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This paper presents the development, validation and application of a smoothed-particle hydrodynamics
model for three-dimensional (3D) simulation of the evolution of large deformation failure in geo-
materials. The Drucker–Prager model with non-associated plastic flow rules is implemented into the
smoothed-particle hydrodynamics formulations to describe elasto-plastic soil behaviour. Two typical
numerical examples – a two-dimensional (2D) analysis of cohesive slope instability and a 3D simulation
for instant collapse of a granular slope – are shown to demonstrate the effectiveness of the method for
modelling large deformation of slope failure. Good agreement with experimental observations and
previous simulated results is obtained in terms of the profile and internal deformation, respectively. The
method is then applied to two special 3D slopes with different geometric configurations, including a
curving slope surface and a slope that turns corners. The results suggest that 3D effects should be
considered for natural landslides. By influencing the stress status, slope geometries have a significant
effect on the final profile, slip surface and distance. The results provide a more accurate and detailed
reference for landslide evaluation and foundation ditch design.

KEYWORDS: failure; numerical modelling; slopes

INTRODUCTION
Landslides accompanied by large deformation and flow-like
failure of geo-materials are common disasters which often
result in serious loss of life and property. Analysis based on
numerical simulation is one of the powerful research
techniques for providing information regarding: (a) when
and where the failure will take place; (b) what the slip surface
will look like; and (c) how far the collapsed soil mass will
flow. Although numerical analysis has been proven to be
successful with respect to (a) and (b), the third question
regarding the post-failure stage is still open and attracts much
attention. Mesh-based numerical methods, such as the
finite-difference method (FDM) and the finite-element
method (FEM), dominate the simulation of steady and
quasi-steady problems at the present time. For example, after
the pioneering work of Griffiths & Marquez (2007) on
three-dimensional (3D) slope stability analysis using FEM,
Nian et al. (2012) and Zhang et al. (2013), using the FDM
and FEM methods, respectively, discussed the effects of
geometries on 3D slope stability. However, these methods
often suffer from serious numerical difficulties in dealing
with slope post-failure problems, which are accompanied by
extremely large deformations, free surfaces and crack exten-
sions. Severe mesh winding, twisting and distortion may lead
to non-physical results, even the interruption of calculation.
The discrete-element method (DEM) can overcome these
deficiencies and solve large deformation problems (Tapias
et al., 2015). However, the friction and elastic parameters of
the contact zone in DEM need to be calibrated as they are
not directly obtained from experiments. The coupled
Eulerian–Lagrangian (CEL) method can handle multiphase
and large deformation problems (Dey et al., 2015), but for

this method the mesh must be drawn in the whole
computation area, as in the Euler method, which results a
huge mesh in 3D simulation. Thus, novel numerical methods
which can overcome these numerical difficulties are necess-
ary to simulate the overall processes of slope failure.
To overcome the numerical difficulties, mesh-free methods

based on continuum mechanics have been developed to
investigate large deformations in slope failure evolution.
Mesh-free methods characterise materials by a series of
random distributions of particles and rebuild the particle
interactions when particles move. Instead of solving the
discrete governing equations on predefined grids, mesh-free
methods solve the discrete equations on dynamic particle
connections, and therefore have obvious advantages in
dealing with large deformation and free surfaces (see Liu &
Liu, 2004). Smoothed-particle hydrodynamics (SPH) is one
of the most famous methods because of its relatively mature
development and wide applications. Two typical techniques
are usually adopted in the SPH framework to simulate the
large deformation of geo-materials. The first is generally
developed for modelling flow-like soil behaviours (Pastor
et al., 2009; Huang et al., 2012; Cascini et al., 2014; Hu et al.,
2015). The Navier–Stokes equation with Bingham rheology
model is used as the governing equation, and the material
parameters such as strength are attributed to the rheology
model and its parameters. Despite the success of this method
in both two-dimensional (2D) and 3D run-out analysis of
flow-like landslides, it cannot reasonably simulate slip surface
development and crack propagation owing to its fluid nature.
The second technique is developed from geotechnical plastic
mechanics (Bui et al., 2008, 2011; Bui & Fukagawa, 2013;
Chen & Qiu, 2014). As an elasto-plastic constitutive model is
implemented into SPH formulations, this method can handle
more general soil mechanics problems, especially the entire
slope failure evolution; that is, from stable slope to instability,
to collapse, flow and finally back to a stable state.
Furthermore, it can also capture the slip surface shape and
crack extension relatively well. However, most of the current
studies are confined to the 2D case, and few of them apply
this method to the dynamic analysis of 3D slope failure,
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owing to its complex numerical implementation and huge
consumption of computational effort.

Natural slope failure always evolves in three dimensions.
It is therefore important to build a 3D model for both small
and large deformation of geo-materials and to analyse the
differences between the 2D and 3D cases in terms of the final
profile, slip surface and distance. This can provide a more
reasonable reference for evaluating landslide disasters and
economically designing infrastructures, for example, exca-
vations and embankments. The motivation of this paper is to
establish a SPH model for both 2D and 3D simulation of
large deformation failure evolution in geo-materials. Bui
et al. (2008) undertook the pioneering work in which the
elasto-plastic constitutive model for the soils was introduced
into the SPH framework and 2D simulation of large granular
material deformation was achieved. Based on their work, the
present authors have developed this method for a 3D case.
The Drucker–Prager model with non-associated plastic flow
rules is implemented into the SPH formulations to describe
the elasto-plastic soil behaviour. One difficulty in extending
this model from two dimensions to three dimensions is in
designing proper artificial terms to dampen the numerical
instability. In this paper, the unified expression for 2D and
3D artificial stress is implemented and related parameters are
calibrated. In the following sections, the development of the
model is first presented, followed by model validation and
two case studies.

NUMERICAL IMPLEMENTATION
Based on the original work of Bui et al. (2008), their

method is extended and applied to the 3D analysis of
slope post-failure features. Assuming isotropic soil, the
Drucker–Prager model with non-associated plastic flow
rules is adopted to describe the complex soil elasto-plastic
behaviour. The 3D SPH model for simulating large defor-
mation after slope failure is described in detail as follows,
including governing equations, the constitutive model, SPH
formulation and explicit time integration.

Governing equations
The governing equations of geo-materials consist of mass

and momentum conservation

Dρ

Dt
¼ �ρ

@vα

@xα

Dvα

Dt
¼ 1

ρ

@σαβ

@xβ
þ f α

8>>><
>>>:

ð1Þ

where α, β denote the Cartesian components x, y, z with the
Einstein convention applied to repeated indices; ρ is soil
density; v is soil velocity; f α is the component of acceleration
caused by external force, which is the gravitational accelera-
tion in thiswork; σ represents the total stress tensorof soil and
its expression can be obtained from the constitutive model.

Constitutive model
In geotechnical mechanics, the total strain rate tensor is

defined as

ε̇αβ ¼ 1
2

@vα

@xβ
þ @vβ

@xα

� �
ð2Þ

Moreover, the total strain rate tensor can be decomposed into
an elastic and a plastic part

ε̇αβ ¼ ε̇αβe þ ε̇αβp ð3Þ

The elastic strain rate tensor ε̇αβe is normally computed by the
generalised Hooke’s law

ε̇αβe ¼ Ṡ
αβ

2G
þ 1� 2υ

3E
σ̇γγδαβ ð4Þ

where σ̇γγ is the sum of three principal stress rates

σ̇γγ ¼ σ̇xx þ σ̇yy þ σ̇zz ð5Þ
Similarly, ε̇γγ is the sum of three principal strain rates

ε̇γγ ¼ ε̇xx þ ε̇yy þ ε̇zz ð6Þ
By applying the plastic flow rule, the plastic strain rate ε̇αβp is
defined as

ε̇αβp ¼ λ̇
@g
@σαβ

ð7Þ

The soil hydrostatic pressure P can be obtained directly from
the constitutive equation by the standard definition of mean
stress

P ¼ �σγγ

3
¼ � 1

3
ðσxx þ σyy þ σzzÞ ð8Þ

The Drucker–Prager model with non-associated plastic flow
rules is adopted here. The yield condition f (I1, J2) and plastic
potential function g(I1, J2) have the following forms,
respectively

f ðI1; J2Þ ¼
ffiffiffiffiffi
J2

p
þ αϕI1 � kc ¼ 0 ð9Þ

gðI1; J2Þ ¼
ffiffiffiffiffi
J2

p
þ αψI1 � C ð10Þ

where I1 and J2 are, respectively, the first and second
invariants of the stress tensor; C is an arbitrary constant;
αϕ and kc are Drucker–Prager’s constants, which are related
to the Coulomb’s material constants c (cohesion) and ϕ
(internal friction); αψ has the same expression as αϕ and is
related to the dilatancy angle ψ of geo-materials.

αϕ ¼ tan ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12 tan2 ϕ

p kc ¼ 3cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12 tan2 ϕ

p
αψ ¼ tanψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 12 tan2 ψ
p ð11Þ

for the 2D plane strain condition.

αϕ ¼ 2 sin ϕffiffiffi
3

p ð3� sin ϕÞ kc ¼ 6c cos ϕffiffiffi
3

p ð3� sin ϕÞ
αψ ¼ 2 sinψffiffiffi

3
p ð3� sinψÞ

ð12Þ

for the 3D condition in which the Drucker–Prager failure
surface coincides with the outer cone of the Mohr–Coulomb
hexagonal surface, corresponding to triaxial compression.
Comparing with plastic deformation, smaller elastic defor-
mation of volume can be ignored in the present model.
The plastic deformation of volume can be represented by the
dilatancy angle, ψ.
The stress–strain relationship is therefore expressed as

Dσαβ
i

Dt
¼ 2Gėαβ

i þ Kεγγi δ
αβ
i

� λ̇i 3αψKδαβ þ Gffiffiffiffiffi
J2

p sαβi

� � ð13Þ

where λ̇ is the rate of change of the plastic multiplier and is
determined by the elasto-plastic function, equation (9);
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ṡαβ is the deviatoric shear stress rate tensor; ėαβ
i is the

deviatoric shear strain rate tensor; δ is Kronecker’s delta;
K and G are, respectively, the elastic bulk modulus and
the shear modulus, which are related to the Young’s modulus,
E, and Poisson ratio, ν, through the following equations

K ¼ E
3ð1� 2νÞ and G ¼ E

2ð1þ νÞ ð14Þ

A general technique to treat finite strain problems is to
compute a field variable for the next time step by way of its
rate of change during the current time step. Considering the
effect of rigid body rotation on the current stress rate, the
Jaumann rate of Cauchy stress is used here

σ̇αβ
J ¼ σ̇αβ � ω̇αγσγβ � ω̇βγσαγ ð15Þ

where ‘·’denotes the derivative with respect to time; subscript
J designates the Jaumann rate; and ω̇ is the spin rate tensor

ω̇αβ ¼ 1
2

@vα

@xβ
� @vβ

@xα

� �
ð16Þ

The stress rate tensor in a finite strain framework is converted
to

σ̇αβ ¼ σ̇αβ
J þ ω̇αγσγβ þ ω̇βγσαγ ð17Þ

The integration of rate equations is dependent on the
assumption of infinitesimal strain between two adjacent
configurations. This formulation is adopted in the current
study and this treatment is acceptable as long as the time
increments are small.
Finally, the normal form of the stress–strain relationship

for elasto-plastic materials can be expressed as

Dσαβ

Dt
¼ σαγω̇βγ þ σγβω̇αγ þ 2Gėαβ þ Kεγγδαβ

� λ̇ 3αψKδαβ þ Gffiffiffiffiffi
J2

p sαβ
� � ð18Þ

where the two first terms are the results from the Jaumann
stress rate tensor, the third and fourth terms refer to the
elastic behaviour, and the last term relates to the plastic
deformation.

SPH formulation
In the SPH simulation, the entire calculation domain is

expressed by finite but sufficient discretised particles with
physical properties such as volume, density, velocity, accel-
eration and stress. The interaction between particles is
realised by a kernel function. Through kernel and particle
approximations, the governing equations and the constitutive
equation become a set of ordinary differential equations that
only depend on the variable of time. Then, the other field
variables can be obtained by explicit time integration. The
discretised equations in SPH formulation can be expressed as
follows.
The continuity equation

Dρi
Dt

¼
XN
j¼1

mjðvαi � vαj Þ
@Wij

@xαi
ð19Þ

The momentum equation

Dvαi
Dt

¼
XN
j¼1

mj
σαβ
i þ σαβ

j

ρiρj
�
Y

ij
δαβ þ Fn

ij
Rαβ

ij

 !

� @Wij

@xβi
þ gα

ð20Þ

The constitutive equation

Dσαβ
i

Dt
¼ σαγ

i ω̇
βγ þ σγβ

i ω̇
αγ
i þ 2Gėαβ

i þ Kεγγi δ
αβ
i

� λ̇i 3αψKδαβ þ Gffiffiffiffiffi
J2

p sαβi

� � ð21Þ

The rate of change of the plastic multiplier

λ̇i ¼
3αϕK ε̇γγi þ ðG=

ffiffiffiffiffi
J2

p Þsαβi ε̇αβi
9αϕαψK þ G

f ðI1; J2Þ . 0

0 f ðI1; J2Þ � 0

8<
: ð22Þ

The strain rate tensor and the spin rate tensor

ε̇αβi ¼ 1
2

XN
j¼1

mj

ρj
ðvαj � vαi Þ

@Wij

@xβi
þ
XN
j¼1

mj

ρj
ðvβj � vβi Þ

@Wij

@xαi

" #

ð23Þ

ω̇αβ
i ¼ 1

2

XN
j¼1

mj

ρj
ðvαj � vαi Þ

@Wij

@xβi
�
XN
j¼1

mj

ρj
ðvβj � vβi Þ

@Wij

@xαi

" #

ð24Þ
Wij is the kernel function. To suppress the tension instability
in the calculation, the kernel function proposed by Yang &
Liu (2012) is used in this paper. Its second derivative is
non-negative.

W ¼ ðr; hÞ

¼ αD

q3 � 6qþ 6; 0 � q , 1

ð2� qÞ3; 1 � q , 2 q ¼ r
h

0; q � 2

8>><
>>: ð25Þ

where the normalised coefficient αD is 1/(3 πh2) in the 2D
condition and 15/(62 πh3) in the 3D case.
The artificial viscosity term ∏ is used to stabilise the

numerical system. It is given by

Y
ij

¼
�αc̄ijμij þ βμ2

ij

ρ̄ij
vij � xij , 0

0 vij � xij � 0

8><
>: ð26Þ

where μij ¼ hij � vij � rij
� �

= r2ij þ 0�01h2ij
� �

; ρ̄ij ¼ ρi þ ρj
� �

=2;
c̄ij ¼ csi þ csj

� �
=2; hij= (hiþ hj)/2; vij= vi� vj; rij= ri� rj;

cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4G=3ρþ K=ρ

p
; α and β are constants and contingent

upon specific problems. The artificial viscosity term would
cause too much energy dissipation if used with an α value
that is too large. Alternatively, the term would not be enough
to suppress the numerical instability if used with an α value
that is too small. For the trial method, the authors chose
α=0·1 and β=0 in this study.
The artificial stress term Fn

ijR
αβ
ij in equation (20) is used

to reduce tensile instability, where Fij=Wij/W(Δx, h);
n=W(0, h)/W(Δx, h), n=2·55 in this paper; Rαβ

ij ¼Rαβ
i þRαβ

j ,
where Rαβ

i and Rαβ
j are, respectively, the components of the

artificial stress tensor at particles i and j. A unified expression
for 2D and 3D artificial stress is derived here. Assuming
σx ¼ ηx, η is invariant, and x is a non-zero m-dimensional
vector, then η1, η2, …, ηm are eigenvalues corresponding to
vector x. σ′ ¼ diagðη1; η2; . . . ; ηmÞ, m=2 for the 2D con-
dition, and m=3 for the 3D case.

Rαβ ¼ �ε
σ′αβ

ρ2
σ′αβ . 0

0 σ′αβ � 0

8><
>: ð27Þ
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where ε is a constant taken from 0 to 1; here the constant is
taken to be ε=0·3 after careful calibration.

Explicit time integration
The Verlet scheme is adopted in the proposed model.

To discretise equations, this time-stepping algorithm is
split into two parts. In general, variables are calculated
according to

vnþ1 ¼ vn�1 þ 2Δt
Dv
Dt

� �
n
; ρnþ1 ¼ ρn�1 þ 2Δt

Dρ

Dt

� �
n
;

σnþ1 ¼ σn�1 þ 2Δt
Dσ

Dt

� �
n
; rnþ1 ¼ rn þ Δt � vn þ 0�5Δt2 Dv

Dt

� �
n

ð28Þ
Once every M time steps (M=40, here), variables are
calculated according to

vnþ1 ¼ vn þ Δt
Dv
Dt

� �
n
; ρnþ1 ¼ ρn þ Δt

Dρ
Dt

� �
n
;

σnþ1 ¼ σn þ Δt
Dσ

Dt

� �
n
; rnþ1 ¼ rn þ Δt � vn þ 0�5Δt2 Dv

Dt

� �
n

ð29Þ
Time-step control is dependent on the Courant–Friedrichs–
Lewy (CFL) condition, the forcing terms and the viscous
diffusion term. Avariable time step is calculated according to
Monaghan & Kos (1999)

Δtf ¼ min

ffiffiffiffiffiffiffi
h
faj j

s !
; Δtcv ¼ min

a

h

cs þmax
b

ðhvabrab=r2abÞ

0
@

1
A;

Δt ¼ NCFL �minðΔtf ;ΔtcvÞ
ð30Þ

Here the CFL number is 0·2, Δtf is based on the force per unit
mass |fa|, and Δtcv combines the Courant and the viscous
time-step controls. An automatic time-step adjustment
technique is also developed to reduce the occurrence of
overestimation of stress when the stress status approaches
the plastic yield stage.

MODELVALIDATION
Two typical examples are used in this section to verify the

validity of the 3D SPHmodel of large deformation and slope
failure. A 2D cohesive soil slope instability test is simulated
by a strength reduction technique (Bui et al., 2011), which
shows the good applicability of this model to a clay slope.
A test involving 3D collapse of a granular slope is reproduced
to validate the reliability of this method in simulating the very
large deformation of granular materials.

2D cohesive soil slope instability
Bui et al. (2011) simulated a 2D cohesive soil slope

failure process induced by the strength reduction technique.

The slope is 15 m high and 45 m long in total, and the far
field boundaries are set to smooth walls, which provide only
normal constraints of stress and strain. The length of the
inclined part is 22·36 m and the initial slope angle is 26·57°.
The soil parameters of the clay slope are given in Table 1.
A more detailed setting can be found in Bui et al. (2011).
Here this work is repeated and a comparison is made with
their simulated results. The strength reduction technique is
used and the corresponding parameters cr and ϕr can be
expressed as follows

cr ¼ c
SRF

; ϕr ¼ arctan
tanϕ
SRF

� �
ð31Þ

where c and ϕ are the actual shear strength parameters; and
SRF is the shear strength reduction factor. The actual c and ϕ
are used in the simulation to reach the initial steady state first,
then the strength is suddenly reduced to cr and ϕr (similar to
an earthquake situation; the moment that the strength was
reduced is labelled T=0); finally the simulation evolves to the
steady state.
The simulated steady state after slope failure is shown in

Fig. 1, the shaded dots represent particles in the simulation
and the shading is for the accumulated plastic strain (ADPS),
which can represent the slip zone. It can be seen that the final
slope profile is highly consistent with Bui’s simulated results
(black dashed-dotted line), and the form of the slip surface
shows good agreement with the Bishop’ circle obtained using
the limit equilibrium method (black dashed line). This
simulation shows the validity of the proposed 3D SPH
model for large deformation failure evolution in the 2D case.

3D collapse of non-cohesive granular cuboid
Liu et al. (2013) studied the 3D dynamic collapse process

and the internal deformation characteristics of a granular
slope in the laboratory. In their experiments, a box (0·3 m
long, 0·25 m wide and 0·2 m high) with avertical gate on one
side of the longitudinal direction is filled with granular
materials with a surface elevation of 0·144 m. When the gate
is lifted vertically and quickly, the granular cuboid begins to
collapse and spread. The dynamics in the collapse process is
then revealed and the influence of different bases is discussed.
The present authors simulated the test conducted on a sand
base and rendered the entire collapsing process essentially
under the same experimental conditions. To ensure the
foundation was covered by more layers of particles and to
reduce the influence of boundaries, the base thickness was set
to 0·036 m in the simulation instead of 0·012 m in the
experiment, and the particle spacing of 0·004 m was chosen
to control the calculation consumption. The soil parameters
in this simulation are listed in Table 1 as sample 2.
Liu et al. (2013) focused on the final topography of

the slope and the spatial and temporal distribution of
internal deformation structures. Here the focus is on
numerical reproduction of two key experimental data: the
final topography obtained from 3D scanner and the internal
deformation structures obtained by a shaded line separating
different layers. Fig. 2 shows the simulated final shape after
the dumping of the 3D granular slope. A general 3D view of

Table 1. Soil parameters used in this study

E: kPa ν ρ: kg/m3 c: kN/m2 ϕ: deg ψ: deg SRF

Sample 1 100 0·3 2000 10 20 9 1·40
Sample 2 10 0·25 1530 0 33 0 1·00
Case study 100 0·3 1800 10 20 9 1·40
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the slope shaded according to total displacement is shown in
Fig. 2(a), and the quantitative comparison of the elevation
contour line can be found in Figs 2(b)–2(d). It can be seen
that the numerical results overestimate the elevation of the
middle plane a little, whereas they underestimate the width of
the slide slightly at the lower parts. Generally speaking,
however, the simulated results are satisfactory.
Revealing the internal structure is a distinguishing feature

of the work of Liu et al. (2013). They used a coloured line
to distinguish different layers and conjectured the internal
structures with the deformation of these lines. The current
simulation follows the same idea, but only the most basic
internal structures are clearly represented (Fig. 3) owing
to the limit of spatial resolution. In Fig. 3, the different layers
are shaded differently and dashed lines are drawn at
the interface of the different layers. A line connecting the
inflection point of the dashed lines implies the location and
shape of the internal plastic zone. It can be seen that
the simulated inflection points of each layers agree well
with the observed internal structures (the solid lines),

especially the lowest and the second uppermost lines, con-
sidering the difficulty of representing the internal structure
and limited spatial resolution. These results suggest that the
proposed SPH model for slope deformation and failure can
effectively simulate the complete process of large defor-
mation and slope failure in the 3D case.

COMPUTATIONAL CASE STUDIES
The proposed methodwas applied to two special 3D slopes

with different geometric configurations, including two types
of slope: a curving slope surface and turning corners. The
detailed geometric configuration is shown in Fig. 4 and
the boundary is considered as a rigid wall for all situations.
The soil parameters involved are given in Table 1, listed as
‘Case study’, for both of the two cases.

Case 1: Effect of curvature on 3D slope deformation
Most natural slopes finally evolve to a certain radian state.

According to the 2D plane strain theory, it is not possible to
conduct fully the 2D simulation for this type slope with a
curving surface. Currently, studies on 3D simulation of slope
deformation and failure are rare, and few researchers focus
on the effect of geometries on slope deformation. Here, three
typical slope deformation and failure processes were simu-
lated, including concave, common and convex surfaces at the
same inclination of 45°, as shown in Figs 4(a)–4(c).
Figure 5 shows the final 3D profile for case 1 after

deformation. Figs 5(a), 5(b) and 5(c) show the concave slope
shaded according to displacement, slope body and cut
section of M and N planes shaded according to ADPS,
respectively; Figs 5(d), 5(e) and 5(f) show the same items for
the common slope, whereas Figs 5(g), 5(h) and 5(i) show the
items for the convex slope, respectively. The 3D effect on
slope deformation is clearly presented, and the whole slip
surface eventually evolves to a dish shape. For the three

Bishop’s method

ADPS: 

Bui’s simulation (Bui et al., 2011)

0·2 0·4 0·6 0·8 1·0

Fig. 1. Simulated steady state of sample 1 after slope failure, as
against Bui’s simulated results (black dashed-dotted line) and the
Bishop’ circle from the limit equilibrium method (black dashed line):
the shaded dots represent particles under simulation and the shade
represents the accumulated plastic strain (ADPS)

–200 –100 0

(c) (d)

(b)(a)
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100 0

Fig. 2. The final shape after the collapse of the 3D granular cuboid: (a) 3D view of the slope shaded according to total displacement of each
particle; (b) comparison of slip shape between simulated and experimental results from the top view (the simulated result is shaded according to
elevation and the black line is the observed contour line in the experiments); (c) quantitative comparison of observed profile and simulated profile at
x=212 mm plane; (d) quantitative comparison of observed profiles and simulated profiles at middle plane and y=100 mm plane
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typical slopes, including concave, common and convex
surfaces, the dish shape of the slip surface becomes
successively clearer. Moreover, the convex slope, which is
not restrained by the boundaries, cause the largest displace-
ment of the three cases, and the volume of the slide body is
significantly larger than the others. The accumulated plastic
strain distribution of the slide body can be observed in the cut
section of the M and N planes. As shown in Figs 5(c) and
5(i), the plastic area of the concave slope is much thinner than
that of the convex slope, and the common slope falls in
between.

The quantitative comparison of displacement of M1 and
M2 in the vertical section M is carried out for the 2D and 3D

cases, as shown in Fig. 6. If the slope is convex, both the
settlement distance at M1 and the translational distance at
M2 are greater than for the 2D case, whereas the opposite
occurs for the concave slope. If the slope is straight, both the
settlement distance at M1 and the translational distance at
M2 are less than for the 2D case, just as for the concave case.
These phenomena are a direct consequence of the different

3D stress status for the different slope shapes. Taking the M
plane as an example, the planar stresses in the M plane for
the different cases should be more or less similar to each
other as their shape in the M plane is the same. However,
the normal stress on the M plane is very different. For the
concave situation, the lateral support of the wall boundaries
induces strong lateral stress, which provides extra confining
pressure to the soil on the M plane. Moreover, the concave
shape will generate an arch in the elevation plane. The
longitudinal direction stress in the M plane will be redis-
tributed to lateral zones by the arch. These two effects
together will reduce the driving force and enhance the
constraints, which delay the shear failure of the soil.
The convex situation is just the opposite, and the common
shape situation falls in between these two. Evidence can be
found in Fig. 7 where the data for cross-section M are
compared with the 2D case. The delay of shear failure causes
a confined single internal deformation zone for the concave
situation, whereas the shear failure occurs in a relatively large
zone owing to the lack of constraints of the convex situation.
In general, the more the slope bulges, the farther the
settlement distance of the slope top and the translational
distance of the slope toe migrate (see Figs 7(b)–7(d)).

Case 2: Effect of turning a corner on 3D slope deformation
A slope that turns a corner is often encountered in

engineering construction, such as in foundation excavation

0·4

0

0·05

0·10

0·15

0·3 0·2
X: m

Z:
 m

0·1 0
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between numerical (dots) and experimental results (lines). The dots are
shaded to represent the layers in the experiments; their size is in
proportion to the displacement to highlight the internal slip zones. The
dashed lines are drawn to help in separating different layers; the solid
lines are internal deformational structures observed by Liu et al.
(2013)
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and embankment slope protection. However, the 2D simu-
lation could not accurately represent the deformation
characteristics for the corner at all. Here, therefore, two
typical conditions are considered: the concave and convex
sets with a 90° corner and 45° side slope. The geometry of the
3D slope model is given in Fig. 4 for: concave (Fig. 4(d)) and
convex (Fig. 4(e)) subbase. P1 and P2 are at the top and the
toe of the slope in section P; and Q1 and Q2 are at the top
and the toe of the slope in section Q.

The final 3D profile after slope deformation is shown
in Fig. 8 for the concave (Figs 8(a), 8(b) and 8(c)) and the
convex (Figs 8(d), 8(e) and 8(f)) subbases. For each
geometric configuration, the overall concave corner slope
shaded according to displacement, ADPS and slide body
shaded by displacement is shown, respectively. The slip
surface of the concave subbase is formed by the hollow
junction of two ‘C’ surfaces, like a rising wing with a
symmetrical shape. For the convex sets, the sliding surface is
made up of the raised combination of two ‘S’ curves, like the
downbeat of a wing with a symmetrical shape. There are two

reasons why the displacement at the centre section is smaller
than that at the lateral section: first, the slope angle of the
slope at the centre is smaller, which make it more stable, and
second, the slope at the centre suffers less constraint of the
lateral zones.
The quantitative comparison of the vertical displacement

of slope toe P1 and the horizontal displacement of slope toe
P2 in section P with the 2D case is shown in Fig. 9. This
shows that the peak P1 of the concave subbase is almost
immobile, and the vertical displacement at P1 of the convex
subbase falls in between the 2D case for sections P and Q. At
the slope toe P2, the horizontal displacement for the concave
and convex subbases is small and far below the 2D case in
cross-section P. The 2D case in cross-section Q is higher than
that in section P. Fig. 9 also show a quantitative comparison
of the vertical displacement of slope toe Q1 and the
horizontal displacement of slope toe Q2 in section Q with
the 2D case. The vertical displacement at Q1 of the concave
subbase falls between the 2D case for sections P and Q, as
does the horizontal displacement at Q2. For the convex
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ADPS: 0 0·5 1·0 1·5

Fig. 7. Comparison of the cumulative plastic strain between (a) the 2D condition and the 3D condition of (b) concave, (c) common and (d) convex
slopes in section M. Shaded dots represent the simulation results and the black dashed line represents the initial shape of the slope in two
dimensions and the slope section in three dimensions
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subbase, the horizontal displacements at Q1 and Q2 are
smaller than their corresponding 2D case in section P. The
above analysis shows that the foot of the slope at the corner of
the convex and concave subbase is relatively safe, and
instability and deformation are more likely to occur at the
top corner of the convex subbase and the side slope of the
concave subbase.
The reasons why these phenomena occur are similar to

case 1: the different 3D stress status for different slope
shapes. In this case, the normal stress on the P plane from
each side has a different direction. For the concave subbase
case, these two stresses help the slope in the P plane to remain
steady, whereas those in the convex case do the opposite.
However, the slope angle of the P plane is relatively smaller
than for the Q plane. Thus, the Q plane will always fail first
and then help the P plane to remain steady, even for the
convex case. In the convex situation, the failure of the Q
plane causes sinking of the top of the P plane and prevents its
further failure; it also causes cracks around the toe of the P
plane, which actually isolate the toe area and reduce the
deformation. These mechanisms can be examined by
comparing the ADPS data for the cross-sections of P and
Q with the 2D case, as shown in Fig. 10. It is interesting to
note that the plastic area of the concave subbase in section P
is triangular (where the slide body is mainly composed of the
lateral slide materials), whereas it is quadrilateral for the
convex subbase.

Discussion
These two case studies are very typical engineering

problems involving soil large deformation in which 3D
effects should be considered. The first one involves different
normal stress magnitude, whereas the second one involves
different lateral stress direction. These differences will lead to
different stress status, different shear failure pattern and thus
different results. Furthermore, although these two cases
are very simple, there is still no simple relation between the
2D and 3D results. Thus, to determine how much the 2D
method overestimates or underestimates the results in
complex engineering practices remains a challenging task.
The method in this paper might be a promising step.
Although the non-Newton fluid-based methods have been

proven to be effective in dealing with fluid-like landslides, the
method in this paper has its own advantages. As the soil is
modelled as elasto-plastic material, which is more general
for simulating soil deformation, this method has three
advantages when compared with non-Newton fluid-based
methods. First, as the elasto-plastic constitutive law is used,
this numerical model can simulate not only fluid-like land-
slides, but also landslides in the steady or quasi-steady state.
Second, as all of the nine components of the stress tensor
are considered, the stress status would be closer to the real
situation, which is essential for the 3D simulation. For
example, the values of σ11, σ22, σ33 might be different from
each other in the symmetric plane for cases shown in the
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section entitled ‘Case 1: effect of slope curvature on 3D slope
deformation’, which could be represented naturally in this
study, whereas the fluid-based method would need to use
one isotropic pressure to represent this stress status. Third,
all parameters in this study could be obtained directly from
general soil mechanics experiments, whereas fluid-based
methods need antecedent relations, such as the relation
between τ0 in the Bingham model and soil parameters c and
ϕ. One of the deficiencies of this method is the huge
computational consumption. Solving of the elasto-plastic
equations is more complex than for the Navier–Stokes
equation, and the small time step to avoid numerical
instability exacerbates this problem. The authors are still
developing a graphics processing unit accelerated code.

CONCLUDING REMARKS
This paper develops a SPH-based model for large defor-

mation and failure of a 3D slope. The Drucker–Prager model
with non-associated plastic flow rules is implemented into
the SPH formulations to describe the whole process of slope
failure, including occurrence, development and final stability.
Two typical examples of slope instability in two dimensions
and in three dimensions are simulated to validate the
accuracy and effectiveness of this model. Finally, two case
studies on special 3D slope instability with different
geometric configurations, including a curving slope surface
and a slope that turns corners, are conducted for an
exploratory analysis of the final profile, slip surface and
distance. Furthermore, qualitative and quantitative compari-
sons are made with the 2D cases.

The results show the following.

(a) The simulation of a landslide must consider the 3D
effect, as the 3D geometry affects the final profile, slip
surface and distance; 2D simulated results are different
from 3D simulation, and the difference is related to the
initial slope surface.

(b) For three typical slopes (concave, common and convex),
the dish shape of the slip surface becomes progressively
and successively more evident; the plastic area of the
concave slope is much thinner than that of the convex
slope, and the common slope falls in between these two.
Comparing with the 2D case, for the convex slope, the
settlement distance of the top of the slope and the
translational distance of the slope toe are greater than
for the 2D case, whereas the opposite occurs for concave
and common slopes. These are all related to lateral stress
magnitude at the middle plane.

(c) For the two typical subbases (concave and convex), the
3D effect becomes more apparent. The slip surface of
the concave subbase is similar to a rising wing, and that
of the convex subbase is like a down-beating wing with a
symmetrical shape. The toe at the corner of the convex
and concave subbases is relatively safe, and instability
and deformation at the top corner of the convex subbase
and the side slope of the concave subbase are more likely
to occur.

These results provide a more accurate and detailed reference
for landslide evaluation and foundation ditch design.
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NOTATION
c cohesion coefficient
cs speed of sound
E Young’s modulus
ė deviatoric shear strain rate tensor
f acceleration caused by external force

f (I1, J2) yield condition
G shear modulus

g(I1, J2) plastic potential function
I1 first invariants of stress tensor
J2 second invariants of stress tensor
K elastic bulk modulus
P soil hydrostatic pressure
R artificial stress tensor
ṡ deviatoric shear stress rate tensor
v velocity

Wij kernel function
α, β Einstein convention in Cartesian components x, y, z
αD normalised coefficient

αϕ, kc Drucker–Prager’s constants
Δt time step
δ Kronecker’s delta
ε constant
ε̇ total strain rate tensor
λ̇ rate of change of plastic multiplier
ν Poisson ratio
∏ artificial viscosity term
ρ soil density
σ total stress tensor
ϕ internal friction angle
ψ dilatancy angle
ω̇ spin rate tensor
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