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Abstract—Debates continue on the applicability of the Young–Laplace equation for droplets, vapor bubbles
and gas bubbles in nanoscale. It is more meaningful to find the error range of the Young–Laplace equation in
nanoscale instead of making the judgement of its applicability. To do this, for seven liquid argon drops (contain-
ing 800, 1000, 1200, 1400, 1600, 1800, or 2000 particles, respectively) at T = 78 K we determined the radius of
surface of tension  and the corresponding surface tension  by molecular dynamics simulation based on the
expressions of  and  in terms of the pressure distribution for droplets. Compared with the two-phase pres-
sure difference directly obtained by MD simulation, the results show that the absolute values of relative error of
two-phase pressure difference given by the Young–Laplace equation are between 0.0008 and 0.027, and the sur-
face tension of the argon droplet increases with increasing radius of surface of tension, which supports that the
Tolman length of Lennard-Jones droplets is positive and that Lennard-Jones vapor bubbles is negative. Besides,
the logic error in the deduction of the expressions of the radius and the surface tension of surface of tension, and
in terms of the pressure distribution for liquid drops in a certain literature is corrected.

Keywords: liquid drop, surface tension, surface of tension, Young–Laplace equation, molecular dynamics
simulation.
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1. INTRODUCTION

Interfacial phenomena involved in bubbles and
droplets have attracted the attention of researchers for
quite a long time due to their wide applications as well
as due to their statistical uncertainties in engineering
and science fields [1]. During a phase transition pro-
cess that has heat and mass transfer, it must go through
nanobubbles and nanodroplets for macroscopic drop-
lets and vapor bubbles at early stages in the nucleation
process. The research of droplets and vapor bubbles or
bubbles in nanoscale is often needed owing to the
development of nanotechnology.

The liquid–vapor transition layers of droplets and
bubbles have a certain thickness and there exists non-
uniformity for density distribution. The interfacial
phenomena can be solved on the basis of Gibbs mac-
roscopic thermodynamics theory of capillarity [1, 2].
For a two-phase coexistence system, a parallel set of
mathematical surface in transition layer which are per-

pendicular to the density gradient can be chosen to be
what Gibbs called the dividing surface. Once a divid-
ing surface is chosen, the original continuous system is
represented by a discontinuous model system. The
dividing surface divides the model system into two
homogeneous phases. The volumes of bulk liquid
phase and vapor phase are corresponding to the vol-
umes of the matter on both sides of the dividing sur-
face of the original system. The value of any intensive
quantity such as density, temperature and chemical
potential is the same as that of the original system. The
dividing surface is called interface phase or surface
phase with the same chemical potential and tempera-
ture as in the bulk phase. When the dividing surface is
round or planar, the extensive quantities of the surface
phase are defined to be the ratio of the difference
between the corresponding quantities of the original
system and the model system to the area of the divid-
ing surface. If the number density of a dividing surface
is zero, it is called the equimolar surface, its radius is

. For a spherically symmetric system, surface ten-
sion  is different for different dividing surface. The
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homogeneous phase that is on one side located in the
center of curvature is marked by , the other bulk
phase is . The pressure difference of  and  satis-
fies the generalized Young–Laplace equation [1]

. (1)

The symbol in square brackets denotes the derivative
of  to the radius of dividing surface  for the same
original system. For the particular dividing surface, if

(2)

it is called surface of tension. Its radius is indicated by
. The corresponding surface tension is written as

. Then Eq. (1) is translated to the traditional
Young–Laplace equation

. (3)

There is no consensus on whether the macroscopic
theory of capillarity is applicable for nanosystem.

Some literatures admit the Young–Laplace equa-
tion (3) is applicable for nano-system and start analy-
sis and computer simulation by the use of Eq. (3)
directly. When the result obtained is not satisfactory,
they attribute it calculation error or statistic f luctua-
tion because the molecular number is not sufficient [3,
4]. For example it is the general way to follow a ther-
modynamics route and mechanical route in literature
in molecular dynamics study [3, 5]. According to the
Tolman effect  is dependent on . There is [1, 6]

 (4)

where ,  are the surface tension and the Tolman
length of planar interface. For droplets and vapor bubbles
that have the same single component the value of  is
opposite. A formula for thermodynamics route [3] is

. (5)

For thermodynamics route,  and  can be
obtained by MD simulation. Substituting  and

 into Eq. (3),  is obtained. Since the result is
given by use of the Young–Laplace equation, it is sure
to satisfy Young–Laplace equation. This can’t deter-
mine whether the Young–Laplace equation is estab-
lished in nanoscale.

For mechanical route [3], there is

, (6)
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where  is normal component of pressure tensor, 
is the surface tension obtained by MD simulation.
Substituting  and  into Eq. (3),  is given.
The result meets the Young–Laplace equation because
of the direct use of the Young–Laplace equation.
Whether the Young–Laplace equation is applicable in
nanoscale can’t be approved by this way either.

Are there some literatures that test the applicability
of the Young–Laplace equation? In 2008 Matsumoto
et al. [7] made a series of molecular simulations to
evaluate the pressure difference of bubbles and the
radius of bubbles and then the surface tension was
obtained from the Young–Laplace equation. They
found that the surface tension is independent of the
bubble radius and agrees with the surface tension of a
planar interface. So they claimed that the Young–
Laplace equation is applicable in nanoscale. However,
as Cui et al. [8] pointed that this logic was at fault,
obviously. From Eq. (4), Tolman effect should be in
existence for nano bubbles and so the surface tension
is dependent on the curvature radius [1, 6]. The con-
tradiction between Eq. (4) and Matsumoto’s results
from Young–Laplace equation may means that the
Young–Laplace equation is not applicable for nano
bubbles. Droplets and bubbles in nanoscale are both
liquid-vapor equilibrium system, they should follow
the same basic theory. The difference is molecular
number little inside bubbles and much outside bub-
bles. For droplets it is on the contrary. So the Tolman
length of droplets and vapor bubbles are opposite.

Some literatures negated the applicability of the
Young–Laplace equation in nanoscale. In 2005 Tarta-
kovsky [8] considered that the Young–Laplace equation
is fail when a droplet is very tiny. He adopted a qualitative
approach and had no quantitative description. He didn’t
consider the Tolman effect. The rigorous concept of
Gibbs surface of tension didn’t mentioned in the paper.
So it can’t negate the applicability of the Young–Laplace
equation. In 2006 Nagayama [9] pointed out the Young–
Laplace equation is false according to their calculation of
nano vapor bubbles. But they didn’t discuss the magni-
tude of error of this equation in nanoscale.

We suppose that it is more effective to express the
applicability of the Young–Laplace equation in
nanoscale by error estimation. For this aim, we must
use the micro-expressions suitable for MD of the uni-
form phase pressures and those of the surface tension
and radius of surface of tension. To compare thus
obtained surface tension with those directly calculated
from the Young–Laplace equation will be able to test
the magnitude of error of the Young–Laplace equation.
Shuwen Cui et al. did this for nano-scale cylindrical liq-
uid and got the conclusion that Laplace equation is
applicable in nanoscale with fairly good approximation
[8]. The nanodroplets are the objects of our studies. In
Section 2 below, we give the formulas suitable for MD
calculations based on some basic micro-expressions
appeared in [1] with an improved deduction. In the
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γ s
α β−p p sR



RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A  Vol. 90  No. 3  2016

ON THE APPLICABILITY OF YOUNG–LAPLACE EQUATION 637

Appendix the logic error in the deduction of [1] is ana-
lyzed. In Section 3 the simulation, results and discus-
sions are given. The conclusion is given in Section 4.

2. THEORETICAL BASIS
AND CALCULATION SCHEME

Consider a single-component droplet. We choose the
section from the radius  to  of solid angle. It satisfies

, , and  where
 is the thickness of interfacial layer. In spherical coor-

dinates the pressure tensor can be written as

, (7)

where , , and  are orthogonal unit vectors, 
is the transverse component of the pressure tensor.

The isothermal differential thermodynamic equa-
tion of the droplet model is [1]

(8)

Now keep the radius of the general dividing surface 
constant. Consider the isothermal imaginary change
of solid angle. Equation (8) becomes

(9)

where

(10)

The expression of  of the real system is

. (11)

From Eqs. (9) and (11), we obtain the surface tension
of general dividing surface

. (12)

This equation was obtained in [1] as Eq. (4.217) by
other method. Our method is much simpler than the
method in [1]. Equation (12) is suitable for surface of
tension certainly.

According to the definition of surface of tension,
Eq. (8) is simplified as

, (13)
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where  is the area of surface of tension. Now con-
sider an imaginary isothermal process, put a thin col-
umn with thickness dh into the thin space with the
same thickness between two hemispheres, then
Eq. (13) becomes

(14)

where  is the extended thickness. For the real sys-
tem, there is

. (15)

From Eqs. (14) and (15), we obtain the surface tension
of 

. (16)

Here the derivation of Eq. (16) is superior to that of the
same equation (4.205) in [1] logically. Equations (16)
and (12) are suitable for the surface of tension. Equat-
ing them gives the equation that determines 

. (17)

This is the transformation of Eq. (4.207) in page 110 of
[1], but our derivation has corrected the logic f law. A
detailed comment is given in Appendix. By rearrange-
ment of Eq. (17), we obtain

 (18)
For convenience, we introduce the following notation

 (19)

Then Eq. (18) becomes

 (20)
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where , , and   can be obtained by MD
simulations. Eq. (20) becomes a cubic equation in one
variable . The solution procedure is stylized. For
simplified calculation of MD, according to the equi-
librium equation [3], 

, (21)

we have

. (22)

Equation (19) can be written in the following form

, (23)

. (24)

Similarly Eq. (12) is transformed into

. (25)

By MD simulations we obtain ; then , , and
  can be obtained. Substituting them into

Eq. (20), we have . Then the surface tension  is
obtained from Eq. (25). This calculation idea avoids
the determination of surface tension by substituting

, , and  into the Young–Laplace equation.
We check errors of the Young–Laplace equation

(3),

. (26)

Substituting ,  obtained by MD simulation and
 given from Eq. (20) and  provided by Eq. (25)

into Eq. (26), we have the error of  of the
Young–Laplace equation (3).

3. COMPUTER SIMULATION AND RESULTS 
AND DISCUSSION

The droplets formed by argon atoms are our sub-
jects investigated. According to the scheme of Sec-
tion 2, we study systems with numbers of particles (liq-
uid + vapor) 800, 1000, 1200, 1400, 1600, 1800, 2000.
The relation between the surface tension and curva-
ture radius is analyzed. The applicability of the Young-
Laplace equation is tested.

The Lennard-Jones potential (LJ) between argon
atoms takes the form

, (27)
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where , and  are the inter-particle distance, energy
scale and atomic diameter respectively. The parameters

are chosen as  K,  J/K,

 nm,  kg. All quanti-
ties are dimensionless and are expressed by symbol*.
On the basic parameters of argon atom, the quantities
are nondimensionalized as follows:

length:  temperature:  time:

;

density:  force:  energy:
;

pressure: .

The cubic box size of simulation system is
 = . The simulations

have been carried out at . The cutoff dis-

tance is .

The initial configuration was constructed by put-
ting particles on a finite cubic lattice located at the
central part of the box. The mirror boundary condi-
tion is used in all directions. At the initial time the par-
ticles were given velocities according to the Maxwell–
Boltzmann distribution. The Velocity–Verlet algo-
rithm is used in MD [10]. NVT ensemble was used
before equilibration at temperature 78 K. The cell
index method is adopted in calculation of force acted
on atoms. The time step is  fs before equilibrium.
The temperature control method is velocity scaling
scheme. The approaching equilibrium degree was
monitored by total energy f luctuation of system. After
equilibrium we used accumulative average method on
the determinations of mechanical quantity, physical
quantity, etc. The time step is changed to be  fs. On

ε,r σ

ε =B 120k −= × 23
B 1.38 10k

σ = 0.3405 −= × 266.63382 10m

= σ/*r r = εB /*T k T

( )= ε σ2*t t m

ρ = ρσ3/* m = σ ε/*f f
= ε/*E E

= σ ε3/*p p

× ×* * *x y z × ×30.0 30.0 30.0
= 0.65*T

=* 3.0cr

δ = 5t

δ = 2t

Fig. 1. A snapshot of N = 1000 system in equilibrium.
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calculating the mean value of a certain physical quantity
, the formula for accumulative average method is

. (28)

This method can help to judge whether the mean value
is obtained. Figure 1 is a snapshot of a droplet and its
vapor in equilibrium.

According to the scheme in Section 2, the equilibrium
distribution of  should be obtained. We have

, (29)

where ,  are kinetic and configurational
terms respectively.

And there is

, (30)

where  and  are Boltzmann constant and the
number density of molecules, respectively.  and

 can be calculated by MD simulations. For the
determination of  Schofield and Henderson
concluded that there are countless kinds of pressure
tensor suitable for macroscopic f luid mechanics equa-
tion [11]. But Wajnryb [12] have shown that only the
Irving–Kirkwood pressure tensor can satisfy the nec-
essary symmetry needed. The Irving–Kirkwood pres-
sure tensor is now extensively accepted for the calcula-
tion of  [5]. For our spherical symmetry system
the Irving–Kirkwood pressure tensor is calculated by
the method given in [1].

There is

, (31)

where  is the area of a spherical dividing sur-
face of radius  with its center being mass center of the
droplet, and the sum over  is over the normal compo-
nents  of all the pair forces acting across the surface.
In our simulations, thirty-six equidistant spherical
surfaces are selected for the seven systems.
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Figure 2 is the density profile  of N = 800 and
2000. We recorded configuration every one hundred
time steps, and calculated approximate 10000 pictures
for a mean value of density distribution. Figure 3 gives
a detailed computing information for N = 1400 system
about , , , and .

The results of , ,  ( ), , ,

 and the relative error  –  –

 are shown in table for seven systems. The last col-
umn in the table indicates that the absolute values of
relative error are between 0.0008 and 0.027. The rela-
tive errors of different systems are different. This is
because the difference of surface structure is compar-
atively large for different number systems. This is sim-
ilar to the conclusion that exists in reference [9].

With the increasing of , the corresponding sur-
face tension  increases. This is shown in table. This
tendency is consistent with the Tolman theory that the
Tolman length is positive for LJ droplets and Tolman
length is negative for LJ vapor bubbles [6, 13]. It is
identical to Fig. 8 in [5].
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The results of surface tension and calculation error and the relative error etc of seven droplets

800 0.2452 0.0017 –1.295 –6.034 4.284 0.523 –0.0007 –0.0029
1000 0.2415 0.0016 –1.221 –7.099 4.801 0.573 0.0012 0.0050
1200 0.2389 0.0016 –1.118 –7.702 5.165 0.612 0.0003 0.0013
1400 0.2387 0.0016 –1.000 –8.044 5.532 0.661 –0.0063 –0.0270
1600 0.2386 0.0016 –0.983 –9.956 5.901 0.700 –0.0002 –0.0008
1800 0.2281 0.0016 –0.961 –11.041 6.301 0.716 –0.0008 –0.0035
2000 0.2240 0.0015 –0.871 –11.933 6.656 0.735 0.0016 0.0072
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Fig. 2. The density profile  of N = 800 and 2000 system.
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4. CONCLUSIONS
For droplets and bubbles in nanoscale, debates con-

tinue on the applicability of the Young–Laplace equa-
tion. It is more meaningful to calculate the error of the
Young–Laplace equation in nanoscale instead of dis-
cussing the applicability of the equation. In order to
check the error of the Young–Laplace equation, we
determine Rs and γs of droplets in nanoscale by MD
simulations. Pressure difference between liquid and
vapor phase (pα – pβ) is given by substituting Rs and γs

into Young–Laplace equation. The results of (pα – pβ)
obtained by MD simulations are also given. Compare
them we have the error of (pα – pβ) of the Young–
Laplace equation. Seven liquid argon drops (the num-
ber of particles are 800, 1000, 1200, 1400, 1600, 1800,
2000) are taken to carry out our scheme at T = 78 K.
The results show that the absolute values of relative
error of two-phase pressure difference are between
0.0008 and 0.027. It indicates that the surface tension of
argon droplet increases with increasing radius of surface
of tension, which supports the Tolman length of LJ
droplets is positive and LJ vapor bubbles is negative.

APPENDIX

The flaw of the formula derivation in reference [1]
on Eq. (17)

In reference [1] on page 110, there is a formula

(A.1)

Eq. (A.1) is corresponding to Eq. (17) of this article.
The derivation of reference [1] is shown as follows:

    Consider a f lat radial strip, stretching from radius
 to . The force acting on one side of this strip and

the moment of the force about the centre should be
equivalent with the values of corresponding model

β
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β

α
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=

−

∫

∫
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,
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R

r p r R p r dr

R

r p r R p r dr

αR βR

system with surface of tension being dividing surface
(the radius is ). So we have

(A.2)

which gives Eq. (A.1).
At first sight for the real system, both the force act-

ing on one side of this strip and the moment of the
force about the centre should be equivalent with the
values of corresponding model system with any divid-
ing surface (the radius is R). If so, Eq. (A.1) is applica-
ble for any dividing surface. Therefore, it is necessary
to prove that both of (A.2) are valid only for the surface
of tension and for any other dividing surface, at least
one of the two expressions is false. There is no such
proof in reference [1], which is a logic error. The pres-
ent paper gives a strict deduction for (A.2) from the
fact that surface of tension and any other surface has
different differential equation of thermodynamics.
Our derivation of Eq. (17) corrects the f law.

ACKNOWLEDGMENT
This work was supported by the National Natural

Science Foundation of China (grant nos. 11072242
and 11032011) and University Teaching Reform Proj-
ect of Shanxi Province (Grant no. J2013105).

REFERENCES
1. J. S. Rowlinson, and B. Widom, Molecular Theory of

Capillarity (Clarendon, Oxford, 1982).
2. J. W. Gibbs, Collected Works (Longmans Green, New

York, 1928).
3. S. M. Thompson, K. E. Gubbins, J. P. R. B. Walton,

et al., J. Chem. Phys. 81, 530 (1984).
4. M. J. P. Nijmeijer, C. Bruin, A. B. van Woerkom, et al.,

J. Chem. Phys. 96, 565 (1992).
5. S. H.Park, J. G. Weng, and C. L. Tien, Int. J. Heat

Mass Transfer 44, 1849 (2001).
6. R. C. Tolman, J. Chem. Phys. 17, 333 (1949).
7. M. Matsumoto and K. Tanaka, Fluid Dyn. Res. 40, 546

(2008).
8. S. Cui,  J.  Wei, X. Wang, S. Xu , Z. Sun , and R.  Zhu,

J. Comput. Theor.  Nanosci. 12, 189 (2015)
9. A. Tartakovsky and P. Meakin, Phys. Rev. E 72, 026301

(2005).
10. G. Nagayama, T. Tsuruta, and P. Cheng, Int. J. Heat

Mass Transfer 49, 4437 (2006).
11. M. P. Allen and D. J. Tildesley, Computer Simualtion of

Liquids (Clarendon, Oxford, 1987).
12. P. Schofield and J. R. Henderson, Proc. R. Soc. Lon-

don A 379, 231 (1982).
13. E. Wajnryb, A. R. Altenberger, and J. S. Dahler,

J. Chem. Phys. 103, 9782 (1995).
14. E. M. Blokhuis and J. Kuipers, J. Chem. Phys. 124,

074701 (2006).

sR
β β β

α α α

α β α β+ − =

=

∫ ∫ ∫
, ( ) ,

( 1, 2),

R R R
n n n n

s T

R R R

r p dr r p dr R r p p r dr

n

Fig. 3. The computing information of N = 1400 system.
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