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The diameter (D) dependence of fracture strains in [0001]-oriented single crystalline

ZnO nanowires (NWs) with D ranging from 18 to 114 nm is experimentally revealed via in situ
uniaxial tension and is well understood based on an analytical model developed by combining

molecular dynamics simulations with fracture mechanics theories. We show that the scattered

fracture strains are dominated by the effective quantities of atomic vacancies, and their

lower bound follows a power-form scaling law, resembling the Griffith-type behavior of single

critical defects with diameter-dependent sizes, when D is larger than a critical DC. In addition,

theoretical strength is expected in NWs with D<DC. Our studies provide a simple, but basic,

understanding for the size effect of strengths in single crystalline NWs. VC 2011 American Institute
of Physics. [doi:10.1063/1.3594655]

I. INTRODUCTION

Strength is a basic mechanical property for both struc-

tural and functional materials. In macroscopic specimens,

the fracture strength (rFS) is typically lower than 0.1% of the

Young’s modulus (YM) and is dominated by a large amount

of critical defects,1 the size distribution of which leads to the

intrinsic scattering of rFS. As depicted by the Weibull statis-

tics,2 the expected rFS of specimens increase as their charac-

teristic sizes decrease, a condition known as size effect,

which has been the core issue of fracture mechanics since

Griffith.1

Recently, increasing attention paid to the mechanical

properties in nanowires (NWs)3–8 and nanotubes (NTs)9–11 is

extending the size effect into the nanoscale. Although the

defect-dominated rFS in NTs have been well understood

based on Griffith’s theory10 and atomistic simulations,11 for

NWs, there were merely some preliminary experimental

results on the size effect of rFS. For instance, Wen et al.
reported a linear relationship between rFS and diameter (D)

in ZnO NWs,4 Zhu et al. suggested that the rFS in Si NWs

depended log-linearly on the surface areas,8 and Agrawal

et al. attributed the rFS in ZnO NWs—which slightly

decreased with increasing surface area—to the defects near

the NW surfaces, based on Weibull statistical analysis and

molecular dynamics (MD) simulations.5 However, the quan-

titative mechanisms for the size effect (i.e., how the scattered

rFS are related to the NW diameters and, especially, how

they are determined by the real microstructural defects in

NWs) have not been theoretically clarified yet, but they are

of basic importance for the potential application of NWs in

nanoelectromechanical devices with predictable and repro-

ducible responses.12

In our previous experiments,13 methodologies were

developed for in situ uniaxial tensile testing using a scanning

electron microscope (SEM). The diameter dependence of

rFS has also been revealed in a concise form.14 Herein, we

report detailed theoretical studies on the size effect of frac-

ture strains (eFS), which is related to the quantities of native

point defects as well as to the critical defect sizes in

Griffith’s theory. An analytical scaling law is finally derived.

II. RESULTS AND DISCUSSIONS

Similar to rFS, eFS in single crystalline ZnO NWs with

D ranging from 18 to 114 nm were measured via in situ
SEM. The experimental details can be found elsewhere;13 in

short, each individual NW was axially aligned with the ten-

sile direction and was loaded by deflecting a cantilever [see

Fig. 1(a)]. Based on a series of SEM images, the stress-strain

(r-e) curve was calculated [see Fig. 1(b)].

The diameter dependence of eFS was then revealed [Fig.

1(c)]. We hereinafter focused on eFS instead of on the con-

ventionally discussed rFS, seeing that the measurement error

in the strain is smaller than that in the stress;15 moreover, the

ideal strain (eth, i.e., the eFS in defect-free ZnO NWs) is more

insensitive to D than is the ideal strength (rth), which means

that the size effect of rFS is partly contributed by the sur-

face-dominated diameter dependence of YM,13 whereas that

of eFS is mostly defect-dominated.15 The remarkable scatter-

ing of eFS can thus be attributed to the size distribution of

critical defects, and their size effect results from the reduc-

tion of critical defects with decreasing D, which is in accord-

ance with previous qualitative reports.3–8

Concerning critical defects, Weibull statistical analysis

is promising for revealing their size and spatial distribution
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in specimens.2 For NWs, it was conventionally assumed that

for a mass of critical defects uniformly distributed on side

surfaces, the probability of fracture (Pf) under a strain e was

related to the dimensionless surface area (S):5

Pf ðeFS < eÞ ¼ 1� exp �S
e
e0

� �m� �
: (1a)

Here, e0 and m depict the expected value and dispersion

of eFS, respectively, for specimens with a unit S. Alterna-

tively, a modified statistics was recently proposed for NTs

having few (e.g., only one) critical defects,16,17 where Pf and

the expected strength e0 were no longer related to specimen

sizes:

Pf ðeFS < eÞ ¼ 1� exp � e
e0

� �m� �
: (1b)

As can be seen in Fig. 2, our experimental data were fit-

ted unexpectedly well using Eq. (1b), yielding a correlation

factor (R2) close to 1, as were the values of eFS in ZnO NWs

measured via in situ free-end bending.3 In addition, the trans-

verse intercept of the fitting curve was larger for bending

(e0¼ 0.058) than for tension (e0¼ 0.043), manifesting the

effect of the loading mode that has been well understood in

bulk specimens.2 In contrast, the conventional size-dependent

statistics [Eq. (1a)] cannot work so satisfactorily. Therefore,

the real microstructural defects in the tested NWs should

behave as single critical defects, and the effect of surface

defects can be ruled out. This knowledge from Weibull sta-

tistical analysis also agrees well with the key assumption

that our tested ZnO NWs are free of planar defects and evi-

dent surface flaws.14

On the other hand, our recent in situ cathodolumines-

cence experiments convincingly related the size effect of

strength with the quantities of native point defects in NWs,14

which seems counterintuitive seeing that a single atomic

vacancy, even located on the NW surfaces, cannot degrade

eFS to less than 80% of eth,10 while such a value is still far

larger than most of our experimental data. Hence, MD simu-

lations were carried out, aimed at finding the “combination

effects” of discrete point defects.

The uniaxial tensile loading of bulk ZnO and [0001]-ori-

ented NWs were modeled using the Large-scale Atomic/Mo-

lecular Massively Parallel Simulator.18,19 The supercell for

pristine bulk ZnO was generated by repeating the wurtzite

unit cell [see Fig. 3(a)] by 4, 6, and 12 units along the ½2�1�10�,
½01�10�, and [0001] axes, respectively, and periodic boundary

conditions were applied in these three directions. The super-

cell for a NW with D¼ 3.6 nm and a length of 9.4 nm is

shown in Fig. 3(a). The short-range atomic interactions were

FIG. 1. (Color online) (a) A typical

SEM image of the in situ uniaxial tensile

testing of a ZnO NW and (b) the stress-

strain (r-e) curve. (c) The experimental

diameter dependence of eFS (solid

squares). The solid curve fits the lower

bound of eFS using a power-form scaling

law, and the dotted line is a phenomeno-

logical linear fitting of the upper bound.

The dashed line shows the typical eFS in

bulk ZnO (<0.1%).

FIG. 2. (Color online) Weibull statistics

of the eFS measured by uniaxial tension

(solid squares; data from this work) and

free-end bending (open circles; data

reused with permission from C. Q. Chen

and J. Zhu, Appl. Phys. Lett. 90, 043105

(2007). Copyright 2007, American Insti-

tute of Physics). The total N eFS were

ranked in ascending order, and Pf was

defined as (i� 0.5)/N corresponding to

the ith eFS. The data point i¼ 1 is not

used in linear-fitting (Ref. 2). (a) Fitting

using Eq. (1a). (b) Fitting using Eq. (1b).

The arrows indicate the value of lne0.
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described by a Buckingham-type potential,20 and the Cou-

lomb interactions were calculated via Wolf summation.21

The initial relaxation, quasistatic loading, and calculation of

r-e curves were then performed according to our previous

work.22 As Fig. 3(b) shows, a phase transformation from

wurtzite to a body-centered-tetragonal lattice is predicted as

before at points “A”.5,22 However, such post-elastic behav-

iors have actually not been observed yet during the in situ
tensile testing of individual ZnO NWs, probably because

that displacement-controlled tensile loading has not been

realized in the nanoscale. As a result, the stress drop accom-

panied by the phase transformation can immediately fracture

ZnO NWs that are intrinsically brittle materials.5 We also

noted a recent first-principle calculation that suggested that

the phase transformation can not happen until the pristine

NW fractured with an eth as high as 20%.23 Concerning the

effect of defects on strength, however, no difference has

been provided in comparison to MD simulations. Overall, it

is yet reasonable to define the eFS, in our current MD studies,

based on points “A”.

Then, the effect of point defects on eFS was simulated by

intentionally introducing vacancy-pairs (VPs) one by one

into the supercell. Each time, a random O2� site and one of

its nearest-neighboring Zn2þ site were simultaneously

replaced by vacancies, in order to preserve the charge equi-

librium. For the randomly introduced VPs, Fig. 3(c) reveals

that eFS (in both the bulk and the NWs) decreased as the

quantity (Q) of VPs increased. Moreover, a range of eFS can

be obtained for a given Q (take Q¼ 1 and 2, for example).

As revealed in Fig. 3(d), eFS can be degraded more remark-

ably when the two VPs are aligned parallel to the (0001)

cleavage plane, which does suggest some interactions

between discrete point defects, such as stress concentrations

and defect aggregations via atomic diffusions.24

After all, eFS not only depended on the quantity of point

defects, but also were affected by the spatial configuration of

these VPs; we can thus define the effective sizes (n) of the

single critical defects, which uniquely determine eFS, as

n2 ¼ gQ: (2)

Here, n is normalized by the in-plane lattice constant.

For each specific NW with a total of Q VPs, g depicts the

proportion of the VPs involved in the above-suggested inter-

actions, as well as the overall effects of the spatial configura-

tions of these “active” defects. As indicated by Fig. 3(d), the

upper bound of n (simply let g¼ 1) corresponds to a sharp pla-

nar crack perpendicular to the [0001] NW axis, the fracture

mechanics model for which can be analytically derived as

eFSðnÞ ¼ ethð1þ nÞ�b; (3)

based on an atomic-scale, i.e., “quantized” Griffith’s theory

that has been widely applied to the rFS in NTs.10 Nonethe-

less, Eq. (3) should generally work for n, because the geo-

metric effect of the crack-tip radius10 can be included in the

factor g.

First, Eq. (2) was confirmed by fitting the MD-simulated

eFS(Q) relationships using Eq. (3). A constant gaverage was sup-

posed to calculate n for the randomly introduced VPs. As seen

in Fig. 3(c), the power factors b¼ 0.21 and 0.72 were yielded

for the bulk and the NW (D¼ 3.6 nm), respectively, implying

that eFS in NWs is more sensitive to Q than that in the bulk,

because the point defects near free surfaces can lead to more

intense stress concentrations than those in bulk materials.

The diameter dependence of n(D) in the experimentally

tested ZnO NWs was then determined by applying Eq. (3) to

the eFS(D) as measured in Fig. 1(c), where D ranged from 18

to 114 nm. A classic b¼ 0.50 representing the Griffith’s

FIG. 3. (Color) (a) The wurtzite unit cell

of ZnO and a supercell of the simulated

NW with f10�10g side surfaces and a per-

iodic boundary condition applied on the

[0001] axis. (b) Calculated r-e curves of

bulk ZnO (blue) and NWs (red). Dashed

lines: defect-free; solid lines: one VP

randomly introduced. (c) Dependence of

eFS (normalized by eth) on the quantity

(Q) of VPs in bulk ZnO (blue) and NWs

(red). For the randomly introduced VPs,

the MD-simulated results (solid circles)

are fitted by Eq. (3) (dashed lines), and

the solid line shows classic theory with

b¼ 0.50. The open circle at Q¼ 1 corre-

sponds to another random VP, and those

at Q¼ 2 correspond to special configura-

tions of VPs, as shown in (d). (d) The r-e
curves of the NW containing two VPs

(indicated with colored circles) that are

aligned parallel to the [0001] axis (blue)

and the (0001) plane (red).
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scaling law was utilized as a reasonable simplification, and eth

was assumed to be the constant �0.09 that was simulated in

bulk ZnO.15 Straightforwardly, the scattering of experimental

n(D) for a given D (see Fig. 4) resulted from the stochastic

and specimen-specific factor g; moreover, the diameter-

dependent upper bound of n(D) can be simply modeled by

assuming g¼ 1, which means that all of the native point

defects in NWs are “active” in dominating their minimum

strengths. As a result, one has nmax
2(D)¼Q(D)¼ kD2C(D),

where k is the length scale depicting the interactions between

point defects, and the concentration of point defects

C(D)¼C0exp(�Dp�X/kBT). Here, C0 is the concentration in

bulk materials, X is the volume of the Zn2þ and O2� vacan-

cies, kBT is the Boltzmann factor, and Dp¼ 2s/D (s is the sur-

face tension in f10�10g side surfaces).14 The size-

dependent reduction of critical defect sizes thus can be

derived as

nmaxðDÞ ¼
ffiffiffiffiffiffiffiffi
kC0

p
D exp � sX

DkBT

� �
� a maxðD� DC; 0Þ;

(4)

where a is a constant. Hence, a critical NW diameter was

derived as DC¼ sX/kBT, concerning the ZnO NWs in

experiments, and Eq. (4) predicted that critical defects no

longer existed in NWs with D<DC; in other words, the

strength became insensitive to defects. Similar behavior has

been proposed in nano-laminated composites with DC around

100 nm,25 but not yet in single crystalline NWs.

As Fig. 4 shows, fitting the experimental upper bound of

n(D) using Eq. (4) yielded a good linear correlation; more-

over, extrapolating the fitting curve to nmax¼ 0 yielded

DC¼ 11.6 nm, which agreed quantitatively well with sX/

kBT¼ 10.8 nm, where the surface tension in f10�10g is esti-

mated as s� 3.4 N/m,26 the ionic radii of O2�, and Zn2þ are

1.40 Å and 0.74 Å, respectively, and we assume T¼ 300 K.

Therefore, the Griffith-type fracture mechanics for the effec-

tive n(D) of the single critical defects, which is defined as

Eq. (2), was experimentally supported.

We finally return to the size effect of eFS. As seen in

Fig. 1, the upper-bound of eFS increased with decreasing D,

following a linear relationship that has nonetheless not been

quantitatively modeled yet, as further probing into the frac-

ture mechanism is still needed in order to find whether the

minimum of the “active” defects (gQ) is random or diame-

ter-dependent; while for the lower-bound of eFS, the follow-

ing power law for D>DC can be obtained by combining

Eqs. (3) and (4):

emin
FS ðDÞ ¼ eth½1þ aðD� DCÞ��b: for D > DC (5)

Fitting the experimental eFS(D) with Eq. (5) yielded

eth¼ 0.11 and b¼ 0.52 [see Fig. 1(c)], agreeing qualitatively

with Griffith’s classic theories where eth� 0.1 and

b� 0.5.1,10 Ultimately, a modified power-form scaling law

for the size effect of strengths was analytically derived, and

we concluded, for the first time, that the classic fracture

mechanics theories also work well for single crystalline

NWs, as long as the effective quantities of point defects are

regarded as critical defects.

III. CONCLUSIONS

In summary, the diameter dependence of eFS in single

crystalline ZnO NWs is experimentally revealed via in situ
uniaxial tension and analytically modeled based on fracture

mechanics theories and MD simulations. The scattered eFS

are dominated by the effective quantities of atomic vacan-

cies, and the lower bound of eFS follows a power law, resem-

bling the Griffith-type behavior of single critical defects with

diameter-dependent sizes. In addition, the theoretical

strength is predicted in NWs with D<DC (around 12 nm).

Our studies account for a very simple case of single crystal-

line NWs; however, this should be the basis for fully under-

standing the size effect of strengths in the nanoscale.

We still need to state that the detailed mechanisms of

fracture remain unclear, since it is challenging yet to (i)

directly inspect the atomic-scale behaviors of point defects

using in situ TEM and (ii) measure the post-elastic r-e
responses via displacement-controlled tensile experiments.

More attention should be paid to experimental improvements

in order to understand and ultimately control the strength

properties in nanomaterials.
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