
Weimin Chen1

Key Laboratory of Mechanics in Fluid

Solid Coupling System,

Institute of Mechanics,

Chinese Academy of Sciences,

Beijing 100190, China

e-mail: wmchen@imech.ac.cn

Min Li
School of Aeronautics Sciences

and Engineering,

Beijing University of Aeronautics and

Astronautics,

Beijing 100191, China

e-mail: limin@buaa.edu.cn

Liwu Zhang
Key Laboratory of Mechanics in Fluid

Solid Coupling System,

Institute of Mechanics,

Chinese Academy of Sciences,

Beijing 100190, China

Tiancai Tan
School of Aeronautics Sciences

and Engineering,

Beijing University of Aeronautics and

Astronautics,

Beijing 100191, China

Study on Multimode Vortex-
Induced Vibration of Deepwater
Riser in Different Flow Fields by
Finite Element Simulations
Multimode vortex-induced vibration (VIV) of slender risers, respectively, in stepped and
shear flows is explored by finite element simulations. Taking account of the interaction-
between fluid and structure, a hydrodynamic model is proposed and embedded into the
finite element simulation so as to carry out dynamic response of multimode VIV in time-
domain. Multimode VIV in both stepped and shear flow fields is examined. In the case of
stepped flow, a semi-empirical formula of modal weight is given. In the case of shear
flow, modal excitation region can be determined based on modal energy, and partic-
ipating modes approximately distribute in scattering groups. [DOI: 10.1115/1.4031729]

1 Introduction

With the development of oil and gas exploration toward to
deeper sea, more deepwater platforms, such as spar, tension leg,
and semisubmersible platforms, have been put into services. The
marine riser of these platforms is used to transport gas and oil or
optical and electrical information. The wake fluid field, body
motion, and interaction between fluid and solid body of these slen-
der risers experiencing nonuniform ocean flow become more com-
plicated as water depth increases. For example, the shedding
mode or frequency of wake vortex will vary along the riser length,
rather than keeping constant. Additionally, the dynamic character-
istics of slender riser usually present low-frequency and high-
density natural modes due to large structural flexibility. Therefore,
the VIV of a slender riser experiencing nonuniform flow often
presents new phenomena [1–6], such as multimode, traveling
wave, and wide-band random vibrations. These phenomena have
presented new challenges to practical engineers and researchers.

In recent years, large numbers of large-scale field experiments
and computational fluid dynamics simulations of slender riser
VIV were implemented [7–13]. And, mechanism studies and em-
pirical formula based on these large-scale experiments have been
prosperously developed. Among these researches, the multimode
vibration and drag coefficient in Ref. [6], high-mode lock-in in
Ref. [12], and modal weight in Refs. [7] and [13] provided fruitful
bases for the understanding and prediction of multimode VIV.

As we know, in the case of single-mode VIV, the modal excita-
tion location can be simply determined as long as the modal

reduced velocity Vrnðz; nÞ ¼ VðzÞ=Dfn at location z along the riser
length falls into the range of lock-in velocity, i.e.,
4 � VrnðzÞ � 12. However, in the case of multimode vibration, at
length location z, there may exist multiple participating modes of
which the modal reduced velocities satisfy 4 � VrnðzÞ � 12. In
other words, overlap between adjacent excitation regions may
appear if several modes simultaneously participate in the vibra-
tion. To eliminate the overlap, two methods are currently used.
One method (referred as the high-mode priority [4,14] in the later
part of this paper) assumes that the region of lower mode be cov-
ered by the region of higher mode. According to this method, if a
riser undergoes uniform flow field, only the highest mode can par-
ticipate in the vibration because other lower modes are covered by
the highest mode. Or, the vibration will be single-mode response.
But, some experiments [15,16] indicate that multimode VIV can
occur even though the flow velocity along the riser is uniform.

Another method [12] (referred to as the equally shrinking later)
assumes that the excitation region length of each mode involved
in the overlap shrinks equally until the overlap is eliminated.
Through the modal analysis based on the data of large-scale VIV
tests, we found that there exist competitions between potential
exciting modes. For example, VIV experiments [17] imply that
the participating modes may vary with the variation of reduced
velocity, moreover, appearance of new excitation mode is usually
accompanied with disappearance of existing vibrating modes. Or,
the new excitation mode with increasingly larger power of compe-
tition may overcome the previous one with decreasing power until
it disappears in dynamic response. Additionally, observing large-
scale tests in shear flow [13], we found that the modal weights of
all participating modes distribute unequally and, often, there are
few modes (e.g., around 1–3 modes) dominating the vibration
response (or with higher values of weight). Thereby, we may say
that the weight of one participating mode is supposed to be
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originally related to the potential energy of this mode, which can
be determined by hydrodynamic force, system damping, and the
location where the excitation originally happens. In this study, the
multimode VIV of slender riser in different flow fields is exam-
ined by finite element method (FEM) simulation. New approaches
to determine the modal excitation length are proposed for differ-
ent flow fields.

In Sec. 2, a numerical simulation model based on FEM is deve-
loped, in which the vortex-induced lift coefficient CL is expressed
by a function of the instantaneous motion of structure. This model
can avoid costly computation of iteration calculation and is more
suitable to time-domain calculation by FEM code. In Sec. 3, the
multimode VIV of slender riser, respectively, in stepped and shear
flows is examined and compared with experimental results. In the
case of stepped flow, effect of reduced velocity on modal weight
is explored. Further, a semi-empirical formula describing the rela-
tionship between the normalized modal weight and reduced veloc-
ity is given. In the case of shear flow, the distribution of the
participating modes is discussed. In order to deal with the overlap
of excitation region of participating modes, the modal energy,
characterizing the competition power of the mode against other
participating modes, is used to determine the length and position
of modal excitation region. At last, conclusions are given in
Sec. 4.

2 Hydrodynamic Model and Finite Element

Simulation

2.1 Hydrodynamic Model. The governing equation of a
slender riser, of which the structure is generally simplified as a
tensioned Euler beam, undergoing VIV can be written as

m
@2y z; tð Þ
@t2

þ c
@y z; tð Þ
@t

þ EI
@4y z; tð Þ
@z4

� T
@2y z; tð Þ
@z2

¼ f z; tð Þ (1)

where yðz; tÞ is the displacement of structure, m and c are the
structural mass and damping per unit length, EI and T are the
bending stiffness and axial tension, and f ðz; tÞ is the hydrody-
namic force per unit length consisting of the vortex-induced lift
force fvðz; tÞ and fluid drag force ff ðz; tÞ. It is difficult to directly
derive the exact formula for hydrodynamic force and get the solu-
tion of VIV because of the complicated nonlinear interaction
between fluid and structure and the turbulence character of fluid.
Here, it is assumed that the structural motion in lock-in is sinusoi-
dal, i.e., y ¼ A sinðxtÞ, and the vortex-induced lift force, fvðz; tÞ, is
written as

fvðz; tÞ ¼ ð1=2ÞCLqV2D sinðxvtþ uÞ (2a)

The fluid drag force ff ðz; tÞ can be expressed by virtue of the Mori-
son equation, i.e.,

ff ðz; tÞ ¼ ð1=2ÞCDqDðV � _yÞjV � _yj
þ ð1=4ÞpCAqD2ð _V � €yÞ þ ð1=4ÞpD2q _V (2b)

where q and V are the density and velocity of the fluid, respec-
tively, and x and xv are the frequencies of structure and vortex
shedding, respectively. As lock-in occurs, x ¼ xv and
/ ¼ 90 deg. CL is the vortex-induced lift coefficient and CD and
CA are the drag and added mass coefficients, respectively, of
which the values can be determined by VIV experiment.

The fluid wake field of a riser undergoing VIV is too compli-
cated to directly get a theoretical solution because of the uncer-
tainties like the turbulence, separation, and boundary layer. So,
mostly, the lift coefficient CL in Eq. (2a) is supposed a constant
that is independent on structure motion. Recent experimental
researches have found that CL actually is related to the structure
motion due to the interaction between fluid and structure dynam-
ics during VIV lock-in [1,6,12]. Further, CL was presented in

terms of nondimensional amplitude A=D, as shown in Fig. 1 [12]
where the coordinate values of the key points, such as CLmax,
CLA0, �A0, and �ALmax, can be determined based on the experimental
data. This approach applies better in frequent domain simulation
rather than time-domain simulation. However, for FEM simula-
tion, the numerical simulation is implemented in time-domain but
not in frequency domain. Because the response amplitude, A=D, is
not yet known before an FEM calculation, a complex iteration
process is needed, which is computationally expensive for FEM
calculations. Moreover, the calculation process involving such
complex iterations in dynamic response simulation is too compli-
cated to be carried out by running our finite element code.

Here, an alternative lift coefficient expressed by the instantane-
ous motion of structure, the velocity _y, instead of the final
response amplitude A=D, is proposed as follows:

CLð _yÞ ¼ CL0 þ a _y þ b _y2 þ c _y3 (3)

where CL0 indicates the lift coefficient when the amplitude is
A=D ¼ 0. The coefficients, a, b, and c, can be derived according
to the idea of energy equality to the previous lift curve, as shown
in Fig. 1. In other words, the total input energy by the lift force in
Eq. (3) is supposed to equal to the energy by the previous lift force
in Fig. 1 during one vibration period of VIV. Then, the values of
a, b, c, and CL0 can be solved out by fitting the new curve with the
original curve at key points, e.g., points B1, B2, and B3 in Fig. 1.
Or, a group of equations describing the relationship between the
previous lift force and the new one are as follows:

CL0 ¼ CLA0 (4a)

CL0 1þ xa �ALmax þ
8x2

3p
b �ALmax

� �2 þ 3x3

4
c �ALmax

� �3

� �
¼ CLmax

(4b)

xaþ 16x2

3p
b �ALmax þ

9x3

4
c �ALmax

� �2 ¼ 0 (4c)

C00L 1þ xa �A0 þ
8x2

3p
b �A0ð Þ2þ

3x3

4
c �A0ð Þ3

� �
¼ 0 (4d)

where �A0 and �ALmax are the amplitudes as CL¼ 0 and CL¼ CLmax,
respectively, as shown in Fig. 1.

2.2 Finite Element Simulations. The governing equation of
a riser in FEM simulation can be written as follows [18,19]:

M €Y þ C _Y þKY ¼ F

where M, C, and K are the structural mass, damping, and stiffness
matrix, respectively, and Y and F are the displacement and load
vector of node. The dynamic response of the riser undergoing
VIV can be obtained by combining the presented hydrodynamic
force and FEM. The vortex-induced lift force fvðz; tÞ and the drag

Fig. 1 Lift curve
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force ff ðz; tÞ exerted by the ambient fluid are loaded, respectively,
at the nodes in the excitation region and the nodes in damping
region along the riser length. Element mass is equally divided at
two nodes of each beam element.

Since we already have the nonlinear load and central mass in
terms of element nodes, direct numerical integration is used to
solve the dynamic governing equation. The fundamental structural
response (displacement) is solved at discrete times with a fixed
integration times step Dt (Dt � ð1=50ÞTmin, where Tmin is the min-
imum natural period of all participating modes. By using a central
finite-difference representation for the velocity and the accelera-
tion at discrete times

_Yn ¼
1

2Dt
Ynþ1 � Yn�1ð Þ; €Yn ¼

1

Dt2
Ynþ1 � 2Yn þ Yn�1ð Þ

the equation of motion can be solved by central finite-difference
method so as to effectively run the computation process with
acceptable numerical accuracy.

The initial condition is that the initial displacement and velocity
are both zero. For the pinned ends of riser, the boundary condi-
tions at the two ends of the riser are

xð0; tÞ ¼ 0

@2xð0; tÞ=@z2 ¼ 0
and

xðL; tÞ ¼ 0

@2xðL; tÞ=@z2 ¼ 0

To verify the proposed FEM approach, the numerical VIV in
uniform flow is compared with the VIV experiments, i.e., a rigid
cylinder (tested by Khalak and Williamson [20]) moving in a
manner of single-mode vibration and a flexible cylinder
(by Trim et al. [15]) moving in manners of single-mode and
multimode vibration, respectively. In our numerical simulations,
the hydrodynamic coefficients are CA ¼ 1:0 and Cd ¼ 1:2, and
the corresponding original lift coefficients are CL ¼ 0:5
þ 1:82A� 1:29A2 � 0:707A3 and CL ¼ 0:22þ 1:62A� 2:31A2

þ 0:754A3, respectively, for the cases of rigid and flexible
cylinders.

For the rigid cylinder, the experiment [20] indicated that there
are three branches of response amplitude, i.e., the initial, upper,
and lower branches, through lock-in region. Here, the most dan-
gerous case, i.e., the upper branch where the corresponding
reduced velocity Vr is 5.33, is considered. The time history of
displacement is presented in Fig. 2, where the experimental ampli-
tude, as a comparison, is also plotted as a solid line (only the value
of amplitude was presented in Ref. [20]). Figure 2 shows that the
calculated amplitude, A=D ¼ 0:78, is somewhat lower than the
experimental data, A=D ¼ 0:81. In addition, the time history
curve, displaying an apparent harmonic sinusoid, implies that the
VIV response is characterized by a single-mode vibration.

For the flexible cable, two cases of dynamic responses, i.e., a
single-mode vibration involving only the third mode and a multi-
mode vibration involving the third and fourth modes, are
carried out. The numerical results, plotted as the curve of the root-
mean-square (RMS) displacement along riser length and the
temporal–spatial evolution of displacement, are shown in Figs. 3
and 4, respectively. In the case of single-mode vibration (Fig. 3),
only the RMS displacement (Fig. 3(a)) near the crests is approxi-
mately close to the experimental curve, whereas the displacement,
especially near the troughs, diverges distinctly from the experi-
mental curve. Additionally, the calculation curve has apparent
nodes of which the displacement nearly equals to zero that means
the single-mode vibration is dominated by a standing wave. How-
ever, there is no apparent node in the experimental curve. In the
case of multimode vibration (Fig. 4), the RMS displacement (Fig.
4(a)) agrees better, compared with the single-mode vibration in
Fig. 3(a), with the experimental curve along the overall length.

Fig. 2 The displacement response of a rigid cylinder vibrating
in a manner of single-mode in uniform flow, the upper line indi-
cates the amplitude of the experimental displacement

Fig. 3 Comparisons between the presented numerical results
and the experimental results of a flexible cylinder vibrating in a
manner of single-mode, involving mode 3, in uniform flow: (a)
the curve of RMS displacement along riser length and (b) the
temporal–spatial evolution of displacement
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And, a traveling effect is observed in that no evident node
appears.

3 Multimode VIV Response and Discussion

One of the challenging problems, which multimode VIV needs
to face specifically, is how to determine the modal excitation
length for each participating mode. In this section, the multimode
vibrations of risers experiencing two kinds of fluid fields, i.e., a
stepped flow and a linear shear flow, will be examined. In the case
of stepped flow, effect of reduced velocity on modal weight is
explored and in the case of shear flow, the distribution of modal
weight for the participating modes is discussed.

3.1 VIV in Stepped Flow. First, we consider a simpler case
where the flow velocity distributes uniformly along the riser

length. The previous results [1,2,9,10] of single-mode vibration in
uniform indicate that in lock-in region, the response amplitude
varies with the increase of flow velocity. Generally speaking, the
response amplitude first rises up to reach a peak value and then
drops gradually to a small value till the flow velocity is beyond
out of lock-in region. Thus, we may say that for a participating
mode the flow velocity directly influences its modal response am-
plitude. Or, in other words, the modal weight mostly depends on
the reduced velocity of this mode.

Here, a riser experiencing a stepped flow, shown in Fig. 5, is
taken as the object, where the flow velocity uniformly distributes
along the portion of length immersed in the fluid. Systematic tests
at a series of flow velocity were implemented by Chaplin et al.
[16]. And fortunately, the modal weights of participating modes
were recorded.

In order to have a deeper insight into the modal excitation dis-
tribution, the evolution of modal weight of all the participating
modes was observed with respect to the reduced velocity in over-
all lock-in region. We found, in Figs. 6, 7, and 9 of Ref. [16], that
the participating modes vary, in a way of both the value of modal
weight and the order number of participating mode, when the
reduced velocity increases during the lock-in region. It is also
noted that appearance of new excitation mode is usually accompa-
nied with disappearance of previously existing vibrating mode.
Or, the newly participating mode that possesses gradually increas-
ing power of competition against others may overcome the one
with weaker power till the old one disappears in dynamic
response. Three groups of modal weights are listed in Table 1. It
shows that there are five modes, i.e., modes 4–8, participating in
the dynamic response, and the values of modal weight range from
0.03 to 0.55. The dominating mode (with the largest value of
modal weight) is no longer the mode with the highest order num-
ber as described in previous methods [4,14].

Further, we normalized these modal weights (divided by the
maximum values in each group), then plotted the normalized
modal weight against the modal reduced velocity Vrn ¼ V=Dfn in
Fig. 6. It is noted that among the participating modes, the mode,
of which the reduced velocity approximately corresponds to 6–7,
mostly tends to dominate the response, or to possess a powerful
priority competing against other modes. Another interesting phe-
nomenon is that the vibration enters into lock-in region quickly,
or the curve is abrupt as Vr increasing from 4 to 7, whereas the
vibration goes out of lock-in region slowly, or the curve becomes
flatter as Vr further increases from 7 to 12. To describe the rela-
tionship between the normalized modal weight Wn and the modal

Fig. 4 Comparisons between the presented numerical results
and the experimental results of a flexible cylinder vibrating in a
manner of single-mode, involving modes 3 and 4, in uniform
flow: (a) the curve of RMS displacement along riser length and
(b) the temporal–spatial evolution of displacement

Fig. 5 The experiment of a flexible riser in the stepped flow by
Chaplin et al. [16]
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reduced velocity Vrn, a curve-fit function (see Fig. 6) is proposed
as follows:

Wn ¼
1

1:2
e �e �z

1ð Þ�z2þ1ð Þ
(5)

where z1 ¼ ðVrn � 6:0Þ=0:7 and z2 ¼ ðVrn � 6:0Þ=1:6. We note
that for the case of V ¼ 1.00 m/s carriage speed (triangular
symbols in Fig. 6), there exist noticeable divergences between the
fitting curve and experiment data at reduced velocities Vrn ¼ 6.9
and 8.2. The reason causing such divergence maybe lie in those
unsteady states occurring in the experimental response (reported
in Ref. [16]). While, for the other two carriage speeds of V
¼ 0.90 m/s and V ¼ 0.85 m/s, the experimental response were all
measured at steady-state.

The displacement curves at different time steps are plotted and
compared with the experiment in Fig. 7. Both numerical and
experimental results indicate that the vibration is characterized by
a traveling wave, in which the node moves along the rise length
rather than staying at a fixed position. Additionally, mode 7 domi-
nates the response and the largest amplitude, nearly up to 1.0,
agrees with the experiment.

3.2 VIV in Shear Flow. In practice, some fluid fields, such as
ocean current and the flow induced by internal-wave, are usually
regarded as shear flow in which the multimode VIV is more com-
plex and will be examined in this section. First, the method to rec-
ognize participating mode and determine its excitation region is
studied. Then, the VIV response is calculated and compared with
the large-scale test by Trim et al. [15] (shown in Fig. 8). Further,
the modal weight distribution of the participating modes is
discussed.

3.2.1 Determination of the Length of Modal Excitation
Region. Initially, since flow velocity VðzÞ varies linearly along the
riser length, the excitation region of participating modes can be
naturally determined by the reduced velocity at location z. It is
assumed that when the reduced velocity at z for mode n is within
the lock-in bandwidth, Vr ¼ 4.0–12.0, the location z will belong
to the excitation region of this mode. Subsequently, overlaps
between adjacent excitation regions will appear if several modes
simultaneously participate in the vibration.

To eliminate the overlap, two methods are currently used. One
method [4,14] (the high-mode priority) assumes that the regions
of lower mode are covered by the regions of higher modes.

Table 1 Experimental measurements of modal weight in the
cases of top tension of T 5 1073 N and T 5 939 N, respectively

Mode
number

Modal weight
top tension

T¼ 939 N carriage
speed V¼ 0.85 m/s

Modal weight
top tension

T¼ 1073 N carriage
speed V¼ 0.90 m/s

Modal weight
top tension

T ¼ 958 N carriage
speed V ¼ 1.00 m/s

4 0.03 0.08 0.10
5 0.15 0.12 0.15
6 0.25 0.50 0.22
7 0.42 0.28 0.32
8 0.05 0.05 0.55

T¼ top tension.

Fig. 6 Effect of reduced velocity on the modal weight

Fig. 7 VIV amplitude of flexible riser experiencing stepped flow by numerical simulation (the
left four plots at different time steps) and experiment (the last one by Chaplin et al. [16])

Fig. 8 Experiment of flexible riser experiencing shear flow [13]
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Another method [12] (the equally shrinking) assumes that the
excitation region length of each mode involved in the overlap
equally shrinks until the overlap is eliminated. Here, we suggest
that the excitation region length of participating modes shrinks,
proportionally to its modal energy, till the overlap disappears. In
other words, the modal excitation length Ln is assumed to be pro-
portional to it modal energy in a form of

Ln=Lm ¼ Pn=Pm (6)

The modal energy is written as follows [2,12]:

Pn ¼ ðFnÞ2=ð2RnÞ (7)

where Fn and Rn are the modal force and damping.
The modal force Fn can be written as

Fn ¼
ð

Ln

ð1=2ÞCLqVðzÞ2Du2
nðzÞdz (8)

where unðzÞ is the mode shape of n th mode. Ideally, Fn should
depend on structure motion, because the fluid dynamics couples
essentially with the structure dynamics as VIV occurs. However,
before the numerical simulation the structure motion is not yet
known. Thus, at this stage, the lift coefficient CL is assumed to be
a constant value, 0.8, for a flexible riser [12].

The modal damping Rn involving both hydrodynamic damping
and structural damping is written as

Rn ¼
ð

L�Ln

rhðzÞu2
nðzÞxndzþ

ð
L

rsðzÞu2
nðzÞxndz (9)

where L is the total length of riser and rhðzÞ and rsðzÞ are the
hydrodynamic and structural damping per unit length. The second
term in the right side of Eq. (9), the structural damping, can be
simplified as 2nSnMnxn, where Mn is the modal mass and
xn ¼ 2pfn. The first term in the right side of Eq. (9), the hydrody-
namic damping, can be expressed by the semi-empirical formula.
Experiments by Vandiver indicated that hydrodynamic damping
behaves differently in different ranges of reduced velocity.
At lower reduced velocity (3.5<Vr < 6.5), the hydrodynamic
damping rhðzÞ is

rhðzÞ ¼ rsw þ ð1=2ÞCrlqDVðzÞ (10)

where the static damping rsw ¼ xnpqD2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=Rex

p
þ CswÞ, Rex

¼ xnD2=t, t is the viscous of fluid, and Csw and Crl are the

constant coefficients and have values of 0.125 and 0.06, respec-
tively. At higher reduced velocity (6.5 � Vr < 12), rhðzÞ is

rhðzÞ ¼ 0:2qV2=xn (11)

3.2.2 The VIV Response. The VIV responses at ten towing
speeds were simulated. Here, the selected results, at two towing
speeds of 0.54 m/s and 1.14 m/s, are presented.

Considering first the displacement response, the RMS displace-
ment along the riser length calculated by the presented method is
shown in Fig. 9. As a comparison, the displacement calculated by
the previous model, in which the length of modal excitation region
is determined by the rule of high-mode priority, is also plotted in
Fig. 9. In the case of 0.54 m/s speed (Fig. 9(a)), the span-averaged
RMS displacements are, respectively, 0.0073 m (of the presented
model) and 0.0067 m (of the previous model) compared to
0.0075 m of the experiment, while the peak-averaged values are,
respectively, 0.0090 m (of the presented model) and 0.0083 m (of
the previous model) compared to 0.0088 m of the experiment.
Therefore, we may say that the displacement responses of pre-
sented model are more consistent with the experimental curve
than the previous model.

In the case of 1.14 m/s towing speed (Fig. 9(b)), the span-
averaged RMS displacements are, respectively, 0.0084 m (of the
presented model) and 0.0069 m (of the previous model) compared
to 0.0078 m of the experiment, while the peak-averaged values
are, respectively, 0.0097 m (of the presented model) and 0.0082 m
(of the previous model) compared to 0.0081 m of the experiment.
More specifically, the calculated displacement agrees better with
the experimental displacement in the excitation region, i.e., the
length location is from z=L ¼ 0.0 to 0.40, whereas the displace-
ment becomes larger as it approaches the bottom end of the riser.
Such a difference is supposed to be caused by the dominating
wave. Since the calculated vibration is characterized mainly by a
standing wave, the displacement does not attenuate along the
overall riser length, while the experimental displacement attenu-
ates as approaching the bottom end of riser due to an effect of
traveling wave.

To our understanding, the wave character, such as standing
wave or traveling wave, of a response mainly depends on struc-
tural properties (like aspect ratio, damping ratio, and mode order
number) and fluid factors (like reduced velocity and excitation
region). Generally, traveling wave is more likely to happen to a
riser with larger values of aspect ratio, damping ratio, and modal
order. In the case of multimode VIV, additional reasons like
participating modes should be considered. One of the possible rea-
sons of the difference between our and experimental results might
be that not all the participating modes, in terms of their modal

Fig. 9 RMS displacement of flexible riser in shear flow: (a) 0.54 m/s towing speed and (b) 1.14 m/s towing speed

011801-6 / Vol. 138, FEBRUARY 2016 Transactions of the ASME

Downloaded From: http://offshoremechanics.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jmoeex/934798/ on 07/12/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



weights and excitation locations, of our simulations exactly agree
with the experimental ones.

Considering then the dominating mode, generally speaking, the
dominating mode determined by the presented model is consistent
with the experimental result. For example, Fig. 9(a) (0.54 m/s
towing speed) indicates that the dominating modes of both the
presented model and experiment are mode 11, however, the domi-
nating mode determined by the previous model is mode 14.

Now, considering the modal excitation region, the modal exci-
tation lengths of all participating modes are presented in Fig. 10
and also compared with the previous model. It is seen that the
modal excitation length no longer averagely distributes as it does
in the previous model. Taking the case of 0.54 m/s towing speed
as an example (Fig. 10(a)), there are approximately three groups
of participating modes, i.e., mode 6, modes 10 and 11, and mode
14. However, by the previous model, all the participating modes
have almost equal excitation length, except the highest mode
which has a pronounced large length due to its highest mode num-
ber (Fig. 10(b)). Subsequently, since all participating modes have
approximately same level of excitation power, it is difficult to
exclude the mode of which the vibration is, in practical response,
too weak to be considered. Therefore, there may be more partici-
pating modes included in the previous model than the presented
model. This phenomena can be seen in Fig. 10(b), where 17
modes, modes 10–26, are include in the previous model, whereas
modes 13, 17, 19, and 20 does not participate in the vibration in
the presented model.

At last, we would like to discuss a bit on VIV prediction and its
improvement. On the one hand, we tried to improve our VIV

approach by means of considering the coupling between fluid and
structural dynamics and modal competition and developed a
coupled hydrodynamic model along with a modified method of
lock-in region based on modal energy. On the other hand, it is
worthwhile to point out that the experimental data used for the lift
coefficients are important for the accuracy of dynamic response.
For multimode VIV, among the VIV experiments, the results
based on the situations, such as a cylinder freely vibrating or flexi-
ble cable (with large aspect ratio) rather than forced vibration or
rigid body, are strongly recommended, e.g., the experiments of
Refs. [6–8,12,13,16,17].

4 Conclusions

A time-domain analysis approach for VIV of deepwater risers,
using finite element simulation combined with a hydrodynamic
model coupling with structure motion, is developed. VIV
responses of slender risers, respectively, in stepped and shear
flows are explored. Compared with the previous model, better
agreement of displacement response with experiment is observed.
Based on our numerical results, we draw the following
conclusions:

(1) For multimode VIV in stepped flow, modal excitation
region is mostly influenced by reduced velocity. A semi-
empirical formula describing the relationship between the
normalized modal weight Wn and the reduced velocity
Vrn ¼ V=Dfn is given in Eq. (5).

(2) For multimode VIV in shear flow, modal excitation region
can be determined by modal energy, and the participating
modes approximately distribute after a manner of scattering
groups.

Because this approach is based on an empirical lift curve, it still
does not fully capture the physics behind VIV especially some
strongly nonlinear phenomena, such as the jump of displacement
in different branches and the hysteresis in lock-in region. Further
works on more reasonable hydrodynamic model and appropriate
coupling between the fluid and structure should be considered.
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