) + 2 (1--~,) 5/2 - -  2 (1--/xs a,)~ = o, 

}- (23) 1 
= ~(s 7) = 2~(lq-2r)  -1 (cosh 2 ~ + c o s  2s 2 g~(s 

ab = ~(r ~b), ~ = a(o,  ~b), 

t~ = t,(~, 7)  = cos  4 ~ ( cosh  2 n + o o s  2~)-~,  

+,~ = ~ (~ ,  n~), m = ~,(0, n~), 

1 

ka =_: �89 (r_~lr-"---i (l-~-2r)l/2. 

Using the above method, we obtain the following transonic flow field for the circular 
arc nozzle for different values of  r (Jia Zhen Hue and Lin Tong Ji, to be published). 

Figure 11 gives the relationship between the maximum nozzle discharge Ss and the 
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wall radius r, for y = 1-.40. At the same time, results of some other theoretical and 
experimental studies are compared. It is evident from the figure that when r is compa- 
ratively large, the results obtained by the present method and those by Hall (1962) 
are basically the same, while the results given by Sauer (1944) are somewkat small; 
Kliegel & Levine's results (1969), on the contrary are somewhat large since they used 
the inverse of (1 + r) as a small parameter, thus giving rise to a slowly convergent 
series. With the decrease in the value of  r, Hall's solution becomes divergent, and 
Sauer's is no longer valid. The results given by Kliegel & Levine are evidently too 
large. Klopfer & Holt (1975), utilizing the integral relation method, obtained better 
results than those of  Kliegel & Levine. The diagram shows that our results lie between 
those obtained by Klopfer & Holt on the one hand and Sauer on the other. More- 
over, they match better with the experimental results (Back et al 1965; Durham 
I955; Norton & She|ton t969; Back & CuaTel 1971). At the same time, one must 
notice that when the entry portion is non-circular, e.g. when it is conical in shape, 
~ is increased, espe6ally when r is comparatively small. 

Figure 12 gives the relation between the wall radius and the Mach numbers on the 
wall surface and on the axis at the throat section; at the same time, a comparison is 
made with the results of 5auer (1944), Hall (1962) and Kliegel & Levine (1969). It 
can be seen from the diagram that for relatively large values of r, the results given by 
the present method and those by the others are basically identical; when r is relatively 
small, the Math numbers at the wall given by Kliegel & Levine are relatively high 
while those at the axis are relatively low. These results coincide with those presented 
in figure 7. 

Figure 13 gives the contours and location of the sonic lines for ~ = 1.40 and wall 
radius of  curvature r = 10, 5, 1 and 0.50 respectively. The figure indicates that for 
relatively large r values, the sonic lines are nearly vertical; with the gradual 
reduction of the r value the curvature of the sonic line increases. When r is 
smaller than 0.5, there appears a second turning point in the vicinity of each side 
of the wall surface, in addition to the original one at the centre of the sonic line. 
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Figure 11. Maximum discharge for aXi~ajy~(let~ Lav~l nozzles, - -  Present 
method; - -  - - -  Sauer (1944); . . . .  Ha/ ( 96 ); ~ - -  Kleigel & Levine (1969); 
Klopfer & Holt (1975); A Back et al  (1965); V Durham (1955); 1:2 Norton & 
Shelton (1969); O Back & Cuffel (1971). 

Prec.---4 



332 T C Lin and Jia Zhenxue 

1.6 

1.4 

Mb 

1.2 

1.0 

M 0 
0.8 

0.6 , Z J , , , ,i ,i  i 
0.5 0.81 2 3 45 8 1 0  

r 

Figure 12. Throat wall and centre line Mach numbers for axisymmetric Laval 
nozzles. : Present results; - - - - - S a u e r  (1944); . . . .  Hall (1962); 
- -  - -  - -  Kliegel & Levine (1969). 
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Sonic lines for axisymmetric Laval nozzles of the circular arc type. 

Figure 14 gives the typical iso-Mach nttmber distribution of  the transonio flow in 
the throat  for r = 1 

Figure 15 shows the influenor of  y upon the m ~ m u m  discharge ~b,. I t  is clear 
that  with_the increase of  the 3, value the corresponding ~m value decreases. 

I t  is to be noted that  the  present method, besides being simple in computation,  is 
applicable to a small throat  wall r a d ~  as well as to a laxgr one. 
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Figure 15. Effect of specific heat ratio on the maximum discharge of axisynmaetric 
Lava1 nozzles. 

4. External flow past bodies 

In this section, the external flow past a body is studied in the light of the present 
method. A method of choosing the far field computation boundary is proposed; 
to overcome the difficulties associated with the small disturbance theory in dealing 
with thick bodies. As examples of the method, flow around a circular cylinder and 
a sphere are presented with free-stream Ma0h number M~ varying from subcritical 

to  superoritioal including Moo equal,to i. 
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4.1 Computation boundary 

In tackling the problem of flow past a body, any numerical method, in general, can 
only provide solutions in a limited space (region). Therefore, how to select a distant 
computation boundary is a problem of great significance. In the case of a thin wing 
or a slender body, the disturbance generated in the flow field is usually small; so at a 
finite distance from the body the conditions at infinity can be applied. For example, 
for the flow field around a thin wing, Emmons (1948) Murman & Cole (1971) and 
others have replaced the boundary at i~finity by one at a distance of a few chord 
lengths from the body. Chan et al (1974, 1975) divided the flow surrounding the body 
into the near region and the far region. A relatively fine mesh is used for the near 
region and a relatively coarse one for the far region. The two regions are matched at 
their junction. Disturbances to the flow field by thick bodies are usually large, espe- 
cially under transonic conditions. It does not matter whether a straight line or a 
regional envelope line is selected as the outer computation boundary; they both need 
to be located at a very great distance from the body; this has brought about great 
difficulties in computation, as the region involved is greatly enlarged. 

It is expected that the greater the distance from the body, the-smaller is the 
difference between the streamlines of a compressible flow and the corresponding 
streamlines of an incompressible flow. Therefore, it would be a better approxima- 
tion to select the streamlines of an incompressible flow at a certain distance from 
the body as the computation boundary. With the use of the conformal curvifinear 
coordinates in this paper, such a boundary then is the coordinate line ~ : ~b, 
which greatly facilitates the computations involved. 

But it is to be noted that for flow around a body, there is a section between the 
computation boundary ~b and the body surface ~ ----- 0 which is the narrowest. Take 
the circular cylinder as an example; such a section occurs at ~ ---- O, i.e. on the y axis. 
The mathematical expression for this relation can be written as 

y(o,  ,D - y (o, o) , ) -  y 0). 

Moreover, for the oncoming uniform flow at an infinite distance, i.e. ~ = -  o% 
the discharge ~ between , = 0 and , = % is (p u)o o ~b. Therefore, the passage of 

the disc&arge ~ through the narrowest section on ~ = 0 serves as the necessary con- 
dition for ,~ to be" a possible computation boundary for the transonic flow. Using 
(7) and the condition ~ ~ 0, tlfis relation can be written as (Lin Tong Ji & Jia Zhen 
Hue 1980) 

1 1 

J o  L 

n (O, y' (0, d = @u)oo (24) 

For (24) to be valid, there must exist a minimum value of ,b for a given supercriticat 
free-stream condition (pu)oo or MoG. Such a value is defined as the ~haracteristic 
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boundary and is represented by -%. From (24), one can see that ~7~ is only a function 
of g (0); as a result of the above definition, 7~ will satisfy the extremal relation 

~9,u/sg (o) = o. 

With due note taken of the fact that the upper limit in the integral is a variable, and 
replacing the 7b in (24) by ~7r and solving the equation, we obtain the following equa- 
tion for 7~ to satisfy the extremal relation mentioned above: 

2- - ' /  

S'or <,<o, _ ,] [ ,_, ,_,  'i,,-, 

x ~ (0, ~) y'(0, 7) d7 = 0. 
Ul(0,  7) 

(25) 

Now, the characteristic boundary ~c for a given oncoming flow Mach number can 
be obtained by replacing ~ in (24) by ~c and linking it with (25). When the oncoming 
flow Math number Moo -~ 0, the solution of the simplified equation (! 2) is accurate 
for the whole space; therefore, the corresponding computation boundary 7b should 
be oo. When Moo = 1, (24) and (25) yield ~r as oo. Since ~/b>7~, 7b is also ~ .  This 

shows that for M,o = 1, one gets the maximum value of the oncoming flow discharge 
and the effect of the body upon the flow field is to be shared by the whole flow field. 
This is precisely what is charactersitic of  a transonic flow. When the oncoming 
stream reaches the critical Maeh number, the body-induced effect upon the flow field 
is mostly borne by the near region; 7~ is then comparatively small in value. 

To sum up, as Moo gradually increases from 0 to the critical Math number and 
then to 1, the corresponding values of 7b first gradually decrease from co to a mini- 
mum value and then gradually increase to oo. As a result, one can write 

7l 
-bkk 

k=l 
(26) 

A proper selection of */b will raise the accuracy of the first order solution and reduce 
the number of iterations. Fo r  example, for the flow past a circular cylinder, with 
n = a 1 : b z = I, (26) yields very good results. A detailed discussion of  the topic 
will be given below. 

4.2 Flow past a circular cylinder 

The transonic flow past a circular cylinder is a longstanding problem that has enga- 
ged the attention of many researchers. For instance, Imai (1941) used the free stream 
Math number as a small parameter to calculate the flow around a circular cylinder 
with M~ < 0-4; Cherry (1947, 1949 a, b) used the hodograph method, to simulate, 
by repeated additions of  basic potentials, the approximate flow contours of  a quasi- 
circular cylinder and to give a special solution for Moo -- 0.51. Simanski 0956) 
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used a method similar tO that of Imai (1941), and chose higher-order terms fol calcu- 
lations about suberitical flow past a circular cylinder. Dorodynitsyn (1956) and 
Chnshkin (1957) used the strip integral method to calculate the flow past a circular 
cylinder for Moo ---- 1. Later, Holt & Masson (1970) used the integral relation 
method to calculate the critical flow past a circular cylinder. Moretti (1970) used the 
time-step correlation method for Moo = 1.0, and Norrie & Vries (1975) used the 
finite element method for Moo = 0.3 and 0.7. Because of the inherent limitations of 
these methods, they could only provide results about the flow under certain specific 
conditions. The present paper, on the other hand, by using the method of conformal 
curvilinear coordinates, manages to provide an overall picture for the flow past a 
circular cylinder and gives systematic results ranging from subcritical to supercritical, 
including freestream Mach number Moo = 1. 

Let us ,assume that the free stream at infinity and the x-axis are parallel and that 
the origin of the coordinate system is situated at the centroid of the cross section. 
Then, for a unit circle in the xy  plane, the relations between the equipotential lines 
and the streamlines (~, ~) for an incompressible potential flow and the coordinates 
( x , y ) ,  and the related Lam~ coefficient, aie given respectively as (Lamb 1932; 
Lin Tong Ji & Jia Zhen Hue 1980) 

1 1 

f- 

h -- 1 _ 1 [(x ~ + y~)~ _ 2x ~ + 2y2 + 111/2 I 
H x" + y ~  " 3 

(27) 

Substituting (27) into (24) and (25), (12) yields the first-order solution. Taking the 
streamlines thus obtained and their orthogonal lines as curvilinear coordinates, a 
secomi-oldcr solution can be worked out by the same method, and so on to higher- 
order approximations. Generally speaking, the selection of the computation bound- 
ary ~ is not critical, but an appropriate sekction can enhance the accuracy of the 
first-order solution and reduce the number of iterations necessary in the numerical 
operation. The results of  computations based upon (26) show that for flow past a 
circular cylinder, with n = al = bl = 1, i.e. ~b = ~lc q- l/Moo, even the first-order 
approximation has a very good accuracy, as is shown in figures 17, 18 and 19. 

The curves relating g(~) to the free-stream Mach number Moc for different values of 
are shown in figure t6. It can be seen that when ~--> -- oo the g value equals the 

corresponding free-stream velocity, i.e. g(--oo)-----uoo. This indicates that at infinite 
distance there is no body-induced disturbance and that the compressible and the in- 
compressible flow are idcntical; with the increase in ~, the influence of compressibi- 
lity also grows. Departure from the free stream begins with g < uoo; this indicates 
that the influence of compress~ility ha~s reduced the flow velocity and made it lower 
than that in a corresponding incompressible flow. On approaching the forward 
stagnation point, which for a circular cylinder is at f = --2, the value of g is the smal- 
lest. With the continued increase in ~, the value of g rises until it equals uoo at the 
lo~ation where ~ = fro. It has to be noted, however, that the location of fm varies 
with Moo. Fo r  still larger val~es of f, the values of g approach uoo. At ~ ~ O, i.e, 
at the thickest section of the circular cylinder, the value of g, i.e. the influence of com- 
pressibility, is the largest. 
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Figure 16. "Discharge functions" for a circular cylinder. 
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Figure 17. M a c h - n u m b e r  d i s t r ibu t ion  o n  the  sur face  o f  a c i rcular  cyl inder .  
- -  Present  resul t s ;  - -  - -  - -  D o r o d n i t s y n  (1956); . . . . .  Cher ry  (1949); 
O O Imai  (1941); Hafez  e t  al(1979).  

From the results obtained in this paper, one can see that the values of g represent 
the effect of  compressibility Whether the body is thick or thin, the variation of g(f) 
with ~: tends to follow a similar pattern. But, the difference between the maximum 
and the minimum value ofg  for a thin body is very small; therefore, one can go a step 
further towards approximation by using a single compressibility correctioR value for 
the entire flow fiel& For example, the Karman-Tsien metho~(Tsien 1939; Von K a r m n  
1941) has yielded very good results for thin wings. As for thick bodies, from the re- 
sults obtained by the present method, one can see that for different ~ values, it is 
necessary to use different compressibility corrections, namely compressibility correc- 
tions shQuld be a function of the parameter f. Moreover, for different values of free 
stream Mach number M~ ,  the compressibility corrections are also different. Figure 
16 shows that for very low Moo, the effect o f  compressibility is very small; with the 
increase m Moo, the compressfoility corremion also inc~tvJcs; at the critical Mach 
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Figure 18. Sonic lines for the flow past a circular cylinder. 
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Figure 19. Iso-Mach lines for !he flow past a circular cylinder at M~ = 0.51. 
----  Present results; - -  ~ --  Cherry (1949). 

number, the correction reaches a maximum; further increase in Moo will cause, 
instead, a decrease in the values. 

Figure 17 gives the Mach number distribution on a circular cylinder surface with 
free-stream Mach numbers ranging from 0.1 right up to 1. For the sake of  comparison, 
the figure also gives Cherry's result (1949b) at Moo =0"51; Chushkin'sresult  (1957) 
at Moo = 1 and Imai's result (1941) at Moo =0.4. 

Figure 18 gives the sonic lines for flow past a circular cylinder with Moo varying 
from 0-45 up t o  1. 

Figure 19 gives the flow field past a circular cylinder at Moo = 0.51 and ~, = 1.405. 
For comparison, the figure also gives Cherry's (1949b) quasi-~rcular cylinder results 
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(dotted lines). From the figure it can be seen that for 0 ~< 45 ~ Cherry's quasi-circular 
cylinder contours coincide with those of a real circle and that his iso-Mach lines coin- 
cide with ours. When 0 > 45 ~ the deviation between the quasi-circular and the real 
circular cylinder gradually increases. At 0 = 90 ~ the corresponding deviation reaches 
a maximum of 7 %; and the corresponding iso-Mach lines also gradually diverge, 
as may be expected. 

4.3 Transonic flow past a sphere 

Let us assume that the origin of the rectangular coordinates (x, y) is at the centre of 
the sphere with the x-axis parallel to the free stream at infinity. Because of axi- 
symmetry, one need only consider the flow in the meddional plane (x, y). For a 
unit sphere, the incompressible potential (~, 7) in the meddional plane (x, y) is 
(Lamb 1932) 

I 1 I 1 1  = x 1 + 2(x ~ + y~)8/a ' ' / - -  ~- 1 (x  ~. + y,)3/~ " (28) 

From (2) and~ one obtains the inverse of Lam6's  coefficients H 1 and H a as 

//1 = (x ~ + y~-)5/2 (x s + y2)5/~ __ x ~ + �89 y~ + 4 y21 --llg, 

l (29) 
ttl 

Y J 

Now, by substituting (28) and (29) into (24) and (25), we obtain the corresponding 
cl~raeteristic boundary "~c for different values of M~. As a first order approxi- 
mation, we select the computation boundary to be equal to ,b+(MQo)-l/~. According 
to (28), (29), (4), (12) and (13), one obtains the values o fg  ( 0  and the flow fields for 
the corresponding free stream (see figures 20 and 21). 
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Figure 20. "Discharge function" for a sphere. 
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Figure 21. Iso-Maeh lines for flow past a sphere at M** = 0.7. 

After comparing figure 16 with figure 20, one can see that  the critical Mach number 
for a circular cylinder is 0.403, whereas for a sphere it is 0.58. As an example, figure 21 
gives the transonic flow about a sphere at M~o = 0.7. It shows that the maximum 
M a t h  number in d e  flow field is 1.32 whereas figure 17 indicates that for a circular 
cylinder the maximum Math  number is 2.42. Moreover, the supersonic region for 
flow about a cylinder is much larger than that about a sphere. 

4.4 Flow field at M~  = 1. 

This is a crucial problem in transonic studies. As a result o f  the mixed nature o f  the 
flow equation, the scope of the body-induced flow disturbance is especially large, 
and this canse~ great difficulties in theoretical analysis, numerical computations 
and experimental studies. In the case c f  a circular cylinder, for example, at M~----- 1.0, 

neither the sonic line contours nor the iso-Maeh line distribution, nor the charac- 
teristics of  the far field flo~, have yet been made clear. Thispaper, therefore, intends 
to discuss, in the light of  the method it proposes, the characteristics of  the flow at 
M~ = 1.0 for both a circular cylinder and a sphere. 

According to the equations given earlier, with M~ = 1, (24) and (25) yield #r : oo, 

therefore ~b is also CO. Substituting the boundary conditions in the general solution 
for the stream-function (12), one gets g (~)=l .  Using (4) and (13) as well as (27) 
and (28), and assuming x ---- r cos 0 and y ---- r sin 0, one obtains the Maeh number 
at (r, 0) as follows: 

M~ = r 4 --  2r ~ cos 2 0 q- 1 (circular cylinder), 

r 4 -  V--  ! (1 --  2r 2 cos 2 0) 
2 (30) 

_ (1 q- 2rS) z q- 3 (1 --  4r s) cos z 0 (sphere). 

4r ~ _ ~, --  1 [1 q-4r 8 -]- 3 (1 --  4r s) cos = 0] 
2 
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The flow fields calculated' f~om (30) are given in figures 22 and 23 respectively. It 
can be seen t h a t  for M > l, the iso-Maeh lines intersect the y-axis, whereas for M < 1 
they intersect the x-axis. The sonic lines extend to infinity. For a circular cylinder 
they are represented by that part of  the hyperbolic curve which lies outside the 
cylinder, i.e., by the equation: 

r ~cos20 =�89 r ~> 1. 

Figure 22. 

Figure 23. 
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These  sonic  lines begin  a t  0 = 4- 30 ~ on  the  sur face  o f  the  cyl inder  a n d  a p p r o a c h  the  
l ines 0 = 4- 45 ~ asympto t ica l ly .  In  the  case o f  a sphere ,  the  sonic lines a re  given by  
the  fo rmu la  

4 r a +  1 
cos  ~ 0 = 

3(4r s -  1) 

T h e y  begin  a t  0 = 4- 41049 ' on  the  sur face  o f  the  sphere  and  a p p r o a c h  the  conical  
sur face  0 = 4- 54045 , asympto t ica l ly .  

F r o m  (30) o r  (22) and  (23), one  ob ta in s  the  devia t ion  o f  the  Much  n u m b e r  on  
the  x a n d  y axis as  

A M  = M -  Moo = O (r-(~+~)). (31) 

Thus  the  veloci ty  d i s tu rbance  in this  t r ansno ic  flow field var ies  as  r -2 for  the  cyl inder  
a n d  r -a  for  the  sphere .  F o r  example ,  when r : 10, for a c i rcular  cyl inder  M ~ 1 4-0.01 
whereas  for  a sphere  M ~ 1 4- 0.001. 
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