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ABSTRACT 

The dynamic coupling between moving top-end vessel and 
submarine riser becomes more remarkable for a floating 
platform in deeper water due to the larger top-end motion 
amplitude, compared with the fixed platform in shallow water. 
In this study the impacts of top-end heave on the riser 
undergoing vortex-induced vibration (VIV) are explored in 
terms of the parametric excitation and the consequent dynamic 
behaviors. By using finite element simulations based on a 
coupled hydrodynamic force approach, the dynamic responses 
of the integrated system including both a floating top-end and 
the riser experiencing VIV are examined.  

Our numerical results show that the riser displacement 
becomes several times larger than the displacement for the case 
without top-end motion, and the impact of heave on riser VIV 
response gets larger as the modal order number dropping. Riser 
VIV amplitude becomes, almost linearly, more profound when 
the tension ratio, as one of critical parameters that influence the 
riser dynamic response, gets larger. Moreover, an interesting 
phenomenon called mode transition is observed, particularly at 
lower frequency, during modal dynamics response. 

 
1 INTRODUCTION 

For platform in deepwater, marine risers are usually 
employed to convey gas and oil or optical and electrical 
information between top-end vessel and sea bed. Consequently, 
the vortex-induced vibration (VIV) of slender risers with large 
aspect ratio becomes more complicated as water depth 
increasing. For example, the shedding modes or frequencies of 
wake-vortex may vary along the riser length rather than 
keeping constant. Additionally, the dynamic characteristics of 
slender riser usually presents low-frequency and high-density 
natural modes due to its large structural flexibility. Therefore, 
the VIV of a slender riser often exhibits new phenomena[1,2] 
such as multi-mode VIV, travelling wave and wide–band 
random vibrations, which have presented new challenges to 
researchers.  

On the other hand, compared with fixed platform in 
shallow water, floating platform in deep water has larger 
motion amplitude, and the coupling between top-end vessel and 
submarine riser appears to be more pronounced. Moreover, 
new issues such as additional lock-in region, parametric 
excitation and response amplification owing to the coupling are 
introduced[3-5]. It is noted that the tension fluctuation due to 
top-end heave may cause a riser VIV involving higher-order 
modes along with larger-amplitude dynamic response, e.g. 10% 
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and 20~100% higher riser displacement and shear stress 
respectively than the case without vessel motion[5]. Moreover, 
Silveira[6] (2007) found mode jump may occur during the 
dynamic response. He investigated the effect of vertical motion 
of the floating unit on the VIV of risers by using a finite 
element model coupled to a wake-oscillator model. Park and 
Jung[7] (2002) reported that the parametric excitation alters the 
response pattern of a long slender marine structure. 

Among the researches on the dynamic coupling between 
top-end vessel and marine riser, most of them address on top-
end dynamic response. Generally, the methods of those 
researches can be classified into two kinds: quasi-static 
method[8-11] and coupled method[12-18]. In quasi-static method, 
riser is modeled by a spring with lumped mass, and only 
hydrostatic restoring force of riser is considered. In coupled 
method, submarine riser and its hydrodynamic force are mostly 
simplified[15,17,18], e.g. the Morison formula is employed to 
model hydrodynamic force. Moreover, the main concern of 
previous researches is dynamic responses of riser rather than 
VIV of riser.  

In addition, it is worthwhile to mention that the dynamic 
coupling mechanisms, between top vessel and submarine riser, 
owing to different vessel motions are essentially different. 
Taking horizontal motion, i.e. sway or surge of vessel, as an 
example, the transverse vibration of top-end propagates along 
riser. This transverse vibration may directly interact with riser’s 
VIV. Even, the vibrating boundary condition introduced by top-
end motion might cause nonlinearly coupling such as response 
amplification or new lock-in. However, if vessel heave is 
considered, it introduces not only a moving boundary, but more 
essentially a fluctuating tension of riser. This time-varying 
tension, in fact, presents a periodically varying structural 
property, thus, the consequence may be parametric excitation of 
riser[3,19,20,21]. When it comes to parametric excitation, most 
researches addressed on stability region of time-varying 
system, e.g. theoretical solutions of stability region based on 
different theories[3,19,22,23] or the dynamic response of an Euler 
beam with simplified hydrodynamic force model[24,25]. Park and 
Jung[7] (2002) implemented a numerical analysis of lateral 
responses of a long slender marine structure under combined 
parametric and forcing excitations. Their results demonstrated 
that a combined excitation needs to be considered for the 
accurate dynamic analysis of long slender marine structures 
subjected to a surface vessel motion. 

In this paper, the dynamic interaction between top-end 
vessel heave and riser VIV is considered. First, we develop a 
hydrodynamic approach to model the vortex-induced lift force 
which depends on simultaneous structure motion. Then the 
dynamic response of the integrate system including top-end 
vessel heave and riser VIV are examined by means of finite 
element simulations. The effects of top-end heave amplitude 
and frequency on riser’s response displacement as well as 
vibration propagation are examined so as to have a deeper 
insight into the interaction between top-end vessel heave and 
riser VIV. 

2 COUPLING SYSTEM MODEL OF TOP-END HEAVE 
AND RISER VIV 

2.1 Parametric Excitation Introduced by Top-End 
Heave 

Top-end vessel heave essentially introduces a time-varying 
structural property, a fluctuating tension of riser. This 
periodically varying structural property consequently causes 
parametric excitation of the riser. Here, we would first have a 
theoretical analysis of the dynamic behavior of an Euler Beam 
pinned at two ends. The governing equation of the Euler beam 
is  

4 2 2

0 04 2 2

( , ) ( , ) ( , )( cos ) 0s
x z t x z t x z tEI T T t m
z z t

ω∂ ∂ ∂
− + + =

∂ ∂ ∂
   (1) 

where ( , )x z t  is the displacement of the beam, and z  and t  
are axial location and time respectively. EI  is the bending 
stiffness. 0T  is the constant top tension and T  and 0ω  are 
the amplitude and frequency of fluctuating tension respectively. 

sm  is the structural mass per unit length. The solution of 

Eq.(1) is assumed as ( , ) ( ) sin =1,2,3...j
j zx z t q t j
l
π

= ， . Then 

we have the Mathieu equation as  
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is the natural frequency of the Euler with constant tension 0T , 

and *
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= 2 . If we set 1( )q t  and 

2 ( )q t  as two particular solutions, with period 0t , of Eq.(2), 
then its eigen-equation can be written as  
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and λ  is the eigen-root.  
As we know, to determine the stability boundary of the 

Mathieu equation, Eq. (2a), means to get the solution, with a 

0t  or 2 0t  period, of Eq. (3). When 1r = , and 1 2 1λ λ= = ± , 
the periodic solutions of Eq.(3) are respectively as follows:  
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Substituting Eq. (4a) and (4b) into Eq. (3) yields:  
2 2 2
0 0 0

2 2 2
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Combining above two equations, we get: 

0

2
, 1,2,3...j k

k
ω

ω = =                (6) 

Eq. (6) indicates that a resonance may occur if both 
excitation frequency 0ω  and natural frequency jω  meet 
Eq.(6), of which the amplitude will approach infinite if the 
system damping is zero. Based on above analysis on stability, 
though, that is done for an Euler beam, further researches[23,26] 
were generalized to other cases. Tang[23] (2001) classified all 
resonances into three kinds, i.e. the primary resonance if 1ω =�  
( 0iϖ ω ω= ), the sub-resonance if 1 nω =� ( 2,3...)n =  and 
the super-resonance if nω =� ( 2,3...)n = .  

It is more complicated if two excitation frequencies of 
both top-end heave and vortex-induced lift force are involved. 
Wang (1998) theoretically studied an Euler beam undergoing 
top-end heave along with VIV. He pointed out that resonances 
may occur when three frequencies satisfy 

0 , 0,1, 2,3...v jk kω ω ω± = = , where vω  is vortex shedding 
frequency. As for a practical system, in order to study its 
dynamic response, finite element simulation is a better 
alternative, which is more powerful when it comes to a 
complex system with external loads involving fluid-structure 
coupling or random distribution. In this study, by developing 
an approach based on FEM (finite element method) simulation, 
we will explore the impacts of top-end heave on riser’s 
dynamic response.  

2.2 Numerical Model of Dynamic Response Analysis 
for the Coupling System 

2.2.1 Structure Model 
The integrate system including both the top-end vessel and 

riser is shown in Fig.1.  
In Fig. 1a, the origin point of the coordinate system is 

located at the bottom end of the riser (fixed to the sea bed). The 
direct of flow U  is along the axis y . The cross-flow VIV, 
i.e. riser’s vibration along axis x , is considered here in this 
paper, because its vibration amplitude is larger than that of in-
line VIV. The heave motion of top vessel, 0( ) i tb t Be ω−= , is 
along the axis z , where B  and 0ω  are respectively the 
amplitude and frequency of motion of top-end heave. In the 
finite element model (shown in Fig.1b), the vessel and the riser 
respectively consist of 3D cubic solid and 1D Euler beam 
elements. The rotational motions around the axis x ， y ，and 
z  of all grids of the top-end are constrained during the FEM 
calculations so as to avoid a probable singularity introduced by 
the extremely large mass of the top-end relative to the riser’s 
mass. Additionally, the multi-point constrain (MPC) is used at 
the joint grid connecting the top-end vessel and the riser, where 

different elements meet together, so that the constrains can be 
exerted smoothly upon different freedoms of degrees. 

 

 
Fig. 1a The platform-riser system and current distribution 

 
Fig. 1b The finite element model of platform-riser system 

Figure 1  The platform-riser system sketch 

2.2.2 Hydrodynamic Force Model 
The hydrodynamic force ( )F z  , exerted by the ambient 

flow around the riser, consists of two parts, i.e. the vortex-
induced lift force LF

 
and the fluid drag force DF . The fluid 

drag force DF  can be expressed by the Morison equation as 

21 1
2 4D D f a fF C Dx x C D xρ ρ π= +� � ��

 
where fρ  

is the fluid density. D  is the riser’s outer 
diameter. DC  and aC  are the coefficients of drag forces and 
added mass respectively, of which the values are 1.0aC =  and 

1.1DC =  for a flexible riser with large aspect ratio.  
VIV has always been a challenging issue concerning the 

interaction between fluid and structural dynamics. It exhibits 
some interesting, and even unexplained until now, traits like 
self-excitation, self-limitation of response amplitude, a variety 
of vortex-shedding modes, multi-mode or wide-band random 
vibration. Initially, vortex-induced lift force per unit length of 
riser is somewhat similar with the Morison equation and 
written as  
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           21
2L f LF U C Dρ=  

where the lift coefficient LC  is a constant value ranging form 
0.8 to 1.2. With recently increasing amount of experimental 
observations along with CFD simulations, deeper 
understandings of VIV have been presented. New approaches 
of hydrodynamic force during lock-in were proposed, which 
are more accurate and reasonable because of considerations of 
coupling between structural and fluid dynamics[2,27,28]. 
Sarpkaya [1] (2004) experimentally measured the Fourier 
average of hydrodynamic force over many cycles of vibration. 
He decomposed the lift force into two parts, the drag part and 
the inertia part, which are respectively related to velocity and 
acceleration of a moving cylinder. He pointed out that for 
practical Reynolds numbers, the nonlinear expression in 
manners of structural motion is able to capture the 
hydrodynamic feature of VIV better than the linear expression. 
Gopalfrishnan[28] (1993) and Govardhan[29] (2004) 
implemented a large amount of VIV experiments and presented 
the lift coefficient in ways of structural motion. Vandiver[2] 
(2002) suggested that a piecewise parabola function of 
structural amplitude could be used for the industrial model of 
lift force to calculate the riser displacement by using the wake 
oscillator model. Based on above studies, we suggest that lift 
coefficient LC  depend on structure motion rather than being 
merely a constant value. 

A third-order polynomial of the structure velocity is used 
to model the lift force so that the nonlinear interaction between 
structural and fluid dynamics is taken into account, i.e. 

2 2 3
0 1 2 3

1( ) ( sin( ) ( , ) ( , ) ( , ))
2

( ( , )) (7)

L L

f L

F x U D C t C x z t C x z t C x z t

p C x z t

ρ ω= + + +

=                                                                  

� � �

�

where 21
2fp U Dρ= and the lift coefficient is

 2 3
0 1 2 3( ( , )) sin( ) ( , ) ( , ) ( , )L LC y z t C t C x z t C x z t C x z tω= + + +� � � � . The 

values of the coefficients 0LC , 1C , 2C  and 3C  can be 
derived by fitting experimental data. Among all VIV 
experiments, the results obtained in situations, of cylinder 
freely vibrating or flexible cable (with large aspect ratio) rather 
than forced vibration or rigid body, are strongly recommended, 
e.g. experiments of Gopalkrishnan(1993), Trim(2005) and 
Chaplin(2005)[29-31]. Chen (2012) gave an approach to calculate 
the coefficients’ values by fitting experimental data. 

Observing Eq. (7), we may say it can capture, to some 
extent, the features of VIV. 1) The feature of self-excitation. In 
Eq. (7), the excitation is represented by the first term 

0 sin( )f Lp C tω , a sinusoidal excitation force, together with the 
second term, 1 ( , )fp C x z t� , which increases as response 
increasing ( 1C  is required to be positive). 2) The feature of 
self-limitation. One of unique traits of VIV is that structural 
response never rises infinitely, but begins to drop when 

response amplitude reaches to a certain number, such as 

max 1.5x =  or 2.0. This feature, called self-limitation, is 
represented by the nonlinear terms with higher orders in Eq.(7), 

2
2 ( , )f C x z tρ �

 

or 3
3 ( , )f C x z tρ �  (at least one of the coefficients 

2C  and 3C  is negative). 3) Axially varying distribution of lift 
force along riser. For case of a rigid cylinder, the vortex-
induced lift force uniformly distributes along riser. But for case 
of a flexible slender riser, the coherence may decrease due to 
the non-uniform distributions of lift force as well structural 
motion. In the present model, the lift force is non-uniform 
because of the axially-varying structural motion. Therefore, the 
span coherence of flexible riser is automatically captured.  

3 EFFECTS OF TOP-END VESSEL HEAVE ON RISER 
VIV 

By cooperating the presented hydrodynamic model with 
the structure model, we carried out the dynamic response 
calculations of the integrate system (shown in Fig.1) by using 
the FEM code (Chen et al., 2012). In order to explore the 
impacts of top-end vessel heave on riser VIV, we will study the 
riser response displacements and its wave propagations along 
riser length at different heave frequencies and tension ratios.  

The structural parameters of the riser are as follows: the 
outer and inner diameters are respectively D = 0.500m and 
d = 0.445m. The riser length is 500m, and the material density 
is sρ = 7.8×103 (kg/m3). The bending stiffness is 
EI = 3.8×109 (Nm2) and the structural damping ratio is 0.03. 
The top tension is T = 6.8×107 (N). The values of the lift 
coefficients are 0 0.22LC = , 1 0.35LC = , 2 0.67LC = − and   

3 1.08LC = −  respectively. The velocity and density of flow are 
U = 1.0 m/s and fρ = 1.0 kg/m3 respectively. The vortex-
induced frequency is assumed consistent with the structural 
frequency, i.e. v jω ω= .  
3.1 Effects of Modal Frequencies  

The riser dynamic responses were simulated as the top-
end heaving at the riser’s natural frequencies of modes ranging 
from of mode 1 to mode 24, meanwhile the vortex-induced lift 
force frequency is same as the heave frequency. Selected 
dynamic response displacements, non-dimensioned by the 
riser’s outer diameter D  as /x D , are presented in Fig. 2.  

Generally speaking, the response displacements increase 
as the heave frequencies decreasing. It is also noted that the 
modal responses of lower-order modes are mostly dominated 
by standing wave, while obvious travelling wave can been seen 
in the responses of higher-order modes, see Fig. 2e and Fig. 2f 
where there is no exact node. This is mainly because the 
damping of the modes with higher order number becomes 
larger, and the modal dynamic response attenuates faster. Thus, 
the riser vibration may attenuate rapidly into a pretty little, even 
zero, value before it meet the reflect wave to form a standing 
wave. Also, with the incease of mode order number, structural 
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deformation curvature increases. So, compared with tesion 
stiffness, effect of bending stifness becomes more significant, 
in other words, the impact of tension on dynamic response gets 
smaller.  

Observing the displacement responses of the riser 
undergoing both VIV and top-end heave, see Fig. 2a, we noted 
that the value of the displacement may get larger than that of 
VIV alone (the displacement limition of VIV is usually around 
1.5~2.0) or,even, that of parametic excitation alone. That is 
probably because the nonlinear interaction between top-end 
motion (along with, consequently, the axial motion) and the 
riser’s VIV, which might nonlineally amplify the dynamic 
response of the riser. Similar phenonmina, a combination of 
vertical and lateral excitation giving greater amplitude, were 
successively reported in the references [7,26,32]. 

 
2a Response of mode 1 

 
2b Response of mode 2 

 
2c Response of mode 4 

 
2d Response of mode 6 

 
2e Response of mode 7 

 
2f Response of mode 20 

Figure 2  RMS displacement of dynamic response of the 
riser experiencing both top-end heave and VIV 

We also compared the displacement responses of the riser 
with top-end heave to the case without top-end heave, see Fig. 
3. It is shown that the maximum amplitude for the riser 
experiencing both top-end heave and VIV is larger than the 
case without top-end motion. Take mode 1 as an example, its 
maximum amplitude is about 3 times of the case without top-
end heave.  
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Figure 3  Comparison of modal dynamic responses 

between cases with top-end heave and without top-end 
heave 

3.2 At Other Frequencies 
For the cases of top-end heaving at other frequencies, e.g. 

0
1 2 ,  , 2 , 4
2 3j j j j jω ω ω ω ω ω= ， , the riser’s dynamics responses 

are presented in Fig. 4.. By comparing Fig.4a and Fig.4b where 

the heave frequencies are respectively 0 1
1
2

ω ω=  and 

0 1
2
3

ω ω= , we note that the dynamic response amplitude 

changes as the heave frequency changing, though the wave 
shapes of RMS displacements look alike.  

In fig. 4c, parametric excitations occur when the heave 
frequencies are repectively 1  1/2 2ϖ = ，  and , and the 
dynamice response amplitude is larger than other senarios. 
Particularly, the largest response amplitude happens at the 
frequency 2ϖ = . But for mode 3, the dynamics responses, see 
Fig. 5, is somewhat different from mode 1. In Fig. 5c, the 
largest response amplitude happens at the frequency 1ϖ = , 
but not as it is 2ϖ = , in Fig. 4c.  

  
 4a RMS displacement at     4b  RMS displacement at 

     
1

1
2
ω  heave frequency      1

2
3
ω  heave frequency  

 
4c Maximum displacement versus heave frequency 

Figure 4  Dynamic response of mode 1 at different top-
end heave frequencies 

 

  
5a RMS displacement at      5b RMS displacement at 

 
3

1
2
ω  heave frequency        3

2
3
ω  heave frequency 

 
5c Maximum displacement versus heave frequency 

Figure 5  Dynamic response of mode 3 at different top-
end heave frequencies 

An interesting phenomenon (called mode transition here) 
is observed during the dynamics responses at some special 
frequencies. Similar phenomenon (called mode jumps then) is 
reported by Silveira[6] (2007) who used Hilbert-Huang spectral 
analysis technique helps distinguishing mode jumps by tracking 
frequency responses in time. Park and Jung[7] (2002) also 
pointed out that the parametric excitation may alter the 
response pattern of a long slender marine structure. 

We think the mode transition in our numerical simulations 
may be introduced by riser’s frequency multiplication due to its 
natural dynamics characteristics. According to Eq.(2b), for the 
modes with lower modal order number, the frequency value is 
approximately proportional to the order number j  because 
the value of tension stiffness is much larger than the bending 
stiffness. In that case, there may be frequency multiplication. 
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The natural frequencies of the riser are listed in Table 1, in 
which we can see that 2 12ω ω≈ , 4 22ω ω≈ . The dynamic 
responses in terms of RMS displacement and temporal-spatial 
evolution are present in Fig. 6, Fig. 7 and Fig. 8 respectively 
for cases of the excitation frequencies are 0 12ω ω= , 0 2ω ω=  
and 0 4ω ω= .  

Table 1 Riser’s natural frequencies   unit: Hz 
Mode 

number 
1 2 4 

frequency/Hz 0.1715 0.3415 0.6917 

Comparing Fig. 6a and Fig. 7a, we can see that the two 
RMS displacements look quite alike and hold almost same 
displacement values. But observing the temporal-spatial 
evolution of displacement, see Fig. 6b and 7b, we can see an 
interesting difference. As 0 2ω ω=  , the response wave 
transfer from the modal shape of mode 2 to mode 1, we call it 
mode transformation here, after a certain periods of time see 
Fig. 7b. Moreover, the response displacement gets larger after 
the mode transformation happens. This phenomenon is also 
observed for case of the excitation frequency 0 4ω ω= , that the 
modal shape transfers from mode 4 to mode 2 while the 
displacement becoming larger, see Fig. 8.  

 
6a   RMS displacement 

 
6b Temporal-spatial evolution of response displacement 

Figure 6  Dynamic response at top-end heave 
frequencies, 0 12ω ω=  

 
7a   RMS displacement 

  
7b Temporal-spatial evolution of response displacement  

Figure 7  Dynamic response at top-end heave 
frequencies, 0 2ω ω=  

 
8a   RMS displacement 

 
8b Temporal-spatial evolution of response displacement  

Figure 8  Dynamic response at top-end heave 
frequencies, 0 4ω ω=  
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3.3 Effects of Tension Ratio 
Effect of tension fluctuation due to top-end heave on 

riser’s dynamic response is examined, and selected results, of 
mode 1 and mode 3, are presented in Fig. 9. The tension ratio 

0T T T=  is the ratio of tension fluctuation to the constant 
tension. It is seen, in Fig. 9, that the response displacement gets 
larger as the tension ratio rising from 0.1 to 1.0. It is also noted 
that the dynamic response is mostly dominated by standing 
wave. But as the tension ratio increasing, the dynamics 
response might be characterized as travelling wave, e.g. the 
case of T = 0.9 and 1.0 as show in Fig. 9b.  

  
9a RMS displacement response of mode 1 

   
9b RMS displacemen response of mode 3 

Figure 9 Dynamics responses at different tension ratios 

4 CONCLUSIONS 
The dynamic responses of the coupling system including 

both a floating top-end and a riser undergoing VIV are 
examined by means of finite element simulations. The 
mechanism of parametric excitation due to top-end heave is 
firstly theoretically analyzed for an Euler beam. Then, our 
numerical simulations show following conclusions: 

1)  The dynamic response amplification gets more 
pronounced as the number of mode order getting smaller. And, 
the modal responses of the modes with lower order number are 
mostly characterized as standing wave, while travelling wave 
can be seen in the responses of modes with higher order 
number. 

2)  Mode transformation is observed during the riser’s 
dynamic responses as the excitation frequency is multi-times 

value of natural frequency, because of the frequency 
multiplication of the riser’s dynamic characteristics. 

 3) As the tension ratio increasing, the response 
displacement gets larger meanwhile the dynamics response 
might shift from standing wave to travelling wave. 
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