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Problems of two-dimensional steady-state heat conduction for composites with doubly periodic arrays of
cylindrically orthotropic fibers are dealt with. A new complex variable method is presented by introduc-
ing an appropriate coordinate transformation to convert the governing differential equation into a
harmonic one, and the eigenfunction expansions of the field variables in a unit cell are derived. Then
by using a generalized variational functional which absorbs the periodicity condition, an eigenfunction
expansion–variational method based on a unit cell is developed to solve such problems. A convergence
analysis and a comparison with finite element calculations are conducted to demonstrate the correctness
and efficiency of the present method. A discussion is made about the effects of the cylindrical orthotropy
of the fiber and the existence of the isotropic core in the fiber on the effective conductivity of the com-
posite. An engineering equivalent parameter, which reflects the overall influence of the thermal conduc-
tivities of the matrix and fibers as well as the interfacial characteristic on the effective thermal
conductivity of the composite, is found. It is shown that the present first-order approximation of the
effective thermal conductivity of the composite can be written in a unified formula for different micro-
structural characteristics and possesses a good engineering accuracy.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Fiber reinforced composites, especially carbon fiber reinforced
composites, possess some remarkable properties, thus have been
used extensively in many applications from aerospace craft to
electric devices. The carbon/epoxy composites have small specific
mass, high rupture resistance, very good fatigue strength and good
thermal/electrical conductivity. They have been used in the wings,
fuselages, horizontal stabilizers, vertical stabilizers, ailerons and so
on of airplanes such as Boeing B-787 and Airbus A-380 [1]. The
carbon/carbon composites can withstand high-temperature thus
be utilized in a variety of high-temperature aerospace applications.

Different from common fibers, carbon fibers possess special
heterogeneity and anisotropy [2,3]. Polyacrylonitrile (PAN) based
fibers generally exhibit circumferential alignment of the graphite
basal planes, while pitch-based fibers typically have radial align-
ment. Random orientation of the graphite basal planes in the trans-
verse plane of the fiber would result in a transversely isotropic fiber,
or in a narrow zone of the fiber would result in a transversely iso-
tropic core in the fiber [4,5]. The fibers with such microstructures
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can be idealized as cylindrically orthotropic fibers with a trans-
versely isotropic core, if any. Several researches about cylindrically
orthotropic fibers or cylinders were carried out based on this model.
Knott and Herakovich [5] considered the existence of the isotropic
core in the effective elastic properties of fiber composites. Rodri-
guez and Cabeza [6] studied the combination of the effects of the
core with the cylindrical orthotropy of the fiber on the effective
thermal conductivity using a finite element method. Tarn [7] exam-
ined the issue of stress singularity in an elastic cylinder of cylindri-
cally anisotropic materials through a compound cylinder in which
the outer cylinder is cylindrically anisotropic and the core is trans-
versely isotropic. Besides carbon fibers, cylindrically anisotropic
materials include tree trunks and manufactured composites. Many
mathematical methods are developed to analyze performance and
behavior of this kind of special materials [8–10] or composites with
such kind of fibers [11–13].

Thermal conductivity is a very important property for the appli-
cations of fiber reinforced composites, thus lots of researches fo-
cused on this topic. Predicting the effective properties from the
microstructure of composites is a supplement or a substitution of
measurements, and can be used to design composites. Several
methods were developed to investigate the thermal/transport
properties of composites with cylindrically orthotropic fibers.
Benveniste et al. [14] and Hasselman et al. [15] extended the meth-
ods of studying the heat conduction of the transversely isotropic
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Nomenclature

EEVM eigenfunction expansion–variational method
AB arbitrary arc with two ends A and B
f, o, m fiber, core and matrix, subscript or superscript
i imaginary unit
Cm, Dmn defined by Eq. (32)
En, Fn, Gn, Pn, Qn complex coefficients of expansions
Hr, Hh radial and tangential temperature gradients
H thermal contact conductivity across the fiber–matrix

interface
kf

ffiffiffiffiffiffiffiffiffi
krkh

p
, effective thermal conductivity of a cylindrically

orthotropic fiber
ko, km conductivities of core and matrix
kr, kh radial and tangential conductivities
ke effective thermal conductivity of a transversely isotro-

pic composite
ke

ij effective thermal conductivity tensor of a composite
L side length of a unit cell
N term number of eigenfunction expansion
m, n serial number
q q � n, boundary heat flux
qr, qh radial and tangential components of heat flux field
q1, q2 x1 and x2 components of heat flux field
hqii average heat flux vector within the unit cell
R0, R radii of the core and fiber cross-sections
r, h polar coordinates
s serial number of a unit cell boundary
T temperature
@ V+ positive boundary of a unit cell
@ V� negative boundary of a unit cell

Xn eigenfunction expansion coefficients
x1, x2 Cartesian coordinates
z x1 + ix2, complex variable in the z-plane
z1 reih1 , complex variable in the z1-plane
z2 rc�1z, complex variable in the z2-plane
d1, d2 two fundamental periods of a doubly periodic array
H temperature gradient vector
hHi; hHji average temperature gradient vector
n unit normal vector on the boundary
ps, ps

i translation vector from a boundary s� to s+
q heat flux vector
x position vector
a nondimensional parameter, defined by Eq. (35)
b (km/(2hR), nondimensional parameter
d( � ) variation
U heat transfer rate through an arbitrary arc
c

ffiffiffiffiffiffiffiffiffiffiffiffi
kh=kr

p
gfm (km � kf)/(km + kf), nondimensional parameter
gof (kf � ko)/(kf + ko), nondimensional parameter
gn defined by Eqs. (26) and (43)
g nondimensional parameter, defined by Eqs. (35)

and (36)
k volume fraction of the fiber including its core
P functional, defined by Eq. (15)
h1 h/c, polar coordinate in the z1-plane
x(z2) generalized complex potential in the z2-plane
x(z) complex potential in the z-plane
n0 R0/R, relative radius of core cross-section
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fiber composites to cylindrically orthotropic fiber composites.
These methods are approximate in treating inclusion interactions.
On the other hand, a model of periodic array of fibers is used to
consider the inclusion interactions. Rodriguez and Cabeza [6]
presented a unit cell model of finite elements to study the effective
thermal conductivity of fiber composites. Chen and Kuo [16]
generalized Rayleigh’s method to account for the periodic
arrangement of cylindrically orthotropic and exponentially graded
cylinders.

For a steady-state heat conduction problem of composite with a
doubly periodic array of fibers, the temperature field is quasi-peri-
odic and the heat flux field is periodic, which is similar to the elas-
ticity issue [17]. Thus, a corresponding periodic boundary
condition should be prescribed in the analysis based on a unit cell
model. Xia et al. [17] and Jiang et al. [18] pointed out that the effec-
tive moduli/conductivities obtained under periodic boundary con-
ditions are bounded by those obtained under homogeneous
displacement/temperature boundary conditions and homogeneous
traction/flux boundary conditions, hence are more reasonable.

This paper is devoted to presenting a new complex variable
method for two-dimensional steady-state heat conduction
problems of cylindrically orthotropic fibers. Then the new complex
variable method is used to develop an eigenfunction expansion–
variational method based on a unit cell for analysis of such
composites, in terms of which some interesting and concise laws
hidden in the complicated relation between the macroscopic ther-
mal properties and microstructures are revealed. A useful engi-
neering equivalent parameter is found, and a convenient and
efficient engineering closed-form formula is provided.

The paper is organized as follows. Section 2 presents a new
complex variable method for the problem under consideration,
then the field variables are formulated by a generalized complex
potential. Section 3 constructs a generalized variational functional
which absorbs the doubly periodic boundary conditions of a unit
cell. Section 4 gives the expansions of the complex potentials in
the matrix, cylindrically orthotropic fiber and isotropic core,
respectively. The interfacial conditions are used to derive the rela-
tions between the unknown coefficients. Then an eigenfunction
expansion of the complex potential is derived. Section 5 deter-
mines the remaining unknown coefficients by using the general-
ized variational functional. Section 6 determines the effective
thermal conductivity of such a composite and a unified first-order
approximation formula is obtained. An engineering equivalent
parameter which reflects the overall influence of the thermal con-
ductivities of the matrix and fibers as well as the interfacial char-
acteristic on the effective thermal conductivity of the composite,
is found. In Sections 7.1 and 7.2, a qualitative analysis and a quan-
titative analysis of the effects of the cylindrical orthotropy of fibers
as well as the existence of a core on the microscopic fields and
macroscopic thermal properties are presented. The numerical
results show that the unified first-order approximation formula
possesses a good engineering accuracy. Lastly, several concluding
remarks are made in Section 8.
2. Generalized complex potential

Consider a cylindrically orthotropic fiber under two-
dimensional steady-state heat conduction as shown in Fig. 1,
where (x1, x2) are the Cartesian coordinates and (r, h) are the polar
coordinates. The temperature T, heat fluxes {qr, qh} and tempera-
ture gradients {Hr, Hh} in the polar coordinates satisfy following
equations:

qr

qh

� �
¼ �

kr 0
0 kh

� �
Hr

Hh

� �
ð1Þ



r

θ
0 1x

2x

Fig. 1. Cross-section of a cylindrically orthotropic fiber.
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Hr

Hh

� �
¼

@T
@r

1
r
@T
@h

" #
ð2Þ

@qr

@r
þ qr

r
þ @qh

r@h
¼ 0 ð3Þ

where kr and kh are the radial and tangential conductivities, respec-
tively. If kr > kh, the material is called radially orthotropic, and if
kr < kh, it is circumferentially orthotropic [14].

The substitution of Eqs. (1) and (2) into Eq. (3) yields the follow-
ing governing differential equation:

@

@r
r
@T
@r

� �
þ c2 1

r
@2T

@h2 ¼ 0 ð4Þ

where c ¼
ffiffiffiffiffiffiffiffiffiffiffi
kh=kr

p
. Let the origin of a complex plane:

z ¼ x1 þ ix2 ¼ reih ð5Þ

be located at the center of the cross-section of a fiber as shown in
Fig. 2a. In a general case of c – 1 or kh – kr, Eq. (4) is not a harmonic
equation. In order to develop a complex variable method, introduce
a transformation

z1 ¼ reih1 ð6Þ

where h1 = h/c. In the z1-plane, the intact circular region of the fiber
is mapped onto a circular region with a fan notch as shown in
Fig. 2b, and the governing Eq. (4) is transformed into a harmonic
equation:

@

@r
r
@T
@r

� �
þ 1

r
@2T

@h2
1

¼ 0 ð7Þ

It is worth noting that the transformation from the z-plane to
the z1-plane is not a conformal mapping. Introduce again a confor-
mal mapping from the z1-plane to the z2-plane:

z2 ¼ zc
1 ¼ rc�1z ð8Þ
 (a) z 1zplane (b) 

r
θ

z

1x

2x

0
θ

0

Fig. 2. Transformation of coordinates. (a)
The circular region with a fan notch in Fig. 2b is conformally
mapped onto an intact circular region in the z2-plane as shown
in Fig. 2c. In the z2-plane, the temperature field is still a harmonic
function and can be formulated by a generalized complex potential
x(z2):

T ¼ 1
2

xðz2Þ þxðz2Þ
h i

ð9Þ

where the upper bar denotes the conjugate. The substitution of Eq.
(9) into Eqs. (1) and (2) yields:

qr

qh

� �
¼ �

kr
c
r � 1

2 x0ðz2Þz2 þx0ðz2Þz2

h i
�kh

1
r � 1

2i x0ðz2Þz2 �x0ðz2Þz2

h i
2
64

3
75 ð10Þ

The heat transfer rate U through an arbitrary arc, AB, can be calcu-
lated by integrating the heat flux

U ¼ �
ffiffiffiffiffiffiffiffiffi
krkh

p 1
2i

xðz2Þ �xðz2Þ
h iB

A
ð11Þ

Thus all the field variables in a cylindrically orthotropic fiber are
formulated by a generalized complex potential x(z2). In a (trans-
versely) isotropic material, c = 1, Eqs. (9)–(11) degenerate into:

T ¼ 1
2

xðzÞ þxðzÞ
h i

ð12Þ

qr � iqh ¼ �k
1
r
x0ðzÞz in the polar coordinates ð13aÞ

q1 � iq2 ¼ �kx0ðzÞ in the rectangular coordinates ð13bÞ

U ¼ �k
2i

xðzÞ �xðzÞ
h iB

A
ð14Þ

where the complex potential x(z) is well known.

3. Generalized variational functional for a unit cell

Consider a composite with a doubly periodic array of cylindri-
cally orthotropic fibers. Two fiber arrays of practical importance,
i.e. the hexagonal array and square array, are shown in Fig. 3a
and b, respectively, where d1 and d2 denote two fundamental peri-
ods. According to periodicity, the cell boundary can be divided into
@Vþ ¼

P
s@Vþs and @V� ¼

P
s@V�s , where s = 1, 2, 3 in Fig. 3a and

s = 1, 2 in Fig. 3b. For steady-state heat conduction, the tempera-
ture field T(x) is quasi-periodic, and the heat flux field q(x) and
the temperature gradient field H(x) are periodic. The thermal load-
ing condition of a unit cell can be prescribed by an average temper-
ature gradient hHi. By using the Lagrangian multiplier method, the
periodic boundary condition of a unit cell can be incorporated into
the functional for heat conduction:
plane (c) 2z  plane 

r
1

1z

(1 1/ )2γ π−

2r
θ

2z

0

z-plane, (b) z1-plane and (c) z2-plane.



1x

2x

2d

1d
3V −∂

1V +∂

2V +∂3V +∂

1V −∂

2V −∂ V

2d

1d

1x

2x

1V +∂

2V +∂

1V −∂

2V −∂
V

(a) (b)

Fig. 3. Hexagonal and square arrays of fibers and their symmetrical unit cells.
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P ¼
Z

V

1
2

q �HdV �
X

s

Z
@Vþs

qsþ � ðTsþ � Ts� � hHi � psÞdS ð15Þ

where q(=q � n) denotes the boundary heat flux, n denotes the unit
normal vector on the boundary; the quantities with superscripts ‘‘
s�” and ‘‘s+” are corresponding to taking values from @V�s and
@Vþs , respectively; p1 = d1, p2 = d2 and p3 = d2 - d1 in Fig. 3a and
p1 = d1 and p2 = d2 in Fig. 3b.

The stationary condition [19] of the functional (15) can be writ-
ten as:

X
s

Z
@Vþs

dqsþðTsþ � Ts�ÞdS�
X

s

Z
@Vþs

ðqsþ þ qs�ÞdTs�dS

¼
X

s

Z
@Vþs

dqsþhHi � psdS ð16Þ

where d( � ) denotes the variation.
The stationary condition (16) of the generalized variational

functional can be used to develop an eigenfunction expansion-var-
iational method based on a unit cell to solve the problem of steady-
state heat conduction.
4. Eigenfunction expansions in a unit cell

A typical unit cell of a composite with a doubly periodic array of
cylindrically orthotropic fibers is divided into three regions occu-
pied, respectively, by a cylindrically orthotropic fiber, a trans-
versely isotropic fiber core and a surrounding isotropic matrix as
shown in Fig. 4. This section deals with the expansions of the com-
plex potentials, xf(z2), xo(z) and xm(z), in the three regions, where
the subscripts ‘‘f”, ‘‘o” and ‘‘m” refer to the fiber, core and matrix,
respectively. It is seen that the expansion of xf(z2) in the z2-plane
can be transformed to the z-plane by using Eq. (8).

In the matrix region, the complex potential xm(z) is expanded
into a Laurent series:
fiber

R
0R

3V −∂

2V +∂3V +∂

1V −∂

2V −∂ matrix

1x

2x
interface

core

1V +∂

L

(a)

Fig. 4. Two kinds of unit cells containing a cylindrically orthotropic fiber w
xmðzÞ ¼
X1
n¼1

Gnz�ð2n�1Þ þ
X1
n¼1

Fnz2n�1 ð17Þ

where Gn and Fn are complex coefficients, where only odd terms re-
main due to the centrosymmetry of the unit cell.

The complex potential xo(z) in the transversely isotropic core
can be expanded into a Taylor series:

xoðzÞ ¼
X1
n¼1

Enz2n�1 ð18Þ

where En is a complex coefficient. The complex potential xf(z2) can
be expanded into a Laurent series in the z2-plane, then be trans-
formed to the z-plane

xf ðz2Þ ¼
X1
n¼1

Pnz�ð2n�1Þ
2 þ

X1
n¼1

Q nz2n�1
2

¼
X1
n¼1

Pnrðc�1Þð1�2nÞz1�2n þ
X1
n¼1

Q nrðc�1Þð2n�1Þz2n�1 ð19Þ

where Pn and Qn are complex coefficients
Now examine the relation between five sets of unknown coeffi-

cients, Gn, Fn, En, Pn and Qn.
Assuming the fiber–core interface is perfect and the fiber–ma-

trix interface is imperfect, the continuity and jump discontinuity
conditions across the two interfaces can be written as:

To ¼ Tf ;Uo ¼ Uf at jzj ¼ R0 ð20Þ
qf ¼ qm ¼ �hðTf � TmÞ;Uf ¼ Um at jzj ¼ R ð21Þ

where h is the thermal contact conductivity across the fiber–matrix
interface, R0 and R denote the radii of the core and fiber cross-
sections, respectively. Substituting Eqs. (17)–(19) into Eqs. (9)–
(11) and Eqs. (12)-(14), and then into Eqs. (20) and (21), one
obtains:
2V +∂

1V −∂

2V −∂

fiber

R
0R

matrix

1x

2x

core

1V +∂

L

(b)

ith an isotropic core. (a) Hexagonal unit cell and (b) square unit cell.
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En ¼ ð1þ gof ÞR
ðc�1Þð2n�1Þ
0 Q n ð22Þ

Pn ¼ gof R
2cð2n�1Þ
0 Q n ð23Þ

Fn � GnR2�4n ¼
1� gfm

1þ gfm
Q nRðc�1Þð2n�1Þ � PnRðcþ1Þð1�2nÞ
� �

ð24Þ

Gn ¼ gnR4n�2Fn ð25Þ

where

gn ¼
gfm þ gof n

2cð2n�1Þ
0 þ ð2n� 1Þbð1� gfmÞ 1� gof n

2cð2n�1Þ
0

� �
1þ gfmgof n

2cð2n�1Þ
0 þ ð2n� 1Þbð1� gfmÞ 1� gof n

2cð2n�1Þ
0

� �
ð26Þ

and gfm = (km � kf)/(km + kf), gof = (kf � ko)/(kf + ko), b = km/(2hR),
n0 = R0/R, kf ð¼

ffiffiffiffiffiffiffiffiffi
krkh

p
Þ is called the effective thermal conductivity

of a cylindrically orthotropic fiber. Thus the eigenfunction expan-
sion of the complex potential xm(z) can be written as:

xmðzÞ ¼
X1
n¼1

gnR4n�2Fnz�ð2n�1Þ þ
X1
n¼1

Fnz2n�1 ð27Þ

Consider the square and hexagonal unit cells shown in Fig. 4. If
the boundary condition is also symmetric about x2-axis, the expan-
sion coefficients additionally satisfy following relations:

En ¼ �En; Pn ¼ �Pn;Q n ¼ �Q n;Gn ¼ �Gn; Fn ¼ �Fn ð28Þ

i.e. the expansion coefficients are pure imaginary. The eigenfunction
expansion of the complex potential xm(z) is further simplified as:

xmðzÞ ¼
X1
n¼1

Fn �gnR4n�2z�ð2n�1Þ þ z2n�1
h i

ð29Þ

The remaining work is to determine a set of unknown coeffi-
cients, Fn, which can be completed by using the stationary condi-
tion (Eq. (16)).

5. Determination of the unknown coefficients in the
eigenfunction expansion

In this section, a detailed solving procedure of the unknown
coefficients is given for the case of the heat flux being symmetric
about x2-axis. Substituting Eq. (29) into Eqs. (12)-(14), and taking
an appropriate truncation of each expansion, the heat flux, temper-
ature and heat transfer rate can be expressed as follows:

qi ¼
XN

n¼1

XnqðnÞi ; T ¼
XN

n¼1

XnTðnÞ; U ¼
XN

n¼1

XnU
ðnÞ i ¼ 1;2 ð30Þ

where
Xn ¼ iFn 1 6 n 6 N

qðnÞ1 ¼ �1
2i km �gnR4n�2ð1� 2nÞ z�2n � �z�2n

	 

þ ð2n� 1Þ z2n�2 � �z2n�2

	 
h i
1 6 n 6 N

qðnÞ2 ¼ �1
2 km �gnR4n�2ð1� 2nÞ z�2n þ �z�2n

	 

þ ð2n� 1Þ z2n�2 þ �z2n�2

	 
h i
1 6 n 6 N

TðnÞ ¼ 1
2i �gnR4n�2 z1�2n � �z1�2n

	 

þ z2n�1 � �z2n�1
	 
h i

1 6 n 6 N

UðnÞ ¼ 1
2 km �gnR4n�2 z1�2n þ �z1�2n

	 

þ z2n�1 þ �z2n�1
	 
h iB

A
1 6 n 6 N

8>>>>>>>>>>><
>>>>>>>>>>>:

ð31Þ
The substitution of Eq. (30) into the stationary condition (16)
yields the following linear algebraic equations:
XN

n¼1

DmnXn ¼ Cm m ¼ 1; 2; . . . ; N ð32aÞ

where

Dmn ¼
X

s

Z
@Vþs

nsþ � qsþ
ðmÞ Tsþ

ðnÞ � Ts�
ðnÞ

� �
dS

�
X

s

Z
@Vþs

ns� � qs�
ðnÞ � qsþ

ðnÞ

� �
Ts�
ðmÞdS ð32bÞ

Cm ¼
X

s

Z
@Vþs

ðnsþ � qsþ
ðmÞÞðhHi � psÞdS ¼

X
s

Usþ
ðmÞhHi � ps

h i
ð32cÞ

qsþ
ðmÞ, Tsþ

ðnÞ and Usþ
ðmÞ denote taking the values of qðmÞ, TðnÞ and UðmÞ from

@Vþs , respectively, and the quantities with the superscript ‘‘s�‘‘ are
corresponding to taking values from @V�s .

Once the unknown coefficients are determined by Eq. (32), the
heat flux and temperature fields can be obtained by Eq. (30).

6. Effective thermal conductivities

The effective thermal conductivities of a composite, ke
ij, are

determined with the aid of the average field theory

hqii ¼ �ke
ijhHji ð33Þ

where hqii is the average heat flux within the unit cell, which can be
calculated by the following formula:

hqii ¼
1
V

Z
V

qidV ¼ 1
V

X
s

Usþps
i ð34Þ

where Us+ is the heat transfer rate through the boundary @Vþs . It is
worth noting that the periodic boundary conditions are prescribed
for the unit cell by setting the average temperature gradient hHi,
and then the average heat flux are solved for calculating the effec-
tive thermal conductivities. When the term number N of the eigen-
function expansion is large enough, high-order numerical results of
the effective thermal conductivities are obtained; when N = 1, a
first-order approximation formula is obtained.

For a composite with a square or hexagonal array of fibers, the
effective conductivity is transversely isotropic, that is ke

11 ¼ ke
22 ¼

ke. Interestingly, for these two fiber arrays, the first-order approx-
imation formula of the nondimensional effective conductivity can
be written as a unified expression:

ke

km
¼ ðp� agkÞ2

2p2ð1þ gkÞ � ðpþ agkÞ2
ð35aÞ

where k is the volume fraction of the fiber including its core; and
g ¼
gfm þ gof n

2c
0 þ b 1� gfm

� �
1� gof n

2c
0

� �
1þ gfmgof n

2c
0 þ b 1� gfm

� �
1� gof n

2c
0

� � ð35bÞ
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a ¼
2 for square array
3
ffiffiffi
3
p

=2 for hexagonal array

�
ð35cÞ

Eq. (35b) can degenerate into following three special cases:

g ¼

gfmþgof n
2c
0

1þgfmgof n
2c
0

with core;perfect fiber—matrix intrerface
gfmþbð1�gfmÞ

1þbð1�gfmÞ
without core; imperfect fiber—matrix intrerface

gfm without core;perfect fiber—matrix intrerface

8>>><
>>>:

ð36Þ

From Eqs. (35) and (36), it is seen that the present analytical
method reveals an engineering equivalent parameter of practical
importance, g, which can reflect the overall influence of the ther-
mal conductivities of the matrix and fibers as well as the interfa-
qf
r

qf
h

" #
¼ �kf ½iQ1rc�1 sin hþ 3iQ2r3c�1 sin 3hþ � � � ð2N � 1ÞiQ Nrcð2N�1Þ�1 sin ð2N � 1Þh�
�kh½iQ1rc�1 cos hþ 3iQ2r3c�1 cos 3hþ � � � ð2N � 1ÞiQNrcð2N�1Þ�1 cosð2N � 1Þh�

" #
; 0 6 r < R ð42Þ
cial characteristic on the effective thermal conductivity of the
composites with a good engineering accuracy. The equivalent
parameter greatly simplifies the complicated relation of the effec-
tive thermal conductivity to the internal structure of a composite.
By using the equivalent parameter g, the present solutions provide
a unified first-order approximation formula of the effective
thermal conductivity for different microstructural characteristics.
The numerical analysis in the next section will show that the
first-order approximation formula can serve as a convenient and
efficient engineering closed-form formula with a good engineering
accuracy.
7. Analysis and discussion

To understand profoundly the effect of the cylindrical orthotro-
py of the fiber and the existence of the core, as well as to demon-
strate applications of the present method, a qualitative analysis
and a quantitative analysis are presented in Sections 7.1 and 7.2,
respectively.

7.1. Qualitative analysis

From Eqs. (10), (13), (17)-(19) the heat flux fields in the core,
fiber and matrix can be expressed as:

qo
r

qo
h

� �
¼ �ko

XN

n¼1

ðiEnÞð2n� 1Þr2n�2 sinð2n� 1Þh
cosð2n� 1Þh

� �
; 0 6 r < R0

ð37Þ

qf
r

qf
h

" #
¼

�kf
PN
n¼1
ðiPnrcð1�2nÞ�1þ iQ nrcð2n�1Þ�1Þð2n�1Þsinð2n�1Þh

�kh
PN
n¼1
ð�iPnrcð1�2nÞ�1þ iQnrcð2n�1Þ�1Þð2n�1Þcosð2n�1Þh

2
6664

3
7775;

R06 r<R ð38Þ

qm
1

qm
2

" #
¼
�km

PN
n¼1

Xnð�gnR4n�2r�2n þ r2n�2Þð2n� 1Þ sinð2n� 1Þh

�km
PN
n¼1

XnðgnR4n�2r�2n þ r2n�2Þð2n� 1Þ cosð2n� 1Þh

2
6664

3
7775;

r P R ð39Þ
where

En ¼ ð1þ gof ÞR
ðc�1Þð2n�1Þ
0 Q n; Pn ¼ �gof R

2cð2n�1Þ
0 Q n;

iQn ¼
1þ gfm

1� gfm
� ð1� gnÞR

ðc�1Þð1�2nÞ

1� gof n
2cð2n�1Þ
0

Xn ð40Þ

First examine the effects of the existence of the core and the
cylindrical orthotropy of the fiber on the heat flux at the center of
the fiber. If a transversely isotropic core exists in a central region
of the fiber, it is seen from Eq. (37) that the heat flux at r = 0 is finite:

qo
r

qo
h

� �
r¼0

¼ �koðiE1Þ
sin h

cos h

� �
ð41Þ

If no transversely isotropic core exists in the fiber, i.e. R0 = 0, Eq. (38)
is reduced to:
Eq. (42) shows that the heat flux at r = 0 is related to the value of
cð¼

ffiffiffiffiffiffiffiffiffiffiffi
kh=kr

p
Þ, which is divided into three cases:

when c < 1, the radial and circumferential heat fluxes at r = 0
are singular;
when c = 1, the radial and circumferential heat fluxes at r = 0
are finite, fqf

r ; q
f
hgr¼0 ¼ �kf ðiQ1Þfsin h; cos hg;

when c > 1, the radial and circumferential heat fluxes at r = 0
are equal to zero.

It is worth noting that the above conclusions are independent of fi-
ber distribution.

Then examine the effects of the existence of the core and the
cylindrical orthotropy of the fiber on the heat flux in the matrix.
From Eqs. (13), (26), and (27), it is seen that the effect of the prop-
erties of the fiber and core on the heat flux in the matrix is only re-
lated to a single parameter gn.

If no transversely isotropic core exists in the fiber, that is n0 = 0,
Eq. (26) can be rewritten as:

gn ¼
gfm þ ð2n� 1Þbð1� gfmÞ
1þ ð2n� 1Þbð1� gfmÞ

without core ð43Þ

In this case, the heat flux in the matrix is related to the geometric
mean,

ffiffiffiffiffiffiffiffiffi
khkr

p
, of the radial and tangential conductivities of the fi-

ber. Eqs. (33) and (34) show that the effective conductivity of a
composite is only related to the boundary heat flux of a unit cell,
or the heat flux in the matrix, so the effective conductivity of a
composite is related to kf ð¼

ffiffiffiffiffiffiffiffiffi
khkr

p
Þ. This fact implies that a cylin-

drically orthotropic fiber can be equivalent to a transversely isotro-
pic fiber with a transverse conductivity

ffiffiffiffiffiffiffiffiffi
khkr

p
. The results given by

the first-order approximation formula (Eq. (35)) also lead to this
conclusion, which was drawn by Hasselman et al. [15] in their
early researches. The present results demonstrate that this conclu-
sion holds for composites with doubly periodic arrays of fibers.

If a transversely isotropic core exists in the central region of the
fiber, from Eq. (26) gn is related to two parameters cð¼

ffiffiffiffiffiffiffiffiffiffiffi
kh=kr

p
Þ and

kf ð¼
ffiffiffiffiffiffiffiffiffi
khkr

p
Þ, so such a cylindrically orthotropic fiber cannot be

generally equivalent to a transversely isotropic fiber. However, in
two special cases, such an equivalence relation holds. One is that
the conductivity of the core satisfies ko ¼ kf ¼

ffiffiffiffiffiffiffiffiffi
khkr

p
, or gof = 0,

Eq. (26) degenerates into Eq. (43). Another is that c� 1. Since
n0 < 1, n2c

0 � 0, Eq. (26) also degenerates into Eq. (43). In the latter
case, En � 0 in Eq. (37), hence the heat flux in the core approaches
zero, which implies that the influence of the core is shielded.
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7.2. Quantitative analysis

Take the carbon fiber reinforced aluminoborosilicate glass as
the computational object. Such a computation requires the data
of the radial and circumferential conductivities of the fiber, how-
ever, they are not available and hardly measured by an experiment.
To bypass the difficulty, Hasselman et al. [15] presented a reason-
able assumption. The carbon fibers are made up of the graphite ba-
sal planes on different patterns. One type of the graphitic carbon
fiber is made up of concentric cylinders of the graphite basal
planes, which is called a circumferentially orthotropic fiber. It is
expected that the value of the radial conductivity will correspond
to the value of the transverse thermal conductivity (2.4 W/m K)
of the single crystal graphite, and the tangential conductivity will
correspond to the value of the in-plane thermal conductivity
(100 W=m K). Similarly the transverse conductivity of the radially
orthotropic fiber can be estimated. The conductivity of the alumin-
oborosilicate glass matrix is 1:0 W=m K. So that:

kr/km = 2.4, kh/km = 100, for a circumferentially orthotropic
fiber;
kr/km = 100, kh/km = 2.4, for a radially orthotropic fiber.

For the convenience of comparison, meanwhile, the conductiv-
ity of a transversely isotropic fiber is taken the effective transverse
conductivity of the cylindrically orthotropic fiber:

kr=km ¼ kh=km ¼
ffiffiffiffiffiffiffiffiffi
240
p

, for a transversely isotropic fiber.
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Fig. 5. The convergence of nondimensional heat flux q1þ=hq2i at the unit cell boundary @
cell and (b) hexagonal unit cell.

Table 1
Variation of the nondimensional effective thermal conductivity with the term number N of
element results (square array, ko/km = 1, R0/R = 0.2, k ¼ 0:6).

N ke/km (perfect interface, b = 0)

kr/km = 2.4 kr/km = 100 kr=km ¼
ffiffiffiffiffi
24
p

kh/km = 100 kh/km = 2.4 kh=km ¼
ffiffiffiffiffi
24
p

1 3.53845 2.37832 3.48229
3 3.39699 2.32789 3.34636
5 3.38882 2.32507 3.33853
7 3.38912 2.32515 3.33881
9 3.38915 2.32516 3.33884

11 3.38915 2.32516 3.33884
FEM [6] 3.37 2.38 3.32
First verify the validity and convergence of the present method.
A periodic boundary condition is prescribed on the unit cell by

setting the average temperature gradients: hH1i = 0, hH2i = 1. The
boundary heat flux at the boundary @Vþ1 should be zero (q1+ = 0)
for the hexagonal and square unit cells shown in Fig. 4 due to
the symmetry, which is used to verify the validity and convergence
of the present method. The parameters are taken as kr/km = 100, kh/
km = 2.4, ko/km = 1, b ¼ km=ð2hRÞ ¼ 0:0572, n0 = R0/R = 0.1, and the

volume fraction k ¼ 0:78, the side length L ¼ R
ffiffiffiffiffiffiffiffiffi
p=k

p
for the square

unit cell, and k ¼ 0:9, L ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p=3

ffiffiffi
3
p

k
q

for the hexagonal unit cell.

It is seen from Fig. 5 that the nondimensional boundary heat flux
q1þ=hq2i approaches zero rapidly with the increase of the eigen-
function expansion term number N even for a very high fiber
volume fraction. The numerical results verify the validity and con-
vergence of the present method.

To further verify the convergence and accuracy of the present
method, a comparison with Rodriguez and Cabeza’s [6] finite
element results is listed in Table 1 for a square array of fibers.
Rodriguez and Cabeza did not report finite element results for a
hexagonal array, which are supplemented by using the commercial
software ANSYS and are listed in Table 2. The detailed implemen-
tation procedure refers to the one for calculating the effective
mechanical properties [17] and the thermoelectroelastic properties
[20]. From Tables 1 and 2, a good agreement and rapid convergence
of the present method are observed. It is interesting to notice that
the present first-order approximation formula (N = 1) possesses a
good engineering accuracy and can serve as a convenient and effi-
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)

Vþ1 (Fig. 4) with the term number N of the eigenfunction expansion. (a) Square unit

the eigenfunction expansion and a comparison with Rodriguez and Cabeza’s [6] finite

ke/km (imperfect interface, b = 0.0572)ffiffiffiffi
0 kr/km = 2.4 kr/km = 100 kr=km ¼

ffiffiffiffiffiffiffiffiffi
240
p

ffiffiffiffi
0 kh/km = 100 kh/km = 2.4 kh=km ¼

ffiffiffiffiffiffiffiffiffi
240
p

2.56219 1.92313 2.53435
2.47113 1.88798 2.44625
2.46493 1.88565 2.44026
2.46489 1.88563 2.44021
2.46489 1.88563 2.44021
2.46489 1.88563 2.44021
2.46 1.92 2.44



Table 2
Variation of the nondimensional effective thermal conductivity with the term number N of the eigenfunction expansion and a comparison with finite element results (hexagonal
array, ko/km = 1, R0/R = 0.2, k ¼ 0:6).

N ke/km (perfect interface, b = 0) ke/km (imperfect interface, b = 0.0572)

kr/km = 2.4 kr/km = 100 kr=km ¼
ffiffiffiffiffiffiffiffiffi
240
p

kr/km = 2.4 kr/km = 100 kr=km ¼
ffiffiffiffiffiffiffiffiffi
240
p

kh/km = 100 kh/km = 2.4 kh=km ¼
ffiffiffiffiffiffiffiffiffi
240
p

kh/km = 100 kh/km = 2.4 kh=km ¼
ffiffiffiffiffiffiffiffiffi
240
p

1 3.28655 2.29749 3.24057 2.45997 1.88522 2.43551
3 3.24219 2.28167 3.19782 2.43685 1.87608 2.41310
5 3.24332 2.28203 3.19891 2.43693 1.87611 2.41318
7 3.24337 2.28204 3.19896 2.43691 1.87611 2.41317
9 3.24337 2.28204 3.19896 2.43691 1.87611 2.41317

11 3.24337 2.28204 3.19896 2.43691 1.87611 2.41317
FEM 3.24 2.29 3.20 2.44 1.88 2.41
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cient engineering closed-form formula. Further discussions refer to
Fig. 6.

Tables 1 and 2 show that the present first-order approximation
possesses a good engineering accuracy. To verify this observation, a
lot of numerical computations are made. As an example, consider
the case without an isotropic core in the fiber (R0/R = 0) and take
the nondimensional effective thermal conductivity of the fiber,
kf =km ¼

ffiffiffiffiffiffiffiffiffi
240
p

, two values of the thermal contact conductivity,
h ¼ 10km=R (b = 0.05) and h =1 (b = 0). A comparison of the pres-
ent first-order approximation (EEVM, N = 1) with Hasselman’s re-
sults [15] and the present high-order numerical solutions (EEVM,
N = 11) is depicted in Fig. 6a for a square array and in Fig. 6b for
a hexagonal array, where ke/km is the nondimensional effective
thermal conductivity of the composite, k is the fiber volume frac-
tion, N is the taken eigenfunction expansion term number,
EEVM = eigenfunction expansion–variational method. It is seen
that the first-order approximate results have a good accuracy com-
pared with the high-order numerical results, especially for a hex-
agonal array.

It should be pointed out that Hasselman’s model and the pres-
ent calculations (for the square and hexagonal arrays of fibers) are
related to three different distributions of fibers. Hasselman et al.
[15] wrote that because no interaction between fibers in their
model was assumed, their effective thermal conductivity formula
would be valid for dilute volume fractions only. We find that their
model reflects interaction between fibers in a statistical sense and
can be regarded as an idealized even distribution of fibers. In pres-
ent calculations, the square and hexagonal arrays of fibers are con-
sidered. Fig. 6 shows that for a small (dilute) volume fraction of
fibers, the three fiber distributions give almost identical results,
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Fig. 6. A comparison of the first-order approximation (EEVM, N = 1) with Hasselman’s re
array and (b) hexagonal array.
which shows interaction between fibers is weak. However, for a
large fiber volume fraction, the difference between the nondimen-
sional effective thermal conductivity for the three fiber distribu-
tions becomes lager and larger with the increase of the fiber
volume fraction. The phenomenon shows that interaction between
fibers becomes strong and the effect of the fiber distribution be-
comes significant. In periodic fiber arrays, the hexagonal array ap-
pears the closest to the idealized even distribution and Fig. 6b
shows the effective thermal conductivities for the two fiber distri-
butions are very close. Besides, Eq. (36) indicates that a composite
with high thermal conductivity fibers and imperfect interfaces can
be approximately equivalent to the one with lower thermal con-
ductivity fibers and perfect interfaces. Such a fact can explain the
phenomenon observed from Fig. 6: the fiber interaction for
b = 0.05 is weaker than that for b = 0, as a result, Hasselman’s re-
sults and the high-order numerical results (EEVM, N = 11) for
b = 0.05 are closer together than those for b = 0.

Now discuss the effects of the cylindrical orthotropy of the fiber
and the existence of the isotropic core.

The distributions of the nondimensional heat flux q2/hq2i along
the x2-axis (see Fig. 4) are depicted in Fig. 7 for a square array with
different properties of the fiber and core. The parameters are taken
as k ¼ 0:6, b ¼ km=ð2hRÞ ¼ 0:05, N = 11. When no transversely iso-
tropic core exists in the fiber, it is seen that the cylindrical ortho-
tropy of the fiber has significant influence on the heat flux at the
fiber center, but no influence on the heat flux in the matrix. The
numerical results verify the conclusions obtained in the qualitative
analysis that the radial and circumferential heat fluxes at r = 0 are
singular for kr > kh, finite for kr = kh and zero for kr < kh. When a
transversely isotropic core exists in the fiber, it is seen that the
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sults [15] and the present high-order numerical solutions (EEVM, N = 11). (a) Square
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radial and circumferential heat fluxes at r = 0 are finite, and an
amplification effect of the radial orthotropy (kr > kh) and a shielding
effect of the circumferential orthotropy (kr < kh) on the heat flux in
the core are observed.

The transversely isotropic core is made up of randomly oriented
graphite basal planes, a possible range of whose transverse con-
ductivity can be estimated by the thermal conductivity of the sin-
gle crystal graphite, that is 2.4 < ko/km < 100. The effect of the
nondimensional conductivity of the core on the effective conduc-
tivity of the composite is depicted in Fig. 8 for a square array,
k ¼ 0:7, and R0/R = 0.2. It is assumed that a perfect interface exists
between the fiber and matrix, that is h =1 (b = 0). It is seen that
the influence of the conductivity of the core on the effective con-
ductivity is significant when kr > kh. The value of the nondimen-
sional conductivity of the core is

ffiffiffiffiffiffiffiffiffi
240
p

at the intersection point
of the three curves. The reason is that the cylindrical orthotropy
of the fiber have no influence on the effective conductivity only
when ko=km ¼

ffiffiffiffiffiffiffiffiffi
khkr

p
=km ¼

ffiffiffiffiffiffiffiffiffi
240
p

.
The effect of the core radius on the effective conductivity is de-

picted in Fig. 9 for a square array. The parameters are taken as
k ¼ 0:7, ko/km = (100 + 2.4)/2 = 51.2, h =1 (b = 0). It is seen that
the effect of the core radius on the effective conductivity depends
on the cylindrical orthotropy of the fiber. If kr� kh, the influence of
the core radius on the effective conductivity is significant when
R0/R < 0.1, but becomes slight with the increase of R0/R. If kr� kh,
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Fig. 8. The effect of the nondimensional conductivity ko/km of the core on the
effective conductivity ke/km of the composite.
such influence is very trivial when R0/R < 0.8, but becomes signifi-
cant when R0/R > 0.8.
8. Concluding remarks

By introducing an appropriate coordinate transformation, the
governing differential equation for two-dimensional steady-state
heat conduction in a cylindrically orthotropic solid is converted
into a harmonic equation and a complex variable method is devel-
oped. The field variables for composites with doubly periodic ar-
rays of cylindrically orthotropic fibers are formulated by complex
potentials, which are expanded into eigenfunction series in a unit
cell. Then by using a generalized variational functional which
incorporates the periodic boundary condition of a unit cell, an
eigenfunction expansion–variational method based on a unit cell
is developed to solve such problems. A convergence analysis and
a comparison with finite element calculations are made to demon-
strate the validity and efficiency of the present method. On the
other hand, the present method can provide reference results for
other numerical and approximate methods.

The present method allows a profound understanding of the
microstructure, microscopic fields, macroscopic effective
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properties and their interrelations for such composites. An engi-
neering equivalent parameter g is found and the parameter can re-
flect the overall influence of the thermal conductivities of the
matrix and fibers as well as the interfacial characteristic on the
effective thermal conductivity of the composite with a good engi-
neering accuracy. The equivalent parameter greatly simplifies the
complicated relation of the effective thermal conductivity to the
internal structure of a composite.

By using the equivalent parameter g, the present solutions pro-
vide a unified first-order approximation formula of the effective
thermal conductivity for different microstructural characteristics.
A comparison with high-order solutions shows that the unified
first-order approximation formula possesses good engineering
accuracy and can serve as an engineering closed-form formula.

If no transversely isotropic core exists in the fiber, the heat flux
at the center of the fiber is singular when the radial conductivity kr

is larger than the tangential conductivity kh, is finite when kr = kh

and is zero when kr < kh.
If a transversely isotropic core exists in the fiber, the cylindrical

orthotropy of the fiber have no influence on the effective conduc-
tivity of the composites when the conductivity of the core is equal
to the geometric mean of the radial and tangential conductivities of
the fiber. If the radius of the core is relatively small, the influence of
the radius and conductivity of the core is significant when kr� kh,
and the influence of the core is shielded when kr� kh.
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