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The effects of mechanically and dielectrically imperfect interfaces on dispersion relations of

elastic waves in a one-dimensional piezoelectric phononic crystal are studied in this paper. Six

kinds of imperfect interfaces between two different piezoelectric materials constituting the

phononic crystal are considered. These imperfect interfaces include: the mechanically com-

pliant dielectrically weakly conducting interface, the mechanically compliant dielectrically

highly conducting interface, the grounded metallized interface, the low dielectric interface,

the tangent fixed interface and the tangent slippery interface. Based on transfer matrices of

piezoelectric slabs and imperfect interfaces, the total transfer matrix of a typical single cell in

the periodical structure is obtained. Furthermore, the Bloch theorem is used to obtain the dis-

persive equations of in-plane and anti-plane Bloch waves. The dispersive equations are solved

numerically and the numerical results are shown graphically. In the case of normal propaga-

tion of elastic waves within piezoelectric slabs, the analytical expressions of the dispersion

equations are derived and compared with other literatures. The influences of mechanically

and dielectrically imperfect interfaces on the dispersive relations are discussed based on the

numerical results.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

As a kind of artificial periodic composite materials or

structures, phononic crystal can give rise to complete acous-

tic band gaps within which elastic waves propagation are

forbidden while in other frequency ranges elastic waves can

propagate without exhaustion. Therefore, phononic crystal

can be used to control the propagation of elastic waves and

thus attracted attentions of many researcher, such as, Sigalas

and Economou (1992), Kushwaha et al. (1993), Kafesaki et

al. (1995), Suzuki and Yu (1998), and Liu et al. (2000). In
∗ Corresponding author at: Department of applied mechanics, Uni-

versity of Science and Technology Beijing, Beijing 100083, China.

Tel./fax: +86 10 82388981.

E-mail address: weipj@ustb.edu.cn (P. Wei).

http://dx.doi.org/10.1016/j.mechmat.2015.11.004

0167-6636/© 2015 Elsevier Ltd. All rights reserved.
recent years, piezoelectric materials were introduced into

the manufacture of phononic crystal due to its unique elec-

tromechanical coupling effect. Alvarez-Mesquida et al (2001)

studied the shear horizontal wave propagation processes

in a layered piezoelectric composite based on a recursive

system of equations involving the piezoelectric impedance.

Qian (2004a, 2004b) studied the propagation behavior of

horizontally polarized shear waves (SH-waves) in a peri-

odic piezoelectric-polymeric layered structure. The disper-

sive equation and the phase velocity of SH-waves were ob-

tained. Further, the influence of initial stress on the stop band

and the dispersion relation of the SH-waves was discussed in

detail. Monsivais et al. (2005) studied surface and shear hor-

izontal waves in finite and infinite piezoelectric composite

media, considering the transmission, dispersion relation, an-

gular dispersion relation, and eigenmodes of vibration of the
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composites. Chen and Wang (2007) studied the band gaps

of both in-plane and anti-plane elastic waves propagating

along an arbitrary direction in one-dimensional disordered

phononic crystals. The localization of wave propagation due

to random disorder was discussed by introducing the con-

cept of the localization factor. It is found that phononic quasi-

crystals involve more bands with localization of wave motion

compared with the periodic structure. The localization factor

may act as an accurate and efficient parameter to character-

ize band structures of both ordered and disordered (includ-

ing quasi-periodic) phononic crystals. Pang et al. (2008, 2014)

studied the wave propagation in layered periodic composites

consisting of piezoelectric and piezomagnetic phases and de-

rived the dispersion relations of Lamb waves and SH waves.

Wang et al. (2008, 2010) investigated the elastic wave propa-

gation in two-dimensional and three-dimensional phononic

crystals with piezoelectric and piezomagnetic inclusions tak-

ing the magneto-electro-elastic coupling or initial stress into

account.

However, the investigations above mentioned are based

on the perfect interface, namely, all mechanical and di-

electric quantities, for example, the displacement compo-

nents, the traction components, the electric potential and

the electrical displacement components, are assumed to be

continuous across the interface. In actual situation, the ap-

pearances of imperfect interfaces due to the accumulative

interfacial damages, local debonding or manufacturing de-

fection is always inevitable. The influences of imperfect in-

terfaces on the dispersive relations and the band gaps of the

phononic crystal are therefore interesting. Fan et al. (2006)

investigated certain waves which created the fluctuation

perpendicular to the incident plane and propagated near

an imperfectly bonded interface between two half-spaces

of different piezoelectric materials. The existence of these

waves relies on the imperfection of the interface bonding.

Huang et al (2009) studied the interfacial SH waves prop-

agating along the imperfectly bonded interface of a mag-

netoelectric composite consisting of piezoelectric (PE) and

piezomagnetic (PM) phases. It was shown that the inter-

facial imperfection strongly affects the velocity of interfa-

cial shear waves and the interfacial shear waves do not

exist for the perfect interface. Zheng and Wei (2009) inves-

tigated the dispersive relations and the band gaps of elas-

tic waves in 1-D phononic crystals. In their study, the im-

perfect interface with the traction components jumps or the

displacement components jumps was considered. Pang and

Liu (2011) investigated the reflection and transmission of

plane waves at an interface between piezoelectric (PE) and

piezomagnetic (PM) media. The mechanical imperfection of

bonding behavior at the interface was described as the lin-

ear spring model. But dielectrically imperfect interfaces were

not considered. Lan and Wei (2012, 2014) studied the influ-

ence of the imperfect interface on the dispersive character-

istics and the band gaps of SH waves propagating through

laminated piezoelectric phononic crystal. The imperfect in-

terface is modeled as a thin membrane with elasticity and

inertial even but without thickness or a thin interlayer with

gradient variation of material parameters. However, the im-

perfect interface involved in their investigations is merely
mechanically imperfect. The interface with dielectrically im-

perfect is not considered. In fact, the dielectric quantities

may also be discontinuous across the interface. Sun et al

(2011) studied the propagation of SH wave in a cylindrically

multiferroic composite consisting of a piezoelectric layer

and a piezomagnetic central cylinder in which the inter-

face was damaged mechanically, magnetically or electrically.

Piliposyan (2012) investigated the existence and propagation

of a surface SH wave at the interface of two magneto-electro-

elastic half-spaces. Four sets of boundary conditions, namely,

full contact, partial contact with magnetically closed bound-

aries, partial contact with electrically closed boundaries and

no electromagnetic contact, were considered. Alshits and

Shuvalov (1993, 1995) once studied the reflection problem of

transverse elastic waves from a periodic structure of piezo-

magnetic layers with thin superconducting interlayers and

also from a periodic structure of piezoelectric layers with

metallized interface. It was shown that the reflection coef-

ficient can jump abruptly from zero to values close to unity

when the phase state of the superconducting interlayers

changes, which could be caused by a temperature change or

an electric current. Wang and Sudak (2007) studied the influ-

ence of the mechanically compliant and dielectrically weakly

(or highly) conducting interface when presented the ana-

lytical solution of a piezoelectric screw dislocation located

within one of two joined piezoelectric half-planes. For the

mechanically compliant interface, displacements are discon-

tinuous across the interface. Similarly, the electric potential

is discontinuous for the dielectrically weakly conducting in-

terface and the normal component of electric displacement

is discontinuous for the dielectrically highly conducting

interface.

In this paper, the one-dimensional phononic crystal com-

posed of two different piezoelectric materials with the me-

chanically and dielectrically imperfect interfaces are both

considered. First, the transfer matrices of piezoelectric slabs

and imperfect interfaces are derived from the motion equa-

tion of piezoelectric solids and mechanically and dielectri-

cally interface conditions. Then, the total transfer matrix of

one typical single cell of the periodical structure is obtained

by the combination of the transfer matrices of piezoelec-

tric slabs and that of imperfect interfaces. Finally, the Bloch

theorem is used to obtain the dispersive equations of Bloch

waves. Six kinds of imperfect interfaces between two differ-

ent piezoelectric slabs are considered. These imperfect in-

terfaces include: the mechanically compliant dielectrically

weakly conducting interface, the mechanically compliant di-

electrically highly conducting interface, the grounded metal-

lized interface, the low dielectric interface, the tangent fixed

interface and the tangent slippery interface. The dispersion

equations of in-plane Bloch wave and anti-plane Bloch wave

are both solved to obtain the dispersive curves and the nu-

merical results are shown graphically. Based on these nu-

merical results, influences of mechanically and dielectrically

imperfect interfaces on the dispersive curves are discussed.

Moreover, the analytical expressions of the dispersion equa-

tion are derived for the normal propagation situation of elas-

tic waves within piezoelectric slabs and are compared with

other literatures.
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Fig. 1. One-dimensional piezoelectric phononic crystal with imperfect interfaces.
2. Transfer matrix of coupled waves in a slab

Consider a one-dimensional phononic crystal which is

formed by periodically repeating two different transversely

isotropic piezoelectric slabs. The two different piezoelectric

slabs are bonded together but the connection status is not

perfect mechanically or dielectrically, and is modeled as the

imperfect interface, which means that the mechanical or di-

electric quantities may be discontinuous across the interface.

Let the x3-axis is the poling direction and the slab is trans-

versely isotropic in the ox1x2 coordinates plane. The phys-

ical parameters of slab A and slab B are labeled with the

superscript “′” and “′′”, respectively. In latter formulation, if

the physical quantity does not have any superscript, it will

be appropriate for these two slabs. Cijmn, emij and ɛmi are

the elastic, piezoelectric and dielectric parameters, respec-

tively. ρ and d are the mass density and thickness. There are

forward and backward QP (quasi-longitudinal) waves, QSV

(quasi-transverse) waves and SH (shear-horizonal) waves in

each slab, see Fig. 1. The EA (electro-acoustic) wave always

propagates along the interface.

The constitutive equation of transversely isotropic piezo-

electric material is (Auld, 1990)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ31

σ12

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎦ ·

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S11

S22

S33

2S23

2S31

2S12

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

−

⎡
⎢⎢⎢⎢⎣

0 0 e31

0 0 e31

0 0 e33

0 e15 0
e15 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦ ·

{
E1

E2

E3

}
(1a)

{
D1

D2

D3

}
=
[

0 0 0 0 e15 0
0 0 0 e15 0 0

e31 e31 e33 0 0 0

]
·

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S11

S22

S33

2S23

2S31

2S12

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+
[
ε11 0 0
0 ε11 0
0 0 ε33

]
·
{

E1

E2

E3

}
(1b)

where C66 = 0.5(C11 − C12). σ ij and Smn are the stress and

strain tensor, respectively. Em and Dm are the electric field

and electric displacement vector, respectively. The strain

tensor Smn is related with the displacement un by Smn =
0.5(un,m + um,n) while the electric field Em is related with the

electric potential ϕ by

Em = −ϕ,m (2)

in the quasi static electric field approximation.

The mechanical and electrical governing equation can be

expressed as{
σi j,i = ρü j

Dm,m = 0
(3)

In either plane strain or anti-plane strain case, the dis-

placement and the electric potential are only the function of

x1 and x3 which can be assumed as

{u1, u2, u3, ϕ} = {U1,U2,U3,�} exp [ik1(x1 + ξx3 − ct)]

(4)

where the wavenumber k = (k1, k2, k3) = (k1, 0, k3) and k1

is the component of the wave vector along the interface.

ξ(= k3/k1) is the ratio of wave number and is related with

the propagation direction angle by θ = arccotξ . ω is the an-

gular frequency. c(= ω/k1) is the ratio of the angular fre-

quency with respect to the projection of wave vector along

the interface.

Inserting Eqs. (1), (2) and (4) into Eq. (3) leads to

k2
1

⎡
⎢⎣

W11 0 W13 W14

0 W22 0 0
W31 0 W33 W34

W41 0 W43 W44

⎤
⎥⎦ ·

⎧⎪⎨
⎪⎩

U1

U2

U3

�

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

0
0
0
0

⎫⎪⎬
⎪⎭ (5)
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W

It is noticed from Eq. (5) that the electric potential ϕ is

only coupled with the displacement components u1 and u3.

Therefore, SH wave is independent of the dielectric param-

eters of slab and the dielectrically interface conditions. The

explicit expressions of Wij for the traverse isotropic piezo-

electric solid are given in Appendix A.

If we select the isotropic plane ox1x2 as the propagation

plane of in-plane elastic waves and the poling direction of

piezoelectric materials is perpendicular to the normal of in-

terface, Eq. (4) should be modified as

{u1, u2, u3, ϕ} = {U1,U2,U3,�} exp [ik1(x1 + ξx2 − ct)]

(6)

where the wavenumber k = (k1, k2, k3) = (k1, k2, 0) and the

ratio of wave number ξ = k2/k1. As a result of this situation,

Eq. (5) becomes

k2
1

⎡
⎢⎣

Ŵ11 Ŵ12 0 0

Ŵ21 Ŵ22 0 0

0 0 Ŵ33 Ŵ34

0 0 Ŵ43 Ŵ44

⎤
⎥⎦ ·

⎧⎪⎨
⎪⎩

U1

U2

U3

�

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

0
0
0
0

⎫⎪⎬
⎪⎭. (7)

The explicit expressions of Ŵi j are also given in

Appendix A. Instead of the displacement components u1 and

u2, the electric potential ϕ is now coupled with the displace-

ment component u3, as is shown in Eq. (7).

The condition of existing non-trivial solution of Eq. (5) is∣∣∣∣∣
W11 W13 W14

W31 W33 W34

W41 W43 W44

∣∣∣∣∣ = f1(ξ , c) = 0 (8a)

22 = f2(ξ , c) = 0 (8b)

For a given c, f1(ξ , c) is a polynomial of three orders about

ξ 2, thus there are three pairs of roots about ξ . Similarly,

there are one pairs of roots from equation f2(ξ , c) = 0. These

roots stand for all possible wave modes in the piezoelectric

solid. The real roots stand for the bulk waves propagating in

the ox1x3 plane. The imaginary roots stand for the surface

waves propagating along interface with attenuation vertical

to the propagation direction. The complex roots stands for

the bulk wave accompanied with attenuation. For the tra-

verse isotropic solids considered, the value of ξ indicates

that there are eight possible part waves. Six of them are bulk

waves and two of them are the surface wave. Let ξ 1, ξ 3, ξ 5

and ξ 7 are the forward QP, QSV, SH, EA waves, while ξ 2, ξ 4,

ξ 6 and ξ 8 are the backward QP, QSV, SH and EA waves.

Define the amplitude ratio in each coupled wave{
G3 = U3

U1
= W14W31−W11W34

W13W34−W14W33

Gϕ = �
U1

= W11W33−W13W31

W13W34−W14W33

(9)

then, (1, G3,Gϕ) stands for the coupled relation between the

displacement components u1, u3 and the electric potential

ϕ. (1, G3,Gϕ) can be called the vibration mode. For the cou-

pled waves, namely, QP, QSV and EA waves, the displacement

components and the electric potential can be expresses as{
u1q, u2q, u3q, ϕq

}
=

{
1, 0, G3q, Gϕq

}
U1q exp

[
ik1

(
x1 + ξqx3 − ct

)]
(10)
where the subscript q denotes different types of coupled

waves. It is noticed that the well-known Snell’s law, namely,

k1, c and ω are same for various coupled waves, is assumed

in Eq. (10). Inserting Eq. (10) into Eq. (1), the traction compo-

nents and the electric displacement components can be ex-

pressed as{
σ33q, σ23q, σ31q, D3q

}
= ik1

{
H3q, 0, H1q, Jq

}
U1q exp

[
ik1

(
x1 + ξqx3 − ct

)]
(11)

where H
3q

= C
13

+ C
33

G
3q

ξq + e
33

Gϕqξq, H
1q

= C
44

(ξq +
G

3q
) + e

15
Gϕq, Jq = e

31
+ e

33
G

3q
ξq − ε

33
Gϕqξq.

For SH wave, Eqs. (10)–(11) are replaced by{
u1q, u2q, u3q, ϕq

}
= {0, 1, 0, 0}U2q exp

[
ik1

(
x1 + ξqx3 − ct

)]
(12)

{
σ33q, σ23q, σ31q, D3q

}
= ik1

{
0,C44ξq, 0, 0

}
U2q exp

[
ik1

(
x1 + ξqx3 − ct

)]
(13)

In the normal propagation situation (k1 = 0 or c = ∞),

there are{
u3q, ϕq, σ33q, D3q

}
=
{

1, e33/ε33, ik3q

[
C33 +

(
e2

33/ε33

)]
, 0
}

U3q exp
[
i(k3qx3 − ωt)

]
(14a)

where k31 = −k32 = ω
√

ρ/[C33 + (e2
33

/ε33)], q = 1,2 stands

for forward and backward P wave, respectively.{
u1q, σ31q

}
=
{

1, ik3qC44

}
U1q exp

[
i(k3qx3 − ωt)

]
(14b)

where k33 = −k34 = ω
√

ρ/C44, q = 3,4 stands for forward

and backward SV wave, respectively.{
u2q, σ23q

}
=
{

1, ik3qC44

}
U2q exp

[
i(k3qx3 − ωt)

]
(14c)

where k35 = −k36 = ω
√

ρ/C44, q = 5,6 stands for forward

and backward SH wave, respectively.{
u3q, ϕq, σ33q, D3q

}
=

{
0, 1 + k3qx3, e33k3q,−ε33k3q

}
�q exp (−iωt) (14d)

where k37 = −k38 = 1, q = 7,8 stands for forward and back-

ward EA wave, respectively.

It is noticed from Eq. (14) that QSV and QP waves in the

oblique propagation situation reduce to SV wave and P wave

in the normal propagation situation. In other word, the po-

larized displacement directions of the shear vertical and the

shear horizontal waves are perpendicular to the wave vec-

tor while the polarized displacement direction of dilatational

wave is coincident with the wave vector. Besides, SV wave

and SH wave are both decoupled with the electric potential

ϕ while P wave is coupled to the electric potential ϕ. EA wave

actually become into a standing wave constrained in a slab in

the normal propagation situation. The wave speed of SV, SH

and P waves are, respectively,{
cP =

√[
C33 +

(
e2

33
/ε33

)]
/ρ

cSV = cSH =
√

C44/ρ
(15)

For convenience of the statement of the interface condi-

tions and the periodic condition, we define the state vector

of the mechanical and the dielectric fields as

V(xi, t) =
{

ū1, ū3, ϕ̄, σ̄33, σ̄31, D̄3

}T
(16a)
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for in-plane Bloch wave and

V(xi, t) = {ū2, σ̄23}T
(16b)

for anti-plane Bloch wave, where ū1 =
4,7,8∑

q=1,2.3

u1q, ū2 =
6∑

q=5

u2q, ū3 =
4,7,8∑

q=1,2,3

u3q, ϕ̄ =
4,7,8∑

q=1,2,3

ϕq, σ̄33 =
4,7,8∑

q=1,2,3

σ33q,

σ̄23 =
6∑

q=5

σ23q, σ̄31 =
4,7,8∑

q=1,2,3

σ31q, D̄3 =
4,7,8∑

q=1,2,3

D3q.

For in-plane Bloch wave, the state vectors at the left and

at the right boundaries of a slab can be expressed as

VL(x3 = 0+, t)

= TL{U11,U12,U13,U14,U17,U18}T exp [ik1(x1 − ct)] (17a)

VR(x3 = d−, t)

= TR{U11,U12,U13,U14,U17,U18}T exp [ik1(x1 − ct)] (17b)

Similarly, for anti-plane Bloch wave,

VL(x3 = 0+, t) = TL{U25,U26}T exp [ik1(x1 − ct)] (18a)

VR(x3 = d−, t) = TR{U25,U26}T exp [ik1(x1 − ct)] (18b)

The state vectors at the left and at the right boundaries of

a slab can be related by

VR(x3 = d−, t) = TVL(x3 = 0+, t) (19)

where T = TRT−1
L

is the transfer matrices of the slab. It is

noted that the transfer matrix T is of 6 × 6 order for in-plane

Bloch wave and 2 × 2 order for anti-plane Bloch wave. The

explicit expressions of TL and TR are given in appendix B.

In the case of normal propagation, we can define the state

vector as

V(x3, t) =
{

ū3, ϕ̄, σ̄33, D̄3

}T
(20a)

for Bloch P wave.

V(x3, t) = {ū1, σ̄31}T
(20b)

for Bloch SV wave, and

V(x3, t) = {ū2, σ̄23}T
(20c)

for Bloch SH wave. The state vectors at the left and at the

right boundaries of a slab can still be related by the transfer

matrix, namely, Eq. (19). But the transfer matrix T is of 4 × 4

order for Bloch P wave and 2 × 2 order for Bloch SV and SH

waves.

3. Transfer matrix of a single cell with imperfect

interfaces

3.1. Mechanically compliant, dielectrically weakly and highly

conducting imperfect interface

For the perfect interface, all mechanical and dielectric

fields, for example, the displacement components, the trac-

tion components, the electric potential and the normal com-

ponent of electric displacement, are continuous across the

interface. In other words, the state vectors at two sides of

the interface are same. Accordingly, the transfer matrix of
the perfect interface is a unit matrix. For the imperfect inter-

face, parts of mechanical or dielectric fields are not continu-

ous. Physically, the imperfect interface is a result of approx-

imating the thin interlayer (with a finite thickness although

very thin) between two dissimilar piezoelectric solids with

a mathematic interface without thickness. The state vectors

at two sides of the imperfect interface are not the same any

more. By the introduction of the transfer matrix of the imper-

fect interface, the state vectors at two sides of the imperfect

interface can be related by

{
V′

L(x3 = 0+, t) = TδV′′
R

(
x3 = d′′−, t

)
V′′

L(x3 = 0+, t) = TδV′
R

(
x3 = d′−, t

) (21)

where Tδ denotes the transfer matrix of the imperfect inter-

face. For different types of imperfect interfaces, the transfer

matrix Tδ may have different expressions.

For the mechanically compliant, dielectrically weakly

conducting interface, the interface conditions are expressed

as (Wang and Sudak, 2007)

ū′′
1 − ū′

1 = ασ̄ ′
31, ū′′

2 − ū′
2 = βσ̄ ′

23, ū′′
3 − ū′

3 = γ σ̄ ′
33,

ϕ̄′′ − ϕ̄′ = −ηD̄′
3, σ̄ ′′

3i = σ̄ ′
3i, D̄′′

3 = D̄′
3, (i = 1, 2, 3) (22a)

For the mechanically compliant, dielectrically highly con-

ducting interface, the interface conditions can be expressed

as (Wang and Sudak, 2007)

ū′′
1 − ū′

1 = ασ̄ ′
31, ū′′

2 − ū′
2 = βσ̄ ′

23, ū′′
3 − ū′

3 = γ σ̄ ′
33,

ϕ̄′′ = ϕ̄′, σ̄ ′′
3i = σ̄ ′

3i, D̄′′
3 − D̄′

3 = χ
∂2ϕ̄′

∂x2
1

, (i= 1, 2, 3)

(22b)

The parameter α, β and γ in Eq. (22) represent the imper-

fectly mechanical propertied of interfaces and the parameter

η and χ the imperfectly dielectric properties of interfaces.

When all parameters in Eq. (22) are equal to zero, these two

types of imperfect interfaces reduce to perfect interfaces. If

α, β , γ → ∞, it leads to σ̄31, σ̄23, σ̄33 → 0 and thus Eq. (22)

describes completely debonded interfaces. If η → ∞, it leads

to D̄3 → 0 and thus Eq. (22a) describes a charge-free inter-

face. So a finite value of η describes the dielectrically weakly

conducting property of the imperfect interface. If χ → ∞, it

leads to ϕ̄ → 0 and thus Eq. (22b) describes a equipotential

grounded interface. So a finite value of η describes the dielec-

trically highly conducting property of the imperfect interface.

In the case of in-plane Bloch wave, the interface transfer

matrix can be expressed as

Tδ(in) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 α 0
0 1 0 γ 0 0
0 0 1 0 0 −η
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ (23a)
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for the mechanically compliant, dielectrically weakly con-

ducting interface and

Tδ(in) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 α 0
0 1 0 γ 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

0 0 −k2
1χ 0 0 1

⎤
⎥⎥⎥⎥⎦ (23b)

for the mechanically compliant, dielectrically highly con-

ducting interface. In the case of anti-plane Bloch wave, the

electric potential is decoupled with the displacement com-

ponent u2. Therefore, the dielectrically imperfect interface

has no any influence on the SH wave propagation and only

the mechanically compliant imperfect interface influence

anti-plane Bloch wave propagation. In this situation,

Tδ(anti) =
[

1 β
0 1

]
(24)

In the case of normal propagation, the transfer matrices

Tδ of imperfect interfaces reduces to

Tδ(P) =

⎡
⎢⎣

1 0 γ 0
0 1 0 −η
0 0 1 0
0 0 0 1

⎤
⎥⎦, Tδ(SV)

=
[

1 α
0 1

]
, Tδ(SH) =

[
1 β
0 1

]
. (25)

The dielectrically highly conducting imperfect interface

does not have any influence on the dispersion relations of

Bloch P wave.

For a single cell composed of slab A and slab B and imper-

fect interfaces between them, the state vectors at the left and

right boundaries are related by

V′
L

[
x3 =

(
d′ + d′′)+

, t

]
= TδT′′TδT′V′

L(x3 = 0+, t) (26)

Therefore, the transfer matrices of a typical single cell can

be expressed as

Tcell = TδT′′TδT′ (27)

where T′ and T′′ are the transfer matrices of slab A and slab

B, respectively.

3.2. Low dielectric interface and grounded metallized interface

The interface conditions of the low dielectric interface can

be expressed as (Alshits and Shuvalov, 1993)

ū′
i = ū′′

i ,σ̄ ′
3i = σ̄ ′′

3i,D̄
′
3 = D̄′′

3 = 0, (i= 1, 3). (28)

It can be taken for the limiting case when the me-

chanically imperfect interface parameters α=β=γ =0 while

the dielectrically imperfect interface parameter η → ∞ in

the mechanically compliant and dielectrically weakly con-

ducting interface discussed in Section 3.1 . This imperfect

interface will appear when the actual interphase material be-

tween two slabs is nearly insulator. Because the normal com-

ponents of electric displacements are zero at the interface

between slab A slab B, the state vector should be defined as

V(xi, t) = {ū1, ū3, σ̄33, σ̄31}T
(29)
for in-plane Bloch wave, which lacks ϕ̄ and D̄3 compared

with the state vector in the perfect interface case. In order

to obtain the transfer matrix corresponding to the new state

vectors, the boundary conditions D̄3 = 0 at the left and right

boundaries of each slab must be used to eliminate the non-

independent components U17 and U18. Inserting Eq. (11) into

D̄3 = 0 leads to

⎧⎪⎨
⎪⎩

J7U17 + J8U18 = −J1U11 − J2U12 − J3U13 − J4U14

J7U17 exp (ik1ξ7d) + J8U18 exp (ik1ξ8d) = −J1U11 exp (ik1ξ1d)

− J2U12 exp (ik1ξ2d) − J3U13 exp (ik1ξ3d) − J4U14 exp (ik1ξ4d)

(30)

From Eq. (30), the non-independent components U17 and

U18 can be expressed as{
U17 = M11U11 + M12U12 + M13U13 + M14U14

U18 = N11U11 + N12U12 + N13U13 + N14U14

(31)

The grounded metallized interface can be expressed as

(Alshits and Shuvalov, 1993)

ū′
i = ū′′

i , ϕ̄′ = ϕ̄′′ = 0, σ̄ ′
3i = σ̄ ′′

3i, (i= 1, 3) (32)

It can also be taken for the limiting case when α=β=γ =0

and χ → ∞ in the mechanically compliant and dielectrically

highly conducting interface. This kind of imperfect interface

will appear when the interphase material between two slabs

is near conductor grounded. Because the electric potential

is zero at interface between slab A slab B, the state vector

should also be defined as Eq. (29) for in-plane Bloch wave

which lacks ϕ̄ and D̄3 compared with the state vector in the

perfect interface case. Similarly, in order to obtain the trans-

fer matrix corresponding to the new state vectors, the bound-

ary conditions ϕ̄ = 0 at the left and right boundaries of slab

must be used to eliminate the non-independent components

U17 and U18. Inserting Eq. (11) into ϕ̄ = 0 leads to

⎧⎪⎨
⎪⎩

Gϕ7U17 + Gϕ8U18 = −Gϕ1U11 − Gϕ2U12 − Gϕ3U13 − Gϕ4U14

Gϕ7U17 exp (ik1ξ7d) + Gϕ8U18 exp (ik1ξ8d) = −Gϕ1U11 exp (ik1ξ1d)

− Gϕ2U12 exp (ik1ξ2d) − Gϕ3U13 exp (ik1ξ3d) − Gϕ4U14 exp (ik1ξ4d)

(33)

From Eq. (33), the non-independent components U17 and

U18 can be expressed as{
U17 = M21U11 + M22U12 + M23U13 + M24U14

U18 = N21U11 + N22U12 + N23U13 + N24U14

(34)

By use of Eqs. (31) and (34), the new state vector at the

left and at the right boundaries of a slab can be expressed as

VL(x3 = 0+, t) = TL{U11,U12,U13,U14}T exp [ik1(x1 − ct)]

(35a)

VR(x3 = d−, t) = TR{U11,U12,U13,U14}T exp [ik1(x1 − ct)]

(35b)

The transfer matrix of a slab is thus obtained by T = TRT−1
L

for the new state vector.
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In the case of normal propagation, D̄3 = 0 leads to

�7 = �8 (36)

and ϕ̄ = 0 leads to⎧⎨
⎩

�7 + �8 = −(e33/ε33)U31 − (e33/ε33)U32

(1 + d)�7 + (1 − d)�8 = −(e33/ε33)U31 exp (iωd/cP)
− (e33/ε33)U32 exp (−iωd/cP)

(37)

From Eq. (37), the non-independent components �7 and

�8 can be expressed as{
�7 = m21U31 + m22U32

�8 = n21U31 + n22U32

(38)

Obviously, the low dielectric interface and grounded met-

allized interface do not have influence on the dispersion re-

lations of Bloch SV wave and Bloch SH wave. By the use of

Eqs. (36) and (38), the new state vectors at the left and at the

right boundaries of a slab can be expressed as

VL(x3 = 0+, t) = TL{U31,U32}T exp (−iωt) (39a)

VR(x3 = d−, t) = TR{U31,U32}T exp (−iωt) (39b)

for Bloch P wave. The transfer matrix for the new state vec-

tor can also be obtained by T = TRT−1
L

. The explicit expres-

sions of TL and TR in the low dielectric interface and the

grounded metallized interface are given in Appendix C. Re-

call that the displacement components and the traction com-

ponents are continuous across the low dielectric interface

and the grounded metallized interface. The transfer matrices

of these two dielectrically imperfect interfaces are both unit

matrices for the new state vector, namely, Tδ = I. Therefore,

the transfer matrices of a typical single cell can be expressed

as

Tcell = TδT′′TδT′ = T′′T′ (40)

where T′ and T′′ are the transfer matrix of slab A and

slab B, respectively. Because the state vector is V(xi, t) =
{ū1, ū3, σ̄33, σ̄31}T for in-plane Bloch wave and V(xi, t) =
{ū2, σ̄23}T for anti-plane Bloch wave, the transfer matrix of a

single cell Tcell is of 4 × 4 order for in-plane Bloch wave and 2

× 2 order for anti-plane Bloch wave. Recall that SH wave is in-

dependent of the dielectric parameters of slabs and dielectri-

cally interface conditions, these two dielectrically imperfect

interfaces have no effect on the dispersion relations of anti-

plane Bloch wave. However, if the isotropic plane ox1x2 is se-

lected as the propagation plane, then, the low dielectric in-

terface and grounded metallized interface can influence the

dispersion relations of anti-plane Bloch wave.

3.3. Tangent fixed interface and slippery interface conditions

The boundary conditions of the mechanical parallelism of

the grounded metallized interface and the low dielectric in-

terface are the tangent fixed interface and the tangent slip-

pery interface. These two mechanically imperfect interfaces

can be expressed as

ū′
3 = ū′′

3 ,ū′
i = ū′′

i = 0,ϕ̄′ = ϕ̄′′,σ̄ ′
33 = σ̄ ′′

33, D̄′
3 = D̄′′

3 , (i = 1, 2)

(41)
for the tangent fixed interface and

ū′
3 = ū′′

3 ,ϕ̄′ = ϕ̄′′,σ̄ ′
33 = σ̄ ′′

33,σ̄ ′
3i = σ̄ ′′

3i= 0, D̄′
3 = D̄′′

3 , (i= 1, 2)

(42)

for the tangent slippery interface. Because these two imper-

fect interfaces require u2 = 0 or σ23 = 0, anti-plane Bloch

wave can’t propagate through these two kinds of interfaces.

However, the QP wave and QSV wave can propagate through

these interfaces due to the coupled effects between the me-

chanical fields and the dielectric fields. Because the tangent

displacement components or the tangent traction compo-

nents are zero at the interfaces between slab A and slab B,

the state vector should be defined as

V(xi, t) =
{

ū3, ϕ̄, σ̄33, D̄3

}T
(43)

for in-plane Bloch wave, which lacks the tangent displace-

ments and tangent traction components compared with the

state vector in the perfect interface case. In order to obtain

the transfer matrix corresponding to the new state vectors,

the boundary conditions ū1 = 0 or σ̄31 = 0 at the left and at

the right boundaries of slab must be used to eliminate the

non-independent components U17 and U18. Inserting Eq. (11)

into ū1 = 0 or σ̄31 = 0 leads to⎧⎨
⎩

U17 + U18 = −U11 − U12 − U13 − U14

U17 exp (ik1ξ7d) + U18 exp (ik1ξ8d) = −U11 exp (ik1ξ1d)

− U12 exp (ik1ξ2d) − U13 exp (ik1ξ3d) − U14 exp (ik1ξ4d)

(44a)

and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H17U17 + H18U18 = −H11U11 − H12U12 − H13U13 − H14U14

H17U17 exp (ik1ξ7d) + H18U18 exp (ik1ξ8d)
= −H11U11 exp (ik1ξ1d)

− H12U12 exp (ik1ξ2d) − H13U13 exp (ik1ξ3d)
− H14U14 exp (ik1ξ4d)

(44b)

From Eq. (44), the non-independent components U17 and

U18 can be expressed as{
U17 = M31U11 + M32U12 + M33U13 + M34U14

U18 = N31U11 + N32U12 + N33U13 + N34U ′
14

(45a)

{
U17 = M41U11 + M42U12 + M43U13 + M44U14

U18 = N41U11 + N42U12 + N43U13 + N44U ′
14

(45b)

By the use of Eq. (45), the new state vectors at the left

and at the right boundaries of a slab can also be expressed as

Eq. (35) The explicit expressions of TL and TR for the tangent

fixed and tangent slippery interface are given in Appendix D.

Because the electric potential, the normal component of

electrical displacement and the normal components of me-

chanical displacement and traction are continuous across in-

terface, the transfer matrices of the tangent fixed and slip-

pery interface are both unit matrix. Therefore, the transfer

matrices of a single cell can also be expressed as Eq. (40). In

the case of normal propagation, the tangent fixed interface

and tangent slippery interface have no influence on the dis-

persion relations of Bloch P wave but can cut off completely

the propagation of Bloch SV wave and Bloch SH wave.
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Table 1

Material constants of ALN and CdS.

Mat Name C11 C12 C13 C33 C44 ρ e15 e31 e33 ɛ11 ɛ33

A ALN 410 140 100 390 120 3230 −0.48 −0.58 1.55 7.083 8.411

B CdS 90.7 58.1 51.0 93.8 15.04 4820 −0.21 −0.24 0.44 798.6 843.7

Cij:GPa, ρ:kg m−3, eij: C · m−2, ɛij: 10−11C2 · N−1 · m−2.

Fig. 2. Effects of the piezoelectricity on dispersion relations of in-plane Bloch waves (with piezoelectric effect, — —without piezoelectric effect).
4. Dispersion equation

After the transfer matrix of coupled waves in a slab and

that of the imperfect interfaces between two slabs are both

obtained, the state vectors at the left and the right bound-

aries of a typical single cell in the one-dimensional laminated

periodical structure can related by

V′
L

[
x3 =

(
d′ + d′′)+

, t

]
= TcellV

′
L(x3

= 0+, t) = TδT′′TδT′V′
L(x3 = 0+, t) (46)

On the other hand, according to Bloch theorem on the

elastic waves in the periodical structure,

V′
L

[
x3 =

(
d′ + d′′)+

, t

]
= exp

[
iK
(
d′ + d′′)]V′

L(x3 = 0+, t)

(47)
where K is the wavenumber of Bloch wave. Inserting Eq. (46)

into Eq. (47) leads to{
Tcell(c,ω) − I exp

[
iK
(
d′ + d′′)]}V′

L(x3 = 0+, t) = 0 (48)

where Tcell(c,ω) = TδT′′TδT′ is the transfer matrix of one

typical single cell with the imperfect interfaces which is dis-

cussed in Section 3 . The condition of existing non-trivial so-

lution leads to∣∣Tcell(c,ω) − I exp
[
iK
(
d′ + d′′)]∣∣ = f (c,ω, K) = 0 (49)

where I is a unit matrix. Eq. (49) gives the dispersive relation

of Bloch wave in the one-dimensional piezoelectric phononic

crystal. The coefficient determinant is a function of c, ω and

K. For given c and K, more than one ω can be solved from

Eq. (49). Therefore, a group of dispersive curves is obtained

in considered frequency range. These dispersive curves di-

vide the frequency range into “passband” and “stopband”

alternately.
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Fig. 3. Effects of the parameter α of the mechanically compliant imperfect interface (γ = 0, η = 0 and χ = 0) on dispersion curves of in-plane Bloch waves

(——α = 0, — —α = 5 × 10−13 N−1 m3 , ………α = 9 × 10−13 N−1 m3).
For the normal propagation situation, Eq. (49) can be ex-

plicitly expressed as

cos
[
K
(
d′ + d′′)] = cos

(
ωd′/c′

s

)
cos

(
ωd′′/c′′

s

)
− ᾱω

[
H′
c′

s
sin

(
ωd′/c′

s

)
cos

(
ωd′′/c′′

s

)
+ H′′

c′′
s

cos
(
ωd′/c′

s

)
sin

(
ωd′′/c′′

s

)]

− 1

2

(
H′c′′

s

H′′c′
s

+ H′′c′
s

H′c′′
s

− ᾱ2 H′H′′
c′

sc′′
s

)
sin

(
ωd′/c′

s

)
sin

(
ωd′′/c′′

s

)
(50)

where s =P, H′ = C′
33 + (e′2

33/ε′
33), H′′ = C′′

33 + (e′′2
33/ε′′

33) and

ᾱ = γ for Bloch P wave; similarly, s =SV, H′ = C′
44

, H′′ = C′′
44

and ᾱ = α for Bloch SV wave; s =SH, H′ = C′
44

, H′′ = C′′
44

and

ᾱ = β for Bloch SH wave. For the perfect interface, namely,

ᾱ = 0, Eq. (50) can be simplified as

cos
[
K
(
d′ + d′′)] = cos

(
ωd′/c′

s

)
cos

(
ωd′′/c′′

s

)
−1

2

(
H′c′′

s

H′′c′
s

+ H′′c′
s

H′c′′
s

)
sin

(
ωd′/c′

s

)
sin

(
ωd′′/c′′

s

)
(51)

When one of two piezoelectric slabs is replaced by one

isotropic slab and s =SH, Eq. (51) reduces to Eq. (25) in Qian
et al (2004b) and Eq. (24) in Lan and Wei (2012). When these

two piezoelectric slabs are both replaced by two isotropic

slabs, Eq. (51) reduces to Eq. (22) in Zheng and Wei (2009).

5. Numerical results and discussion

In this section, the dispersion curves of in-plane Bloch

waves and anti-plane Bloch waves propagating in the one-

dimensional piezoelectric phononic crystal are calculated

numerically. The material constants of two piezoelectric

solids in phononic crystal, aluminum nitride (ALN) (Abd-alla

and Alsheikh, 2009) and cadmium sulfide (CdS) (Auld, 1990)

are listed in Table 1. The length ratio of two piezoelectric

solids in a single cell are d′/d′′ = 1 and total length of sin-

gle cell is a = d′ + d′′. In order to investigate the influences

of imperfect interfaces, dispersion curves for the imperfect

interfaces and the perfect interface are both calculated and

shown in same figure to facilitate the comparison. The dis-

persion curves are drawn in first Brilouin zone, namely, the

dimensionless Bloch wavenumber Ka/π ∈ [−1, 1].

5.1. In-plane Bloch wave

The piezoelectric effects on dispersion curves of in-

plane Bloch waves are shown in Fig. 2. Fig. 2(a)–(e)
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Fig. 4. Effects of the parameter γ of the mechanically compliant imperfect interface (α = 0, η = 0 and χ = 0) on dispersion curves of in-plane Bloch waves

(——γ = 0, — —γ = 5 × 10−14 N−1 m3 , ………γ = 9 × 10−14 N−1 m3).
shows the dispersive curves of in-plane Bloch waves in

the oblique propagation situation. Fig. 2(f) shows the

dispersive curves of in-plane Bloch waves in the normal

propagation situation. Physically, in-plane Bloch waves in the

oblique propagation situation are formed by interfering of

QP wave and QSV wave which are coupled together. When

c increases, namely, the propagation direction of QP wave

and QSV trends to the normal of interface gradually, the cou-

pled QP wave and QSV wave decouple or split gradually. In

the limiting case corresponding with c → ∞, that is the nor-

mal propagation situation, QP wave and QSV wave split com-

pletely and reduce to the P wave and SV wave. Fig. 2(f) shows

the dispersive curves of Bloch P wave and Bloch SV wave

which are decoupled in the normal propagation situation.

Bloch P wave are formed only by the interfering P waves

while Bloch SV wave are formed only by interfering SV waves.

Fig. 2(a)–e) shows the evolutionary decoupling process of QP

wave with QSV wave. The fact that this evolutionary pro-

cess tends to the normal propagation situation gradually as

c → ∞ validate our numerical results in the oblique prop-

agation situation. In the oblique propagation situation, the

piezoelectric effect has influences on both QP and QSV waves
while has only influences on P wave in the normal propaga-

tion situation. No matter normal or oblique propagation sit-

uation, the piezoelectric effect has more evident influences

on high frequency Bloch waves than on low frequency Bloch

waves.

The Influences of the parameter α and γ of the mechan-

ically compliant imperfect interface on dispersion curves of

in-plane Bloch waves are shown in Figs. 3 and 4. It is observed

that the increase of the mechanical parameter α and γ makes

the dispersion curves shifting toward low frequency. This

phenomenon is due to the fact that the flexibility increases

for the periodic structure with imperfect interfaces com-

pared with that with perfect interfaces. Because the mechan-

ical parameter α only affects the tangent flexibility while the

mechanical parameter γ only affects the normal flexibility

of periodic structure, it is observed that the mechanical pa-

rameter α only affects Bloch SV wave while the mechani-

cal parameter γ only affects the Bloch P wave in the nor-

mal propagation situation, see Figs. 3(f) and 4(f). However, in

the oblique propagation situation, both mechanical param-

eter α and γ have influences on dispersive curves of Bloch

waves, but the influences of the mechanical parameter α and
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Fig. 5. Effects of the parameter η (——η = 0, — —η = 1 × 107Nm3C−2) of the weakly conducting imperfect interface (α = 0, γ = 0) and the low dielectric interface

(………Low) on dispersion curves of in-plane Bloch wave.
γ are different at different range of Brilouin zone. This can be

explained by that the Bloch waves in oblique propaga-

tion situation are created by QP waves with QSV waves

which are coupled together. The mechanical parameter α has

more evident influence than the mechanical parameter γ at

the range where the QSV wave dominates in Bloch wave

while the mechanical parameter γ has more evident influ-

ence than the mechanical parameter α at the range where

the QP wave dominates in Bloch wave. However, no mat-

ter parameter α and γ , the influences of these mechanical

parameter become more evident on the high frequency dis-

persive curves compared with the low frequency dispersive

curves.

The influences of dielectric parameter η and χ in the

weakly conducting and high highly conducting imperfect in-

terfaces on the dispersive curves of in-plane Bloch waves are

much smaller than that of the mechanical parameter α and γ
such that the deviations are nearly unnoticed. This is because

the mechanical energy dominates and the electric energy is

secondary in the total energy carried by the Bloch waves in

piezoelectric slab. In order to enhance the influence of di-

electrically imperfect interfaces, the piezoelectric and dielec-

tric parameters of slab A and slab B are factitiously increased
by 100 times in the present numerical calculation. The ef-

fects of the parameter η and χ are shown in Figs. 5 and 6,

respectively. It is observed that the increasing of the param-

eter η makes the dispersive curves of in-plane Bloch waves

shifting toward high frequency. In contrast, the increasing

of the parameter χ makes the dispersive curves of in-plane

Bloch waves shifting toward low frequency. It is also ob-

served that, different from the parameter α and γ in the

mechanically imperfect interface, the influences of the pa-

rameter η and χ decrease gradually as c increase. In the limit-

ing case, i.e. the normal propagation situation, the parameter

η and χ do not have any influence on the dispersive curves

of in-plane Bloch waves. The low dielectric interface and the

grounded metallized interface have completely opposite in-

fluences on the dispersive curves in the oblique propagation

situation. The dispersive curves shift toward high frequency

for the low dielectric interface but shift toward low frequency

for the grounded metallized interface. This observation can

be explained by that the low dielectric interface can be taken

as the limiting case of the dielectrically weakly conducting

interface while the grounded metallized interface the limit-

ing case of the dielectrically highly conducting interface. In

the normal propagation situation, the low dielectric interface
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Fig. 6. Effects of the parameter χ (——χ = 0, — —χ = 5 × 10−9N−1m−1C2) of the highly conducting imperfect interface (α = 0, γ = 0) and the grounded metal-

lized interface (………Gro) on dispersive curves of in-plane Bloch wave.
does not have any influence on the dispersive curves of Bloch

P wave and Bloch SV wave. However, the grounded metal-

lized interfaces still have evident influences on the dispersive

curves of the Bloch P waves. The band gap is defined as the

gap between two adjacent dispersive curves in Brilouin zone.

Since the dispersive curves are affected by the dielectric im-

perfect interfaces, the band gaps are therefore dependent of

the dielectric imperfect interface. It is observed that the band

gap between two adjacent dispersive curves of Bloch P waves

in the normal propagation situation shift drastically toward

to low frequency for grounded metallized interfaces com-

pared with the perfect interface. This phenomenon may be

used to design the vibration isolator at low frequency.

As the mechanical parallelism of the low dielectric inter-

face and the grounded metallized interface, the influences of

the tangent fixed interface and the tangent slippery interface

on dispersion curves of in-plane Bloch waves are also cal-

culated and are shown in Fig. 7. In the oblique propagation

situation, in-plane Bloch wave includes QP wave component

and QSV wave component. The QP wave component is same

for the tangent fixed interface and tangent slippery interface;

but the QSV component is different for the tangent fixed in-

terface and the tangent slippery interface. This results in the

differences of dispersive curves corresponding with tangent
fixed interface and tangent slippery interface. When c in-

creases, the propagation directions of both QP wave and QSV

wave tend to normal of interface gradually. The differences

of dispersive curves corresponding with the tangent fixed in-

terface and tangent slippery interface disappear gradually. In

the limiting case of c → ∞, namely, the normal propagation

situation, the tangent fixed interface and the tangent slippery

interface have completely same dispersive curves. Further-

more, only the dispersive curves corresponding P waves are

retained in the normal propagation situation because the SV

wave cannot propagate through either the tangent fixed in-

terface or the tangent slippery interface. It is also observed

that QP wave decouples with QSV wave gradually with the

increase of c. And the dispersive curves corresponding with

QSV waves become flat line in total Brillouin zone for the tan-

gent fixed interface and the tangent slippery interface. This is

because SV wave cannot propagate through these two kinds

of interfaces in the limiting case of c → ∞. And QSV wave

gradually becomes into the standing wave from the propa-

gating wave. In normal propagation situation, QP waves be-

come into P waves while QSV waves disappears completely.

As a result, the differences of dispersive curves correspond-

ing with the tangent fixed interface and tangent slippery in-

terface disappear completely.



180 X. Guo et al. / Mechanics of Materials 93 (2016) 168–183

Fig. 7. Effects of the tangent fixed interface and the tangent slippery interface on dispersion curves of in-plane Bloch waves (——Fixed, — —Slip).

Fig. 8. Effects of the parameter β of the compliant imperfect interface on dispersion curves of anti-plane Bloch waves (——β = 0, — —β = 5 × 10−13N−1m3 ,
………β = 9 × 10−13N−1m3).
5.2. Anti-plane Bloch wave

The dielectric imperfect interfaces do not have any influ-

ence on the SH wave. The tangent fixed interface and the

tangent slippery interface can cut off the propagation of SH
waves completely, no matter the oblique or normal propa-

gation situation. Therefore, only mechanical compliant im-

perfect interface needs to be considered. The influences of

the parameter β of the mechanically compliant imperfect

interface on dispersion curves of anti-plane Bloch wave are



X. Guo et al. / Mechanics of Materials 93 (2016) 168–183 181

W

W

W

calculated and are shown in Fig. 8. It is observed that the

dispersion curves shift toward low frequency as the increase

of the parameter β no matter the oblique propagation and

normal propagation. This is due to the fact the mechanical

compliant imperfect interface increases the flexibility of the

periodical structures. It is also observed that the influences

of parameter β are more evident on the high frequency dis-

persive curves than on the low frequency dispersive curves.

The influences of parameter β on the anti-plane Bloch waves

are similar with the influences of parameter α and γ on the

in-plane Bloch waves.

6. Conclusions

The influences of mechanical and dielectrical imperfect

interface on the dispersion relations of Bloch waves in one-

dimensional piezoelectric phononic crystal are the main con-

cerns of the present work. The oblique propagation situation

and the normal propagation situations are both considered.

Four kinds of mechanical imperfect interfaces, namely, the

normal compliant interface, the tangent compliant interface,

the tangent fixed interface and tangent slippery interface,

and four kinds of dielectric imperfect interfaces, namely, the

weak conducting interface, the high conducting interface, the

low dielectric interface and the grounded metallized inter-

face, are investigated. The dispersive curves of in-plane and

anti-plane Bloch waves are calculated and shown in the Bril-

louin zone. From the numerical results, the following conclu-

sions can be drawn:

(1) In oblique propagation situation, the piezoelectric ef-

fect has influences on both QP and QSV waves while

has only influences on P wave in normal propagation

situation. No matter normal or oblique propagation

situation, the piezoelectric effect has more evident in-

fluences on high frequency Bloch waves than on low

frequency Bloch waves.

(2) In-plane Bloch waves in the oblique propagation situ-

ation are formed by interfering of QP waves and QSV

waves which are coupled together. When c increases,

the coupled QP waves and QSV waves decouple grad-

ually and decouple completely in the normal propa-

gation situation. In-plane Bloch waves in the oblique

propagation situation reduce to the Bloch P waves and

Bloch SV waves in the normal propagation. The Bloch

SH waves do not couple with in-plane Bloch waves in

both the oblique propagation situation and the normal

propagation situation.

(3) The mechanical imperfect interfaces have more ev-

ident influences on the dispersive curves of Bloch

waves than the dielectric imperfect interfaces. No

matter the mechanical imperfect interfaces and the di-

electric imperfect interfaces, their influences are more

evident on the high frequency dispersive curves than

on the low frequency dispersive curves.

(4) Both the mechanical tangent imperfect interface and

the mechanical normal imperfect interface have influ-

ences on in-plane Bloch waves in the oblique propaga-

tion situation and these mechanical compliant inter-

faces make the dispersion curves shifting toward low

frequency. The mechanical tangent imperfect interface
only affects Bloch SV waves while the mechanical nor-

mal imperfect interface only affects the Bloch P waves

in the normal propagation situation.

(5) The weakly conducting interface makes the disper-

sive curves of Bloch waves shifting toward high fre-

quency while the highly conducting interface makes

the dispersive curves shifting toward low frequency.

But their influences decrease gradually as c increases.

In the normal propagation situation, the weakly con-

ducting and highly conducting interfaces do not have

any influence on the dispersive curves.

(6) The low dielectric interface and the grounded metal-

lized interface have completely opposite influences on

the dispersive curves in the oblique propagation situa-

tion. The dispersive curves shift toward high frequency

for the low dielectric interface but shift toward low

frequency for the grounded metallized interface. In the

normal propagation situation, the low dielectric inter-

face does not have influences on Bloch waves while

the grounded metallized interfaces affects only Bloch

P waves and makes the dispersive curves shifting to-

ward to low frequency drastically.

(7) The dispersive curves corresponding with the tangent

fixed interface and tangent slippery interface are dif-

ferent in the oblique propagation situation but are

same in the normal propagation situation. Only the

dispersive curves corresponding P waves are retained

in the normal propagation situation. The dispersive

curves corresponding with QSV waves become grad-

ually the flat line in total Brillouin zone for the tangent

fixed interface and the tangent slippery interface as c

increases. This means the QSV wave becomes gradu-

ally into standing waves.

(8) The mechanical compliant imperfect interface makes

the dispersive curves of the Bloch SH wave shifting

toward low frequency. The dielectric imperfect in-

terfaces do not have any influence on the dispersive

curves of the Bloch SH wave. The tangent fixed inter-

face and the tangent slippery interface can cut off the

propagation of Bloch SH waves completely, no matter

the oblique or normal propagation.
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Appendix A

The explicit expressions of Wij in Eq. (5) are

W11 = C11 + C44ξ
2 − ρc2, W22 = C66 + C44ξ

2 − ρc2,

33 = C44 + C33ξ
2 − ρc2,W44 = −

(
ε11 + ε33ξ

2
)
,

W13 = W31 = (C44 + C13)ξ , W14 = W41 = (e31 + e15)ξ ,

34 = W43 = e15 + e33ξ
2,

W12 = W21 = W23 = W32 = W24 = W42 = 0.

The explicit expressions of Ŵi j in Eq. (7) are

Ŵ11 = C11 + C66ξ
2 − ρc2, Ŵ22 = C66 + C11ξ

2 − ρc2,

ˆ
33 = C44 + C44ξ

2 − ρc2,Ŵ44 = −
(
ε11 + ε11ξ

2
)
,

http://dx.doi.org/10.13039/501100001809
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Ŵ12 = Ŵ21 = (C12 + C66)ξ , Ŵ34 = Ŵ43 = e15 + e15ξ
2,

Ŵ13 = Ŵ14 = Ŵ23 = Ŵ24 = Ŵ31 = Ŵ32 = Ŵ41 = Ŵ42 = 0.

Appendix B

In the oblique propagation situation, the matrix TL and TR

are

TL1p = 1, TL2p = G3q, TL3p = Gϕq, TL4p = ik1H3q,

TL5p = ik1H1q, TL6p = ik1Jq, TR1p = exp (ik1ξqd),

TR2p = G3q exp (ik1ξqd), TR3p = Gϕq exp (ik1ξqd),

TR4p = ik1H3q exp (ik1ξqd), TR5p = ik1H1q exp (ik1ξqd),

TR6p = ik1Jq exp (ik1ξqd),

where p = q when p = 1, 2, 3, 4, q = 7 when p = 5 and q = 8

when p = 6 for in-plane Bloch wave,

TL =
[

1 1

ik1C44ξ5 ik1C44ξ6

]
,

TR =
[

exp (ik1ξ5d) exp (ik1ξ6d)

ik1C44ξ5 exp (ik1ξ5d) ik1C44ξ6 exp (ik1ξ6d)

]
,

for anti-plane Bloch wave. In the normal propagation
situation,

TL11 = TL12 = 1, TL13 = TL14 = 0, TL21 = TL22 = e33/ε33,

TL23 = TL24 = 1, TL31 = −TL32 = i(ω/cP)
[
C33 +

(
e2

33/ε33

)]
,

TL33 = −TL34 = e33, TL41 = TL42 = 0, TL43 = −TL44 = −ε33,

TR11 = exp (iωd/cP), TR12 =exp (−iωd/cP), TR13 =TR14 = 0,

TR21 = (e33/ε33) exp (iωd/cP), TR22 =(e33/ε33) exp (−iωd/cP),

TR23 = 1 + d, TR24 = 1 − d, TR31 = i(ω/cP)
[
C33 +

(
e2

33/ε33

)]
exp (iωd/cP), TR32 = −i(ω/cP)

[
C33 +

(
e2

33/ε33

)]
exp (−iωd/cP), TR33 = −TR34 = e33, TR41 = TR42 = 0,

TR43 = −TR44 = −ε33,

for Bloch P wave,

TL =
[

1 1

i(ω/cSV)C44 −i(ω/cSV)C44

]
,

TR =
[

exp (iωd/cSV) exp (−iωd/cSV)
i(ω/cSV)C44 exp (iωd/cSV) −i(ω/cSV)C44 exp (−iωd/cSV)

]
,

for Bloch SV wave and

TL =
[

1 1

i(ω/cSH)C44 −i(ω/cSH)C44

]
,

TR =
[

exp (iωd/cSH) exp (−iωd/cSH)
i(ω/cSH)C44 exp (iωd/cSH) −i(ω/cSH)C44 exp (−iωd/cSH)

]
,

for Bloch SH wave.

Appendix C

In cases of low dielectric interface and grounded metal-

lized interface, the elements of matrix TL and TR are

TL1q = 1 + Mpq + Npq, TL2q = G3q + G37Mpq + G38Npq,

TL3q = ik1(H3q + H37Mpq + H38Npq),
TL4q = ik1(H1q + H17Mpq + H18Npq),

TR1q = exp (ik1ξqd) + exp (ik1ξ7d)Mpq + exp (ik1ξ8d)Npq,

TR2q = G3q exp (ik1ξqd) + G37 exp (ik1ξ7d)Mpq

+ G38 exp (ik1ξ8d)Npq, TR3q = ik1

[
H3q exp (ik1ξqd)

+ H37 exp (ik1ξ7d)Mpq + H38 exp (ik1ξ8d)Npq],

TR4q = ik1

[
H1q exp (ik1ξqd) + H17 exp (ik1ξ7d)Mpq

+ H18 exp (ik1ξ8d)Npq

]
,

where q = 1, 2, 3, 4, p = 1 when the interface is the low

dielectric interface and p = 2 when the interface is the

grounded metallized interface. In the case of normal

propagation,

TL11 = TL12 = 1, TL21 = −TL22 = i(ω/cP)
[
C33 +

(
e2

33/ε33

)]
,

TR11 = exp (iωd/cP), TR12 = exp (−iωd/cP),

TR21 = i(ω/cP)
[
C33 +

(
e2

33/ε33

)]
exp (iωd/cP),

TR22 = −i(ω/cP)
[
C33 +

(
e2

33/ε33

)]
exp (−iωa/cP),

for the low dielectric interface and

TL11 = TL12 = 1, TL21 = i(ω/cP)
[
C33 +

(
e2

33/ε33

)]
+ e33(m21 − n21), TL22= − i(ω/cP)

[
C33 +

(
e2

33/ε33

)]
+ e33(m22 − n22), TR11 = exp (iωd/cP),

TR12 = exp (−iωd/cP), TR21 = i(ω/cP)
[
C33 +

(
e2

33/ε33

)]
exp (iωd/cP) + e33(m21 − n21),

TR22 = −i(ω/cP)
[
C33 +

(
e2

33/ε33

)]
exp (−iωd/cP) + e33(m22 − n22),

for the grounded metallized interface. The explicit expres-

sions of Mpq and Npq are

[
M11 M12 M13 M14

N11 N12 N13 N14

]
= −

[
J7 J8

J7 exp (ik1ξ7d) J8 exp (ik1ξ8d)

]−1

·
[

J1 J2 J3 J4

J1 exp (ik1ξ1d) J2 exp (ik1ξ2d) J3 exp (ik1ξ3d) J4 exp (ik1ξ4d)

]
,

[
M21 M22 M23 M24

N21 N22 N23 N24

]
= −

[
Gϕ7 Gϕ8

Gϕ7 exp (ik1ξ7d) Gϕ8 exp (ik1ξ8d)

]−1

·
[

Gϕ1 Gϕ2 Gϕ3 Gϕ4

Gϕ1 exp (ik1ξ1d) Gϕ2 exp (ik1ξ2d) Gϕ3 exp (ik1ξ3d) Gϕ4 exp (ik1ξ4d)

]
.

The explicit expressions of m2q and n2q are[
m21 m22

n21 n22

]
= −(e33/ε33)

[
1 1

1 + d 1 − d

]−1

·[
1 1

exp (iωd/cP) exp (−iωd/cP)

]
.

Appendix D

In cases of tangent fixed interface and slippery interface,

the elements of matrix TL and TR are

TL1q = G3q + G37Mpq + G38Npq, TL2q = G3q + G37Mpq

+ G38Npq, TL3q = ik1(H3q + H37Mpq + H38Npq),

TL4q = ik1(Jq + J7Mpq + J8Npq), TR1q = G3q exp (ik1ξqd)
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+ G37 exp (ik1ξ7d)Mpq + G38 exp (ik1ξ8d)Npq,

TR2q = Gϕ j exp (ik1ξqd) + Gϕ7 exp (ik1ξ7d)Mpq

+ Gϕ8 exp (ik1ξ8d)Npq, TR3q = ik1

[
H3q exp (ik1ξqd)

+ H37 exp (ik1ξ7d)Mpq + H38 exp (ik1ξ8d)Npq],

TR4q = ik1[Jq exp (ik1ξqd) + J7 exp (ik1ξ7d)Mpq

+ J8 exp (ik1ξ8d)Npq],

where q = 1, 2, 3, 4, p = 3 when the interface is the tangent

fixed interface while p = 4 when the interface is the tangent

slippery interface. The explicit expressions of Mpq and Npq are

[
M31 M32 M33 M34

N31 N32 N33 N34

]
= −

[
1 1

exp (ik1ξ7d) exp (ik1ξ8d)

]−1

·
[

1 1 1 1

exp (ik1ξ1d) exp (ik1ξ2d) exp (ik1ξ3d) exp (ik1ξ4d)

]
,

[
M41 M42 M43 M44

N41 N42 N43 N44

]
= −

[
H17 H18

H17 exp (ik1ξ7d) H18 exp (ik1ξ8d)

]−1

·
[

H11 H12 H13 H14

H11 exp (ik1ξ1d) H12 exp (ik1ξ2d) H13 exp (ik1ξ3d) H14 exp (ik1ξ4d)

]
.
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