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A different set of governing equations on the large deflection of plates are derived by the principle of virtual work (PVW), which
also leads to a different set of boundary conditions. Boundary conditions play an important role in determining the computation
accuracy of the large deflection of plates. Our boundary conditions are shown to be more appropriate by analyzing their difference
with the previous ones. The accuracy of approximate analytical solutions is important to the bulge/blister tests and the application of
various sensors with the plate structure. Different approximate analytical solutions are presented and their accuracies are evaluated
by comparing them with the numerical results. The error sources are also analyzed. A new approximate analytical solution is
proposed and shown to have a better approximation. The approximate analytical solution offers a much simpler and more direct
framework to study the plate-membrane transition behavior of deflection as compared with the previous approaches of complex
numerical integration.
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1 Introduction

Bulge test [1-12] and blister test [13-17] are two reliable
methods frequently used to extract thin film mechanical prop-
erties. Residual stress and its gradients are frequently en-
countered in the film/substrate composite structures fabri-
cated by wafer-bonding, low-pressure chemical vapor deposi-
tion (LPCVD), etching, sputtering and epitaxial growth [18-
20]. When a film is separated from its substrate, the pres-
ence of residual stress and its gradients causes film to wrin-
kle or curl severely [2, 6]. Because the uniaxial tensile test-
ing of free-standing films characterizes the mechanical prop-
erties of those without residual stress and gradients [6], the
presence of residual stress and gradients, which has signif-
icant impact on the film mechanical properties, makes it
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very difficult or impossible for the uniaxial tensile testing.
Furthermore, for films made of compliant materials, the uni-
axial tensile testing is often complicated by gripping diffi-
culties, visco-elastic creep racheting, and other undesirable
mechanical responses [21, 22]. By etching a substrate [6, 9]
or depositing/clamping a film on an orifice [1, 2, 17], a free-
standing structure is formed and transverse load can be ap-
plied via an indenter [6, 22, 23] or pressure [1, 2, 17]. In
the bulge and blister tests, by measuring the film deflec-
tion together with the load, the mechanical properties such
as Young’s modulus, Poisson’s ratio and residual stress can
be found. Because the film suspended length/radius is al-
lowed to vary with the load in a blister test, other properties
such as the film/substrate adhesion energy can also be mea-
sured [17, 23].

In the bulge and blister tests, film often experiences large
deflection. Because the film thickness is very small compared
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with its other dimensions, the large deflection is usually geo-
metrically nonlinear and elastic. The film large deflection is
governed by the von Kármán equations [24], which also ap-
plies to a pressure sensor [9,25], a micro-valve [26], a micro-
electromechanical systems (MEMS) device [27] and the thin
film delamination induced by buckling [28, 29]. Recently,
the von Kármán equations are used to study the deformation
of a graphene bubble [30]. Bubbles are frequently found at
the graphene/silicon oxide interface [31]. Strain engineer-
ing is an effective method to alter the electronic properties
of graphene, which, in this case, is to manipulate the de-
formation of a graphene bubble. Because of deformation,
a quasiconstant pseudo-magnetic field can be generated to
open a sizable gap on the electronic spectrum [31] and can
thus significantly enhance the graphene application in digi-
tal electronics. A circular graphene bubble can also be used
in optics as an adaptive-focus lens by controlling its defor-
mation [31]. The nonlinear von Kármán equations with the
high-order derivatives, according to Boudaoud et al. [32], are
“notoriously difficult”, mainly due to the fact that there are
two types of deformations: bending and stretching associated
with the energies that can vary with the difference of orders of
magnitude. The demand for the approximate analytical solu-
tions is huge because of its wide application. The continuous
efforts of deriving those solutions for more than one hundred
years are shown in Tables 1 and 2 [33–43]. However, as seen
in Tables 1 and 2, different researchers obtained different ap-
proximate analytical solutions. The accuracy of these solu-

tions is of great importance for the bulge and blister tests to
extract the mechanical properties of a material. Sheplak and
Dugundji [44] found that with the increase of initial tension,
the plate deflection experiences a transition from the plate
behavior (bending-dominant) to the membrane (stretching-
dominant) behavior and proposed a dimensionless parameter
to indicate the transition. Komaragiri et al. [21] further dif-
ferentiated the membrane behavior as two parts: linear and
nonlinear membrane behaviors and used two dimensionless
parameters to indicate the transition. The transition is often
called linear-cubic transition [14], which mathematically in-
dicates the transition from wo ∝ q to w3

o ∝ q [21, 44] (wo is
the plate center displacement and q is the transverse loading
pressure). As seen in Tables 1 and 2, most researchers de-
rived the same approximate solution for the linear range but
none is the same for the cubic range. The approximate ana-
lytical solutions start with assuming certain deflection shape
and radial displacement shape of a plate, which often vio-
lates the boundary conditions of von Kármán equations and
thus causes the error [14].

In this study, a new set of boundary conditions are derived
by the principle of virtual work (PVW), which shows some
difference with the previous ones. An analysis is also pre-
sented to show that the new boundary conditions are more
appropriate. Besides the violation of boundary conditions,
those assumed shapes also violate the governing equations,
which is another error source. An approximate analytical so-
lution is presented by making the radial displacement shape

Table 1 Plate model: Different approximate analytical solutions of q = K1wo + K2(εo)wo + K3w3
o

Reference q − wo formula

Nádai (1925) [33]: assuming the deflection slope q = 5.682 Eh3

a4 wo + 3.313 Eh
a4 w3

o

(as summarized in [24]) (εo = 0 and ν = 0.25)

Way (1934) [34]: assuming the radial tension q = 5.848 Eh3

a4 wo + 2.7544 Eh
a4 w3

o

and the deflection slope (as summarized in [24]) (εo = 0 and ν = 0.3)

Federhofer (1936) [35]: assuming deflection shape q = 5.682 Eh3

a4 wo + 2.972 Eh
a4 w3

o

(as summarized in [24]) (εo = 0 and ν = 0.25)

McPherson et al. (1942) [36]: the Föppl plate theory q = 16Eh3

3(1−ν2)a4 (wo + 0.588 w3
o

h2 )

(as summarized in [46]) (εo = 0 and ν = 0.3)

Chien (1947) [46]; Chien and Yeh (1954) [47]: q = 16Eh3

3(1−ν2)a4 [wo +
173−73ν
360(1−ν)

w3
o

h2 ]

the perturbation method (εo = 0)

Timoshenko and Woinowsky-Krieger (1959) [24]: q = 16Eh3

3(1−ν2)a4 (wo + 0.488 w3
o

h2 )

assuming the deflection shape of eqs.(18) and (19) (εo = 0 and ν = 0.3)

Lin and Senturia (1990) [37]: q = 5.861 Eh3

a4 wo +
4Eh

(1−ν)a2 εowo + 4 Eh
a4 w3

o

the energy minimization approach (ν = 0.3)

Schomburg (2011) [38]: assuming the zero q = 16Eh3

3(1−ν2)a4 wo +
4Eh(1+ν)

a2 εowo

axial displacement, i.e., u = 0 + 256Eh
105(1−ν2)a4 w3

o

This study of eq. (25): assuming the deflection q = 16Eh3

3(1−ν2)a4 wo +
4Eh

(1−ν)a2 εowo

shape of eqs.(18) and (19) + 16Eh
3(1−ν2)a4 (0.4319 + 0.2411ν − 0.1808ν2)w3

o

This study of eq. (32): assuming the deflection shape q = 16Eh3

3(1−ν2)a4 wo +
4Eh

(1−ν)a2 εowo

of eqs.(18) and (30) + 16Eh
3(1−ν2)a4 (0.4118 + 0.25ν − 0.16088ν2)w3

o

This study of eq. (36): assuming the spherical
q = 2Eh3

(1−ν)a4 wo +
6Eh

(1−ν)a2 εowo +
(7−ν)Eh

2(1−ν2)a4 w3
odeflection shape of eqs. (19) and (33)
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Table 2 Membrane model: Different approximate analytical solutions of q = K2(εo)wo + K3w3
o

Reference q − wo formula
Hencky (1915) [39]; Gent and Lewandowsky (1987) [40]: q = Eh

(
∑∞

n=0 A2n)3a4 w3
o ≈ 3.447 Eh

a4 w3
o

a)

assuming the spherical shape of eq. (33) (εo = 0 and ν = 0.3)
Beams (1959) [41]: the free-body diagram analysis q = 4Eh

(1−ν)a2 εowo + 3.56 Eh
a4 w3

o

(as summarized in [13] ) (ν = 0.25)
Allen and Senturia (1988) [42]: the fracture mechanics approach q = 4Eh

(1−ν)a2 εowo + 3.81 Eh
a4 w3

o (ν = 0.3)

Small and Nix (1992) [1]: assuming the spherical shape of eq. (33) q = (7−ν)Eh
3(1−ν)a4 w3

o (εo = 0)

Small and Nix (1992) [1]: free-body diagram analysis q = 4Eh
(1−ν)a2 εowo +

8Eh
3(1−ν)a4 w3

o

Sizemore et al. (1995) [43]: the fracture mechanics approach q = 4Eh
(1−ν)a2 εowo + 3.59 Eh

a4 w3
o (ν = 0.3)

Williams (1997) [13]: the fracture mechanics approach q = 4Eh
(1−ν)a2 εowo +

2Eh
(1−ν)a4 w3

o

Wan et al. (2003) [14]: assuming constant q = 4Eh
(1−ν2)a2 εowo +

2Eh
(1−ν2)a4 w3

oradial and tangential stresses inside film

Hsu et al. (2010) [11]: the energy minimization approach q = 4Eh
(1−ν)a2 εowo +

(7−ν)Eh
3(1−ν)a4 w3

o

a) where A0 = 1/B0, A2 = 1/(2B4
0), A4 = 5/(9B7

0), A6 = 55/(72B10
0 ), A8 = 7/(6B13

0 ) and so on with B0 = 1.713 for ν = 0.3.

to exactly satisfy the governing equation with a given de-
flection shape. This new approximate analytical solution is
shown to achieve a better approximation. As noticed by
Small and Nix [1], most of previous studies on those approxi-
mate analytical solutions assume the Poisson’s ratio as a con-
stant of ν = 0.25 or ν = 0.3, which can significantly simplify
the derivation. However, the generality is lost. Therefore,
we derive the approximate analytical solutions by treating the
Poisson’s ratio as a variable rather than a constant. With the
framework of the approximate analytical solution, the plate-
membrane transition behavior can be analyzed and grasped
much more easily. Two new dimensionless parameters are
also proposed to characterize the transition.

2 Governing equations

Figure 1(a) shows a circular plate of radius a and thickness
h, under an initial in-plane tension No and a uniform trans-
verse pressure q. The radial and tangential midplane strains
are given as follows by using the kinematic assumptions of
von Kármán plate theory [24]:

εr =
Nr − νNt

Eh
=

du
dr
+

1
2

(dw
dr

)2
+ εo,

εt =
Nt − νNr

Eh
=

u
r
+ εo,

(1)

where Nr and Nt are the radial and tangential tensions, re-
spectively. Nr and Nt can be decomposed as Nr = No + S r

and Nt = No + S t [44], where S r and S t are the incremental
changes from No. E and ν are the Young’s modulus and Pois-
son’s ratio of the plate, respectively. u and w are the radial
and transverse displacements of plate, respectively. εo is the
initial strain due to No, which has the following relation:

εo =
No

Yh
=

(1 − ν)No

Eh
, (2)

where Y = E/(1 − ν) is the biaxial modulus. The plate bend-
ing energy of Vb is given as follows [24]:

Vb =
D
2

∫ 2π

0

∫ a

0

[(d2w
dr2

)2
+

1
r2

(dw
dr

)2
+

2ν
r

dw
dr

d2w
dr2

]

rdrdθ

= πD
∫ a

0

[(d2w
dr2

)2
+

1
r2

(dw
dr

)2
+

2ν
r

dw
dr

d2w
dr2

]

rdr, (3)

where D = Eh3/12(1−ν2) is the plate bending stiffness. Here
w is assumed axisymmetric, i. e., w = w(r). The plate stretch-
ing energy of Vs is given as follows:

Vs = 2π
∫ a

0

(Nrεr
2
+

Ntεt
2

)

rdr

=
πEh

1 − ν2
∫ a

0
(ε2r + ε

2
t + 2νεrεt)rdr. (4)

q

z

r

q

qq

Plate shape

Membrane shape

(a)

(b)

No No

No

Figure 1 (a) The coordinate system and schematic diagram of a circular
plate with initial in-plane tension of No and transverse pressure of q. (b) The
plate and membrane deflection shapes.
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The substitution of εr and εt of eq. (1) into the above equation
is quite lengthy and is omitted here. We is the external work
done by q and No, which is given as follows:

We = 2πq
∫ a

0
wrdr + 2πa

∫ a

0
NoδD(r − a)udr, (5)

where δD(r − a) is the Dirac delta function. By applying the
principle of virtual work (PVW), i.e., δ(Vb + Vs − We) = 0,
the following governing equations and boundary conditions
are derived:

d4w
dr4
+

2
r

d3w
dr3
− 1

r2

d2w
dr2
+

1
r3

dw
dr

=
No

D

(1
r

dw
dr
+

d2w
dr2

)

+
12
h2

[1
r

du
dr

dw
dr
+

d2u
dr2

dw
dr

+
du
dr

d2w
dr2
+

1
2r

(dw
dr

)3
+

3
2

(dw
dr

)2 d2w
dr2

+
ν

r

(du
dr

dw
dr
+ u

d2w
dr2

)]

+
q
D
, (6)

and

d2u
dr2
+

1
r

du
dr
− u

r2
= −1 − ν

2r

(dw
dr

)2
− dw

dr
d2w
dr2
. (7)

The six boundary conditions are derived as follows:

u(0) = 0,
dw
dr

(0) = 0, w(a) = 0,

dw
dr

(a) = 0, u(a) = 0, (8)

Eh
1 − ν2

[du
dr
+

1
2

(dw
dr

)2
+
ν

r
u
]

|r=a = 0.

It is noticed that No has no impact on eq. (7). Here eq. (6) is
a fourth order differential equation. The corresponding sec-
ond and third order forms of eq. (6) are derived here for a
comparison. The balance of force gives the following equa-
tion [24]:

Qr = −Nr
dw
dr
− qr

2
, (9)

where Qr is the shearing force given as follows:

Qr = −D
(d3w

dr3
+

1
r

d2w
dr2
− 1

r2

dw
dr

)

. (10)

Nr is derived from eq. (1) as follows:

Nr =
Eh

1 − ν2 (εr + νεt) = S r + No

=
Eh

1 − ν2
[du

dr
+

1
2

(dw
dr

)2
+ ν

u
r

]

+ No. (11)

With the substitution of eqs. (10) and (11) into eq. (9), the
third order governing equation is derived as follows:

d3w
dr3
+

1
r

d2w
dr2
− 1

r2

dw
dr

=
12
h2

[du
dr
+

1
2

(dw
dr

)2
+ ν

u
r

]dw
dr
+

No

D
dw
dr
+

qr
2D
. (12)

It is readily found that the fourth order governing equation
of eq. (6) can be obtained by doing the following operation
of d/dr { eq. (12) } + 1/r {eq. (12) }. Eqs. (12) and (7) are
the set of governing equations obtained by Timoshenko and
Woinowsky-Krieger [24]. The third order governing equation
of eq. (12) can be further reduced to the following second or-
der equation by the simple substitution of θ = dw/dr:

d2θ

dr2
+

1
r

dθ
dr
− 1

r2
θ =

S r + No

D
θ +

qr
2D
. (13)

Here S r/D = 12
h2 [ du

dr +
1
2 ( dw

dr )2 + ν u
r ] has been used. If S r and

S t are used as unknown variables, eq. (7) can be decomposed
into the following two first order differential equations

dS r

dr
+

S r − S t

r
= 0, (14)

and
dS t

dr
− S r − S t

r
+

Eh
2r

(dw
dr

)2
= 0. (15)

Physically, eq. (14) indicates the plate equilibrium of radial
direction and eq. (15) is just the compatibility condition [26].
Eqs. (13), (14) and (15) are the three governing equations
adopted in references [26,44]. It is noticed that if the nonlin-
ear term of S rθ/D is ignored, eq. (13) becomes the following
by multiplying r2:

r2 d2θ

dr2
+ r

dθ
dr
− (1 + Nor2)θ =

qr3

2D
. (16)

Here eq. (16) is a modified Bessel equation with an analytical
solution [44].

The four boundary conditions for these one second or-
der and two first order equations are given by Sheplak and
Dugundji [44] as follows:

θ(0) = 0, S r(0) = S t(0); θ(a) = 0, u(a) = 0. (17)

Here we need to have a discussion on an issue raised by eq.
(17), which gives the boundary condition of S r(0) = S t(0).
By definition, S r =

Eh
1−ν2 (εr + νεt) = Eh

1−ν2 [ du
dr +

1
2 ( dw

dr )2 + ν u
r ]

and S t =
Eh

1−ν2 (εt + νεr) = Eh
1−ν2 [ u

r + ν
du
dr +

ν
2 ( dw

dr )2]. Be-
cause dw

dr (0) = 0 and limr→0
u
r =

du
dr due to L’Hospital rule,

limr→0 S r = limr→0 S t =
Eh
1−ν

du
dr . Therefore, S r(0) = S t(0)

is a natural result rather than a boundary condition needed to
be enforced. Physically, it is not that hard to think that at the
plate center of r = 0, there is no difference between the tan-
gential and radial tensions, i.e., S r(0) = S t(0). On the other
hand, u(0) = 0 as given in eq. (8) must be enforced as a
boundary condition [45]. Otherwise, εt = u/r + εo together
with S r and S t will become unphysically infinite at r = 0.
Chien [46], Chien and Yeh [47] also used S r and S t as the
unknown variables; S r(0) is a finite quantity and one of their
enforced boundary conditions.



Y. Zhang Sci. China-Phys. Mech. Astron. February (2016) Vol. 59 No. 2 624602-5

3 Approximate analytical solutions

Timoshenko and Woinowsky-Krieger assumed the following
shapes for w and u [24]

w = wo

(

1 − r2

a2

)2
, (18)

and
u = r(a − r)(C1 +C2r), (19)

where wo = w(0) is the deflection of the plate center; C1 and
C2 are the unknown constants to be determined. By substi-
tuting eqs. (18) and (19) into eqs. (3) and (4), we have

Vb =
32
3
πD

w2
o

a2
, (20)

Vs =
πEh

1 − ν2
[a4C2

1

4
+

3a5C1C2

10

+
7a6C2

2

60
+ w2

oa(−0.146+ 0.2603ν)C1

+ w2
oa2(0.012 + 0.13968ν)C2

+
32

105
w4

o

a2
+

2(1 + ν)
3
εow2

o + ε
2
o a2
]

. (21)

For equilibrium, the total strain energy Vt = Vb + Vs needs to
be a minimum, which leads to the following [24]:

∂Vt

∂C1
=
∂Vs

∂C1
= 0,

∂Vt

∂C2
=
∂Vs

∂C2
= 0, (22)

from which C1 and C2 are found as:

C1 =

[35
4

(0.146 − 0.2603ν)

+
45
4

(0.0127+ 0.13968ν)
]w2

o

a3
,

C2 =

[

− 45
4

(0.146 − 0.2603ν)

−75
4

(0.0127+ 0.13968ν)
]w2

o

a4
.

(23)

Now substitute eq. (23) into eqs. (21) and (22), and apply the
principle of virtual displacement (PVD) [24], i.e.,

dVt

dwo
δwo = 2π

∫ a

0
qδwrdr = 2πqδwo

∫ a

0

(

1− r2

a2

)2
rdr, (24)

which leads to the following:

[

1 +
3
4

(a
h

)2
(1 + ν)εo

]

wo + (0.4319+ 0.2411ν− 0.1808ν2)
w3

o

h2

=
qa4

64D
. (25)

The first term wo is due to bending; the second term 3
4 ( a

h )2(1+
ν)εowo is due to the initial midplane stretching; the third term

(0.4319+0.2411ν−0.1808ν2) w3
o

h2 is due to the further midplane
stretching from the initial stretching. Eq. (25) is a cubic equa-
tion with the analytical Cardan solution [48]. When εo = 0
and ν = 0.3, the above equation recovers the following one
obtained by Timoshenko and Woinowsky-Krieger [24]:

wo + 0.488
w3

o

h2
=

qa4

64D
. (26)

Although Timoshenko and Woinowsky-Krieger [24] did not
include the initial midplane stretching term, we refer to eq.
(25) as the Timoshenko solution, which together with other
approximate solutions is the cornerstone for the bulge test to
extract the material properties [1].

The assumed deflection shape of eq. (18) satisfies the
clamped boundary conditions at r = a, which are w(a) =
dw/dr(a) = 0; at the plate center of r = 0, eq. (18) also
satisfies dw/dr(0) = 0. Eq. (18) is thus referred to as the
plate shape and shown in Figure 1(b). The u solution form
of eq. (19) satisfies the boundary conditions of u(0) = 0 and
u(a) = 0. There are two major mechanisms causing the Tim-
oshenko approximation to deviate (slightly) from the numeri-
cal solution. One is the truncation errors caused by the trans-
verse and radial displacement assumptions of eqs. (18) and
(19). To reduce/eliminate the error, Way [24, 34] expanded
S r and dw/dr into the power series, whose convergence was
proved by Zheng and Zhou [49]. Similarly, Timoshenko and
Woinowsky-Krieger provided the following general form for
u [24]:

u = r(a − r)(C1 +C2r +C3r2 + · · ·). (27)

However, it is extremely difficult if not impossible to use the
solution form of eq. (27) to derive something like eq. (25).
The other mechanism is that the solution form of eq. (19) ac-
tually does not satisfy the governing equation of eq. (7). Here
we propose a new approximate form of u to improve the ac-
curacy. The deflection shape of w is still approximated by eq.
(18) and substituted into eq. (7), which gives the following
equation:

d2u
dr2
+

1
r

du
dr
− u

r2
=

(−24 + 8ν)w2
o

a4
r +

(80 − 16ν)w2
o

a6
r3

+
(−56 + 8ν)w2

o

a8
r5. (28)

u can now be solved as follows:

u =C1 +C2r + (−3 + ν)
w2

o

a4
r3 +

(10 − 2ν)w2
o

3a6
r5

+
(−7 + ν)w2

o

6a8
r7. (29)

Here C1 + C2r are the homogeneous solution and the last
three terms of (−3+ ν)w2

or3/a4 + (10− 2ν)w2
or5/(3a6)+ (−7+

ν)w2
or7/(6a8) are the particular solutions. C1 and C2 are the

constants determined by the boundary conditions of u(0) = 0
and u(a) = 0, which leads to the following:

u =
(5 − 3ν)w2

o

6a2
r + (−3 + ν)

w2
o

a4
r3 +

(10 − 2ν)w2
o

3a6
r5
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+
(−7 + ν)w2

o

6a8
r7. (30)

Clearly, the u solution form of eq. (30) is very different from
Timoshenko’s of eq. (19). Now substitute eqs. (18) and (30)
into eqs. (3) and (4), Vb keeps unchanged as given by eq. (21)
and Vs becomes the following:

Vs =
w4

o

a2
(0.183+ 0.1111ν− 0.0715ν2)+

2
3

(1+ ν)εow2
o. (31)

By applying PVD of eq. (24), the following equation is ob-
tained:
[

1 +
3
4

(a
h

)2
(1 + ν)εo

]

wo + (0.4118+ 0.25ν − 0.16088ν2)
w3

o

h2

=
qa4

64D
. (32)

It is noticed that the only difference between eqs. (25) and
(32) is the cubic term. Compared with eq. (25), eq. (32)
is more accurate as discussed later because its corresponding
radial displacement of eq. (30) satisfies the governing equa-
tion of eq. (28). In contrast, the radial displacement form of
eq. (19) does not.

Instead of assuming the plate deflection shape of eq. (18),
Lin [5] presented the following deflection shape:

w = wo

(

1 − r2

a2

)

, (33)

which is a spherical membrane shape as plotted in Fig-
ure 1(b). Clearly, this assumed shape does not satisfy the
clamped condition of zero slope. At the same time, the radial
displacement still keeps the form of eq. (19). Because the
change of the solution form of w, the bending energy of Vb

and the stretching energy of Vs become the following:

Vb = 4πD(1 + ν)
w2

o

a2
,

Vs =
πEh

1 − ν2
[a4C2

1

4
+

3a5C1C2

10
+

7a6C2
2

60

+
ν − 3

5
w2

oaC1 +
2ν − 6

15
w2

oa2C2

+
2
3

w4
o

a2
+ (1 + ν)εow2

o + ε
2
o a2 +

ν

2
εoa2
]

.

(34)

Compared with eq. (20), there are some minor changes on Vs.
However, Vb becomes significantly smaller with the mem-
brane shape assumption. Now repeat the same procedures of
minimizing the total strain energy and PVD, C1 and C2 are
solved as follows:

C1 = aC2 =
(3 − ν)w2

o

4a3
, (35)

and the following cubic equation is obtained:

[

1 + 3
(a
h

)2
(1 + ν)εo

]

wo +
7 − ν

4
w3

o

h2
=

qa4

24D(1 + ν)
, (36)

which is referred to as Lin’s approximation. Similarly, we
can use the same approach of deriving eq. (32) to rederive the
above equation by making the radial displacement to satisfy
the governing equation with the assumed shape of eq. (33).
However, it happens to be that this approach leads to the same
equation as eq. (36). Using the same approximate shapes of
eqs. (33) and (19), Small and Nix [1] derived the following
equation, which is obtained by rearranging their eq. (11)

7 − ν
6

w3
o

h2
=

qa4

24D(1 + ν)
, (37)

which is referred to as the Small-Nix approximation. Com-
pared with eq. (36), the linear terms are missing and the fac-
tor difference of the cubic term is also noticed. Small and
Nix [1] also used the membrane model, in which there is no
bending energy, to derive the following equation, which is
obtained by rearranging their eq. (15)

3
4

(a
h

)2
(1 + ν)εowo +

1
2

(1 + ν)
w3

o

h2
=

qa4

64D
, (38)

which is referred to as the membrane approximation. There
is no real solution for εo < 0, i.e., the membrane structure
cannot stand compression. However, it is not unusual at all
that the residual stress inside a film is compressive [7] and
the plate model has to be applied. Compared with the initial
and further stretching terms presented in eqs. (25) and (32),
there are some minor differences as ν changes from 0 to 0.5.
This fact indicates that the plate shape of eq. (18) is capable
of capturing the membrane/stretching behavior accurately.

The approximate q-wo relation for a circular
plate/membrane is often written as the following form of
q = (K1 + K2)wo + K3w3

o [1, 3]. Several of them are pre-
sented in Tables 1 and 2. Here K1, K2 and K3 are associated
with the three unknowns of E, ν and εo. In a bulge test, q
and wo are measured together with the plate/membrane di-
mensions, only two parameters of K1 + K2 and K3 can be
obtained by curve-fitting. This means that the unknown ma-
terial properties of E, ν and εo in general cannot be extracted
individually from the bulge test of a circular film [11]. How-
ever, Vlassak and Nix [3] showed that for a rectangular film,
these three material parameters can be extracted by chang-
ing the film aspect ratio. Here the K1wo term is associated
with the plate bending. As seen from Table 1, Nadai and
Federhofer [24] both got K1 = 5.682Eh3/a4 for ν = 0.25;
Way [24] got K1 = 5.848Eh3/a4 for ν = 0.3. Our eqs.
(25) and (32) find K1 = 16Eh3/[3(1 − ν2)a4], which gives
K1 = 5.689Eh3/a4 for ν = 0.25 and K1 = 5.861Eh3/a4 for
ν = 0.3. It is an excellent agreement with Nadai, Feder-
hofer and Way’s. The K2wo is associated with the residual
strain εo. As seen from Table 1, most studies including this
one obtained K2 = 4Ehεo/[(1 − ν)a2]. The K3w3

o term is
associated with further nonlinear stretching of mid-plane; the
problem is on this K3 value. As seen in Tables 1 and 2, K3

varies significantly. This is the general trend as observed by
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Wan et al. [14] that the approximate analytical solution fits
the numerical/real solution quite well when the deflection is
small, or say, wo ∝ q and it deviates significantly when the
deflection is large, i.e., wo ∝ q1/3.

4 Nondimensionalization

To nondimensionalize, the following quantities are intro-
duced [44]:

ξ =
r
a
, W =

w
h
, Wo =

wo

h
, U =

u
h
. (39)

The governing equations of eqs. (6) and (7) are now nondi-
mensionalized as follows:

d4W
dξ4
+

2
ξ

d3W
dξ3
− 1
ξ2

d2W
dξ2
+

1
ξ3

dW
dξ

=
Noa2

D

(1
ξ

dW
dξ
+

d2W
dξ2

)

+
12a
h

[1
ξ

dU
dξ

dW
dξ

+
d2U
dξ2

dW
dξ
+

dU
dξ

d2W
dξ2
+
ν

ξ

(dU
dξ

dW
dξ
+ U

d2W
dξ2

)]

+ 12
[ 1
2ξ

(dW
dξ

)3
+

3
2

(dW
dξ

)2 d2W
dξ2

]

+
qa4

Dh
, (40)

and

d2U
dξ2
+

1
ξ

dU
dξ
− U
ξ2
= −1 − ν

2ξ
h
a

(dW
dξ

)2
− h

a
dW
dξ

d2W
dξ2
. (41)

The boundary conditions of eq. (8) now become the follow-
ing dimensionless ones:

U(0) = 0,
dW
dξ

(0) = 0, W(1) = 0,

dW
dξ

(1) = 0, U(1) = 0,

[dU
dξ
+

1
2

h
a

(dW
dξ

)2
+
ν

ξ
U
]

|ξ=1 = 0.

(42)

eqs. (40) and (41) together with the boundary conditions of
eq. (42) form a typical two-point boundary value problem,
which can only be solved numerically [21, 44, 50]. Because
of the terms associated with ξ−1, ξ−2 and ξ−3, the numeri-
cal singularity, convergence problem and extreme sensitivity
to the initial guess are encountered in the shooting method
and the relaxation method is thus advised [21]. Sheplak and
Dugundji [44] used the analytical solution of eq. (16) as their
initial guess. Here our initial guess is based on the Timo-
shenko approximation of eq. (25) or the new approximation
of eq. (32). It is worth pointing out these two approximations
as the initial guess usually do not lead to the numerical so-
lution within an acceptable error tolerance; our initial guess
varies around these approximations; it is quite often that nu-
merous trial-and-error tests are needed before a proper initial
guess can be found.

The Timoshenko approximation of eq. (25) now becomes
the following dimensionless one

[

1 +
3
4

(a
h

)2
(1 + ν)εo

]

Wo + (0.4319+ 0.2411ν− 0.1808ν2)W3
o

=
qa4

64Dh
. (43)

Once Wo is solved from the above equation, the transverse
and radial displacements are readily obtained from eqs. (18)
and (19) in conjunction with eq. (23) as follows:

W = Wo(1 − ξ2)2,

U =
(h
a

)

W2
o [(1.4204− 0.7062ν)ξ

+(−3.301+ 1.0156ν)ξ2

−(−1.8806+ 0.3094ν)ξ3].

(44)

The new approximate solution of eq. (32) presented in this
study becomes the following dimensionless one:

[

1 +
3
4

(a
h

)2
(1 + ν)εo

]

Wo + (0.4118+ 0.25ν − 0.16088ν2)W3
o

=
qa4

64Dh
. (45)

The transverse and radial displacements of eqs. (18) and (30)
become the following:

W = Wo(1 − ξ2)2,

U =
(h
a

)

W2
o

[5 − 3ν
6
ξ + (−3 + ν)ξ3

+
10 − 2ν

3
ξ5 +

(−7 + ν)
6

ξ7
]

.

(46)

Lin’s approximation of eq. (36) becomes

[

1 + 3
(a
h

)2
(1 + ν)εo

]

Wo +
7 − ν

4
W3

o =
qa4

24Dh(1 + ν)
. (47)

The transverse and radial displacements of eqs. (33) and (30)
become the following in conjunction with eq. (35):

W = Wo(1 − ξ2), U =
(−3 + ν)h

4a
W2

o ξ(ξ
2 − 1). (48)

The Small-Nix approximation of eq. (37) becomes the fol-
lowing dimensionless one:

7 − ν
6

W3
o =

qa4

24Dh(1 + ν)
. (49)

The transverse and radial displacements of the Small-Nix ap-
proximation share the same form of eq. (48) with Lin’s; the
difference is in Wo, which is solved by eqs. (47) and (49),
respectively.

The membrane approximation of eq. (38) becomes the fol-
lowing dimensionless one:

3
4

(a
h

)2
(1 + ν)εoWo +

1
2

(1 + ν)W3
o =

qa4

64Dh
. (50)
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5 Results and discussion

In this study, a/h is fixed as 20 and Poisson’s ratio is taken as
ν = 0.3. In Figures 2-4, εo = 1 × 10−4 and q/E = 5 × 10−5.
The positive value of εo indicates the strain is tensile. In a
bulge test, the initial compressive strain can cause the film
wrinkling, which makes the property extraction of film very
difficult [1,2]. Furthermore, in the modeling aspect, the mem-
brane model can not take compression. Figure 2 plots the
transverse displacements solved numerically and calculated
by different approximations. The Timoshenko approximation
and the new approximation of eq. (45) (almost) overlap each
other; they are also the closest ones to the numerical solu-
tion. The Lin, membrane and Small-Nix approximations all
overestimate the transverse displacement, or in other words,
these three approximations are with the larger flexurality. As
mentioned above and indicated in eq. (43) or (45), the plate
stiffness consists of three parts: bending, initial stretching
and further stretching. The bending energy difference can
be seen in eqs. (21) and (34), which are calculated by dif-
ferent deflection forms of eqs. (18) and (33). Figure 3 plots
the deflection slope of W′ = dW/dξ. Clearly, only the Timo-
shenko approximation and the new approximation of eq. (45)
satisfy the clamped condition of zero slope at ξ = 1 and the
other three violate. The membrane shape of eq. (33) vio-
lates the clamped condition of zero slope, which makes the
structure more flexural than it should be. This is the mech-
anism responsible for the larger deflection of the Lin’s ap-
proximation. The membrane approximation does not include
the bending stiffness at all and thus makes the structure more
flexural than Lin’s approximation. The effect of the initial
tensile stretching (εo), which stiffens the structure, is miss-
ing in the Small-Nix approximation and makes it the most
flexural. Figure 4 plots the radial displacement U. It is no-
ticed that U obtained by the Lin and Small-Nix approxima-
tion is always positive. In contrast, the numerical study, Tim-
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Figure 2 The plate deflections calculated by different approximate ana-
lytical solutions and numerical one when εo = 10−4, q/E = 5 × 10−5 and
a/h = 20.
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Figure 3 The slopes calculated by different approximate analytical solu-
tions and numerical one when εo = 10−4, q/E = 5 × 10−5 and a/h = 20.
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Figure 4 The plate in-plane radial displacements calculated by differ-
ent approximate analytical solutions and numerical one when εo = 10−4,
q/E = 5 × 10−5 and a/h = 20.

oshenko approximation and the approximation of this study
all indicate that U is positive around 0 � ξ � 0.69 and U is
negative around 0.69 � ξ � 1, which has also been observed
by Sheplak and Dugundji [44]. In that sense, the membrane
shape approximation of eq. (33) fails to capture the variation
of the radial displacement. It is also noticed that in Figure 4,
U given by our new approximation is closer to the numerical
solution than Timoshenko’s. Again, the explanation is that
our radial displacement form of eq. (30) satisfies the gov-
erning equation of eq. (28) and Timoshenko’s eq. (19) does
not.

In Figures 5-7, larger εo = 1.5 × 10−3 and larger q/E =
1 × 10−4 are set. Figure 5 plots the transverse displacement
and again, the Timoshenko and our approximations (almost)
overlap; with the increase of initial strain and transverse pres-
sure, these two approximations are still the closest ones to the
numerical solution, then it is Lin’s, membrane and Small-Nix
approximations. The reason is still the same one as given
above. Figure 6 presents the slopes. Once again, Lin’s, mem-
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Figure 5 The plate deflections calculated by different approximate ana-
lytical solutions and numerical one when εo = 1.5 × 10−3, q/E = 10−4 and
a/h = 20.
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Figure 6 The plate slopes calculated by different approximate analytical
solutions and numerical one when εo = 1.5×10−3, q/E = 10−4 and a/h = 20.
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Figure 7 The plate in-plane radial displacements calculated by different
approximate analytical solutions and numerical one. when εo = 1.5 × 10−3,
q/E = 10−4 and a/h = 20.

brane and Small-Nix approximations violate the clamped
boundary condition of zero slope at ξ = 0. In both Fig-

ures 3 and 6, it is noticed that the slope around the edge
changes relatively rapidly, which was first noted by Frid-
erichs [51] and then systematically studied by Sheplak and
Dugundji [44]. In Figure 3, the slope obtained by the nu-
merical solution reaches the minimum of –1.426 at ξ = 0.62
and then increases to zero at ξ = 1; in Figure 6, the slope
by the numerical solution reaches the minimum of -1.812
at ξ = 0.67 and then increases to zero at ξ = 1. The
slope variation around the edge in Figure 6 is more rapid
than that of Figure 3. Sheplak and Dugundji [44], Tong and
Huang [25] have also shown that larger εo or larger q can
make the slope variation more rapid. Figure 7 presents the
radial displacement. The same scenario occurs again: the
Lin’s and Small-Nix approximations miss the characteristics
of U being positive and then negative; our approximation is
still better than Timoshenko’s. Compared with Figure 4, U
of Figure 7 is now positive in 0 � ξ � 0.76 and negative in
0.76 � ξ � 1. Larger transverse pressure pushes the positive
zone of U further towards the edge, which was also noticed
by Sheplak and Dugundji [44]. These rapid change behav-
iors around the clamped edge are also called the boundary
layer effects [26]. The plate-membrane transition behavior of
deflection has been intensively studied [21, 25, 26, 44]. How-
ever, the transition behavior is demonstrated by solving eqs.
(13), (14) and (15) in conjunction of the boundary conditions
of eq. (17) via numerical integration [21, 26, 44] or pertur-
bation method [25], which, by any standard, is difficult and
complex. Here we present a direct and simple approach to il-
lustrate how this transition behavior occurs. The above com-
parison study on the plate deflection and radial displacement
shows that the Timoshenko approximation and our approx-
imation give good approximation under relatively small or
large initial in-plane strain/tension and transverse pressure.
Here the Timoshenko approximation of eq. (43) is used to
demonstrate the transition behavior. eq. (43) can be broken
into these following two parts as for linear and cubic approx-
imations, respectively:

[

1 +
3
4

(a
h

)2
(1 + ν)εo

]

Wo =
qa4

64Dh
, (51)

and

(0.4319+ 0.2411ν− 0.1808ν2)W3
o =

qa4

64Dh
. (52)

Eq. (51) is the linear part of the Timoshenko approximation,
which gives Wo ∝ q; eq. (52) is the nonlinear cubic term
of the Timoshenko approximation, which gives Wo ∝ q1/3.
Figure 8 presents a comparison study of Wo calculated by
eqs. (43), (51) and (52) when (a) εo = 0, (b) εo = 1 × 10−4

and (c) εo = 1.5 × 10−3. The Wo calculated by eq. (43)
is always smaller than those calculated by eqs. (51) and
(52). When Wo is small, eq. (51) is a better approximation
of eq. (43); with the increase of q, the deviation enlarges
and eq. (52) becomes a better one. If the error is defined
as (W linear

o − WTimoshenko
o )/WTimoshenko

o , we found that for (a)
εo = 0, the error exceeds 10% at q/E = 1.7 × 10−5 and
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Figure 8 The plate center displacement Wo calculated by the Timo-
shenko, linear and cubic approximations: (a) εo = 0, (b) εo = 10−4, (c)
εo = 1.5 × 10−3.

WTimoshenko
o = 0.4263; for (b) εo = 1× 10−4, the error exceeds

10% at q/E = 2.2 × 10−5 and WTimoshenko
o = 0.5142; for (c)

εo = 1.5 × 10−3, the error exceeds 10% at q/E = 3.9 × 10−5

and WTimoshenko
o = 0.6039. With the increase of Wo, the de-

flection behavior sooner or later will transit from Wo ∝ q
to Wo ∝ q1/3 (the so-called linear-cubic transition [14]), the
presence of initial strain, or more specifically, εo(a/h)2, de-
lays the transition, which has already been pointed out in ref-
erences [25, 44].

Sheplak and Dugundji [44] defined a dimensionless pa-
rameter of k =

√
Noa2/D =

√
12(1 + ν)εo(a/h) to differ-

entiate the above transition: the plate behavior dominates
for k < 1; the membrane behavior dominates for k > 20
and 1 < k < 20 is the transition zone. However, k is
only associated with εo and a/h, which in essence deter-
mines the stiffness. Wan [15] directly used Wo to indicate
the transition: Wo < 0.1 is the bending/plate dominant zone;
Wo > 10 is the (nonlinear) stretching/membrane dominant
zone; 0.1 < Wo < 10 is the transition zone. It is more rea-
sonable to use Wo rather than k to indicate such transition
because q also plays a role together with εo. As seen in eq.
(43) and Figure 8, when Wo is small (for example, Wo < 0.1),
the linear term is much larger than the cubic term which only
plays a secondary role of stiffening [52], Wo varies approxi-
mately linearly with the transverse pressure. There is a subtle
issue on the linearity as noticed by Komaragiri et al. [21].
The linear equation of eq. (51) consists of two parts: one is
due to plate bending and the other is due to the initial strain
εo. Therefore, when εo(a/h)2 	 1 and Wo is small, the bend-
ing contribution is the dominant one, which is referred to as
the plate behavior [21]; when εo(a/h)2 
 1 and Wo is small,
the initial stretching contribution is the dominant one, which
is referred to as the linear membrane behavior [21]. When
Wo is large (for example, Wo > 10), the cubic term is dom-
inant and this Wo ∝ q1/3 behavior is referred to as nonlinear

membrane behavior [21]. Because Wo is determined by both
εo and q, Komaragiri et al. [21] used two dimensionless pa-
rameters: α ∝ log[q/E(a/h)2] and γ ∝ log(εoa/h) to demar-
cate the three regions of plate, linear membrane and nonlinear
membrane. As seen in eq. (43), α1 = q/E(a/h)4 ∝ qa4/(Dh)
and γ1 = εo(a/h)2 are the two dimensionless parameters di-
rectly determine the solution of Wo, which should be a more
effective alternative for α and γ . It is also worth pointing out
that all the demarcation schemes above are rather qualitative
than quantitative. To quantitatively determine the contribu-
tions from different mechanisms, the analysis similar to the
one presented in Figure 8 is needed.

As discussed above, some assumed displacement shapes
violate the boundary conditions required by the von Kármán
equations and thus become a major error source for the ap-
proximate analytical solution [14]. Now let us look at this is-
sue from another different angle. In sect. 3, the approximate
analytical solution starts with assuming the deflection shape
such as eq. (18) or eq. (33). When the deflection is small,
Xiao et al. [9] found that the actual deflection shape signif-
icantly deviates from the spherical/membrane shape of eq.
(33) and their cosine shape. In comparison, as shown in Fig-
ures 2 and 5, the plate shape of eq. (18) shows very good ap-
proximation. Ziebart et al. [7] showed that with the increase
of residual stress, the deflection shape steadily shifts towards
a membrane one. In general, Sheplak and Dugundji [44],
Voorthuyzen and Bergveld [8] showed that either the change
of residual stress or that of transverse load q can change the
deflection shape, which is also reflected in Figures 2 and 5.
As a result, none of the approximate analytical solution with
the assumed deflection shape can accurately capture the real
deflection in a wide range of εo and q. It seems that the
Timoshenko approximation and our new approximation of
eq. (45) are the best in the intermediate deflection range of
0.1 < Wo < 10. Besides the deflection shape change, there
is another mechanism causing the deviation. Our approxi-
mate analytical solution together with those listed in Table 1
is based on the von Kármán kinematic assumptions of eq. (1),
which is for the “large” deflection of plate. For “very large”
plate deflection, the Reissner plate theory [53] applies, which
changes the radial strain from εr = u/r + 1/2(dw/dr)2 + εo
of eq. (1) to εr = u/r + 1/2[(du/dr)2 + (dw/dr)2] + εo. This
additional strain contribution of 1/2(du/dr)2 changes the en-
ergy expressions of eqs. (3) and (4) and thus the differen-
tial governing equation set of eqs. (6) and (7) and that of
eqs. (13), (14) and (15). With the increase of deflection, the
contribution of 1/2(du/dr)2 becomes more and more impor-
tant, which makes the above equations less and less accurate.
In Figures 2 and 5, it is noticed that Wo ∝ 1, which is the
intermediate range of deflection [15] and the case of large
deflection. A lot of researchers have used the von Kármán
equations to compute the deflection case of Wo > 50. The
caution should be taken on those results though there is no
clear boundary between the “large” and “very large” deflec-
tions.
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6 Conclusion

A fourth order and a second governing equations on the large
deflection of plates are derived by the principle of virtual
work, which also gives an extra boundary condition of the
zero radial displacement at the center. We show that one of
the previous boundary conditions (S r(0) = S t(0)) is unnec-
essary. On the other hand, the zero radial displacement at
the center must be enforced. Otherwise, it will cause the sin-
gularity problem. The approximate analytical forms are de-
rived with the Poisson’s ratio as a variable and compared with
the numerical integration results. The plate shape of deflec-
tion and its corresponding radial displacement form achieve
a better approximation than that of assuming the membrane
shape deflection in the intermediate range of plate deflection.
The membrane shape violates the clamped boundary condi-
tions of zero slope at the edge and also misses the radial dis-
placement characteristics of being positive and then negative
along the span. A new approximation method is proposed,
which makes the radial displacement satisfy the governing
equation with the assumed deflection shape of plate. The new
approximation on the radial displacement is better than Tim-
oshenko’s. Through the nondimensionalization scheme, it is
found that q/E(a/h)4 and εo(a/h)2 are the two dimensionless
parameters determining the plate deflection behavior. The
Timoshenko approximation or our new approximation offers
a framework, which can give a much simpler and more direct
explanation on the plate-membrane transition behavior.
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