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ABSTRACT

Tethered floating circular cylinder can be regarded as a typical
simplified model in offshore engineering. Such structure is the basic
component of TLP. Careful investigation on the dynamic response of
this type of cylinder may- give a hint on some new nonlinear
characteristics of ‘TLP, which have been omitted before. Then the
nonlinear dynamic analysis: of a tethered cylinder is performed in the
time domain. Nonlinearities considered in the analysis include
geometric nonlinearity induced by coupled finite translational and
rotational displacements” of ‘the “cylinder, nonlinear hydrostatic and
inviscid hydrodynamic forces introduced by the effect of instantaneous
wet surface, and the velocity squared viscous drag force (also
integrated to- instantaneous: wet surface). Numerical results. are
presented which illustrate that rotations exert a significant influence on
the dynamic motion responses of the tethered cylinder, and should be
dealt with as finite variables instead of infinitesimal.

KEY WORDS: Nonlinear response; floating circular cylinder; taut
tether; TLP; geometric nonlinearity; finite displacement.

INTRODUCTION

A typical TLP is a floating structure comprising group of cylinders with
taut tether, which allows motions of surge, sway, and yaw in the
horizontal plane and heave, pitch; and roll in the vertical plane. Some
mathematical models have been presented to analyze the dynamic
response of TLP. Ahmad‘ (1996) conducted response analysis
considering viscous hydrodynamic force, variable added mass and large
excursion. In addition, Ahmad, Islam and Ali (1997) investigate TLP’ s
sensitivity to dynamic effects of the wind. Chandrasekaran and Jain
(20024, b) proposed a triangular configuration TLP, and developed a
method to analyze the dynamic behavior of triangular and square TLP.
Furthermore, they performed numerical studies to compare the dynamic
responses of a triangular TLP with that of a square TLP. Williams and
Rangappa (1994) developed an approximate semi-analytical technique
to calculate hydrodynaimic loads and added mass and damping
coefficients for idealized TLP consisting of arrays of circular cylinder.
Yilmaz (1998) presented an exact analytical method to solve the
diffraction and radiation problems of a group of cylinders, taking
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account of the interaction between the cylinders.

For many mathematical models, a priori assumptions are made
explicitly or implicitly, such as translational displacements and angular
displacements being kept infinitesimal. Although other models
ostensibly claim to have considered arbitrary displacements, actually it
may not be the fact. The reason is that, in such models, the method
deriving the stiffness matrix is to give an arbitrary displacement just in
one direction, keeping all other degrees of freedom restrained. In fact,
stiffness matrix obtained by this measure is about the initial static
equilibrium position, and can be employed for linear problem. However,
for nonlinear problem the stiffness matrix should be derived based on
the instantaneous displaced position (i.e. the structure may move in all
six degrees” of freedom, none of them should be Trestrained).
Furthermore, to deal with problems related to finite rotation angle, the
concept of Eulerian angles have to be introduced, which make the
stiffness matrix acquired on non-displaced position very questionable:
The foregoing mentioned assumptions make the process of dynamic
analysis fairly - easy. However, such technique places too severe
restriction fo include all load cases, especially in some extreme
circumstances. It is obvious that precision. will be improved if
displacements are not restricted to infinitesimal, whereas the problem is
whether it deserves to do at the cost of more complicated analysis
process. Unfortunately, no open literatures give the comparison thus far
up to the authors’ knowledge.

If translational and angular displacements are finite quantities instead
of infinitesimal, all six degrees of freedom are coupled, restoring force
and wave force are displacement dependent. Then many nonlinear
terms “are " introduced.” These ~nonlinearities not only “make the
mathematical model of dynamics of TLP very complex, but also cause
the solving procedure onerous and time-consuming. In order to get the
quantitative evidence of the. effect of those nonlinearities at rational
cost, a simplified TLP-like'model is set up: The model is made up of
one floating circular cylinder and a taut tether along the axis of cylinder.
Buoyancy provided by floating cylinder exceeds its' weight, and thus
the tether is tightened mooring to the seabed. For this model, nonlinear
differential equation is established, and dynamic response due to finite
coupled motion is obtained.

In this paper, the major assumptions are made as followings:

®. . The motion of cylinder is finite instead of infinitesimal. ..

@ The cylinder is assumed sufficient slender, ie. the wave




diffraction effects have been neglected.

Wave forces are evaluated at the instantaneous displaced position
of the cylinder by Morison’s equation using Airy’s wave theory
with free surface effects taken into account.

THEORETICAL DEVELOPMENT

A floating circular cylinder of diameter D with a taut tether located.in
water of uniform depth is shown in Fig. 1. Four right-hand cartesian
coordinate systems are defined in Figs. 1~2. The oxyz is space fixed,
global coordinate system, and plane oxy coincides with the undisturbed
calm water surface. The positive z-axis is pointing upwards. The
OXYZ is also space fixed coordinate system, which has its origin
located at the center of gravity (C.G.) of the surface-piercing cylinder.
Three axes of coordinate system OXYZ are in parallel with those of
oxyz. The G&nd is body fixed coordinate system, which coincides

with the OXYZ when the cylinder has zero displacement. Cartesian
coordinate systems GX'Y’Z’ (Fig. 2) are in parallel with OXYZ, with
coordinates of G being X, X,, X.
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Fig. 1 Three coordinate systems

X, X,, X; are translational motions of C.G. along three axes of
coordinate system OXYZ. The longitudinal displacement along X is
defined as surge, the transverse displacement along Y is sway, and the
vertical one along Z is heave. Angular motions are represented in terms
of three Eulerian angles X, X;, X, Cartesian frame GX'Y’Z’ can be
rotated into cartesian frame G£n¢ by rotating the frame first about its

first coordinate axis by angle X, then about the new position of the
second axis by angle X;, finally about the resulting position of the third
axis by angle X,. In this paper, X; (i=1, ... , 6) do not need to be
restrained infinitesimal, i.e. X; can be finite quantities.

Fig. 2 The coordinate systems defining three Eulerian angles

The transformation of coordinates can be written as follows:
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X X, t, t, 1,\[¢

Y =\ X, |+t 1, 0|7 )

z X, )\ 6, )\
where:
1, = cos X, cos X @
t, =—cos X, sin X 3
t, =sin X *)
1,, =sin X, sin X cos X +cos X, sin X )
1y, ==sin X, sin X, sin X +cos X, cos X ®
t,; =—sin X, cos X; N
1, =—cos X, sin X cos X +sin X, sin X )
1, = cos X, sin X sin X, +sin X, cos X )
1,; = cos X, cos X; (10)

By using Newton's second law, we can obtain the equations of six
components .X; of motions as:

M 0 0 0 0 0YX K

0 M 0 0 0 O0fX, F,

0 0 M 0 0 O)X,]|_ F, )
00 0 4 0 0fal| |F-U-Louw,

0 0 0 01, Ofa,| |E-U-Lowo,

000 0 0 0 Lia) \F-U,-1)ow,

in which M is the body mass of cylinder in air, /, (i=1, 2, 3) are the
moments of inertia with respect to the principal axes through C.G. of
cylinder, F, are the components of external force (i=1, 2, 3) and
moment (=4, 5, 6) vectors, respectively, «; (i=1, 2, 3) are the
components of angular velocity, dot over variable means time
derivative. Angular velocities are given by

@, = X, cos X, cos X + X, sin X, 12
w, ==X, cos X, sin X, + X, cos X, 13)
o, = X, sin X, + X, (14)

Hydrodynamic Force Vector

When the circular cylinder moves to an arbitrary position in waves, the
axis of cylinder may be inclined instead of vertically upwards. Then
forces acting on the cylinder need to be written in terms of the normal
components of fluid acceleration and relative acceleration and velocity
vectors between water particle  and structural: element. - Using
generalized Morison equation, force vector per unit length of arbitrary




" oriented cylinder f, is written:

- 2 o 2 s — -
L Cap%D—Vm +C, %Q[Vm]Vm (15)

fo=p 1

in which o is mass density of water, C, is added mass coefficient, C,
is drag coefficient, Vn is acceleration vector of water particle normal to

inclined cylinder, Vm and I7m are relative acceleration and velocity

vectors between water particle and structural - element normal to
inclined cylinder. Water particle kinematics are evaluated in reference
frame oxyz employing modified Airy’s linear wave theory with
stretching method used (Chakrabarti, 1987). The normal acceleration

vector V), is given as

I;n = é.3 X (I;XE3) = ‘}nl?+1}n2j+ ‘}n3i£ (16)

where ¥,,,V,,,¥,; are components of V, along three axes of

coordinate system OXYZ, respectively, V is the acceleration vector of
water particle, €, is the unit vector along the Cartesian coordinate axis
G¢ |, ie. the unit vector along the cylinder axis. By analogy with the

Eq. 16, the relative normal velocity vector Vm is obtained

V, =éx(V x&) (17)
where
V.=V-V, (18)

in which 7 is the velocity vector of water particle, I7s shown in Fig: 3

is the velocity vector of respective centroid s of referred cross section
of cylinder, and can be: derived from the translational and angular

velocities of the whole cylinder, ¥, and & :

V.=V, +dxF; 19
where

Vo =Xi+X,j+Xk - (20)
D = €, + 1, + W,é; 2n

i, j .k .,e e, are unit vectors along the coordinate axes OX, OY,

OZ, G¢ and Gy, respectively, 7, is position vector with reference to

the center of gravity of the cylinder. On the analogy of the derivation of

V.., the relative normal acceleration vector ¥, is given

v, =% x&) o

=7~ (23)

=V + &7y +Bx(BXF;) 49

Fig. 3 Velocity vector of cross section

The vectorial resultant ﬁw of hydrodynamic force on the cylinder is

obtained by the integral
- b+l -
F = ) d 25
W '[hG f;l é( ( )

in which /4 is the distance between C.G. and the bottom of cylinder,
and A, is the distance along centerline of cylinder from the bottom of
cylinder to the instantaneous' wetted surface at any time. The moment

vector with reference to the principal axes of cylinder M, . Senerated
by hydrodynamic force is given as follows:

— he+hy o - .
Mg, = [ (7% 7,) d¢ (26)
Hydrostatic Force Vector
When the floating cylinder moves from' equilibrium position to an
arbitrary heeled position, the magnitude and geometry of the displaced

fluid volume changes. Therefore, the magnitude of buoyancy Fy
changes, and the center of buoyancy B is shifted (Fig. 4).
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~ Fig. 4 The changed buoyancy and center of buoyancy

_As shown in Fig.5, the changed draught /i, H are obtained:
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H=h1+ti,/t33+t3;' ; o ©9)

33

where r is the radius of cylinder.
The position vector 7, of the center of buoyancy B and the buoyancy

vector in G£nd can be given:

on = 58 + 1138, + {585 (29)
fs. = pg7"'2h1 (t3lél +15,6, +t3353) (30)
1,1t
G =—r— €y
? 413k
2
1,7
__ 32
= (32)

2 8t hy

(33)
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Fig. 5 The changed buoyancy and center of buoyancy in coordinate
system G&End

Then the buoyancy. generating moment vector with reference to the
principal axes of cylinder is given:

My =T x F (34

Tension Vector in the Tether

When the cylinder moves to an arbitrary position, the coordinates of the

top and end -of tether (A and E- in -Fig.l) in OXYZ -are-

(X, —t3hg. Xy —tphg, Xy—ths) and (0,0,—h;—L). L is the
initial length of the tether. Then the vector AE can be given:
ZE = ("Xx +’13h6);+(_X2 'stha)j

. (33
+(~hg — L= X5+ 13,05k

Therefore, vector of tension F?; in the tether can be obtained as:

— ES AE ,
Fot = (71) + ——(L, — L)) - (36)
L [4E|

in which T, is the initial pretension in the tether, £ is Young’s Modulus,
S is the cross-sectional area of the tether, L, (=[E[) is the

instantaneous length of the tether.
Moreover, the vector of moment with reference to the principal axes of

cylinder M, & Provided by tension of the tether is given as follows:
Mg, =¥y, % F 37

where 7, (=—hge, ) is the position vector of point A in GEng , £y,

is the tension vector. The unit vector of Fy;, is given below:

Fy, R
:'— {[ —X, LT X2t21 _(hG +L+ X3)t3l]el
[ |
+[=X it = Xty — (B + L+ X1, |6,
+[~Xits = Xty — (g + L+ Xt + 5|8} 1,
1@ inEq. 37 and F—o, in Eq. 36 are the same tension vector. However,

the components of the vector are different because the tension vector is
referred to two different sets of reference frames determined by the

base vectors é,,&,,8, and i ,j,k .

Total External Force and Moment Vectors Acting on the
Cylinder

The total external force vector / can be obtained by summing the

hydrodynamic force, the hydrostatic force, the tension in the tether, and
the weight of cylinder together:

F =

+ I+ [y,

’111

— Mgk = Fi + F,j+ Fjk (38)

in which g is the acceleration due to gravity.

_The total external moment vector M with reference to the principal

axes through C.G. of cylinder can be obtained by summmg the
moments generated by the external forces:

M=My, +Mg+M, =Fé+Fgé+Fé (3
NUMERICAL STUDY

Numerical Solution of the Equation of Motion injthe Time
Domain

Up to now, the equations for calculatmg the external force and moment
vectors acting on:the cyhnder have been acqulred as shown in the
preceding part of this paper. Such force ‘and moment vectors - are
response dependent, ie. F, (= 12 ) are functions of X (=1,

2, +i:-36). Therefore; the equatmns;o motion of the cylinder with six
degrees of freedom (Eqs 11~ 14} are

nlmear and coupled differential




* equations.
In the present work, Egs. 11~14 are solved by using a fourth-order 1 surgo of Case A byEq40

. . . . . - 16+ 2~ sway of Case A by Eq 40
Runge-Kutta numerical time integration procedure with constant time 3 —— urge of Caso A by Equ.2-10

4 — sway of Case A by Eqs.2-10
step.

Numerical Results and Discussion

The nonlinear. six.degrees. of freedom motion of the: cylinder and the
instantaneous length of the tether are calculated by the method

surge and sway (m)
»
1

proposed in the preceding chapters. Furthermore, in order to investigate j surge of Case B by EG.40
the influence of the rotational displacements on the overall motions, 5] e e Eaai
two different transformation matrices are adopted. One is the precise o AT TmdcmE
transformation matrix as shown in Eqs. 1~10, in which the angles X, O W 4 80 80 100 120 140180 180 20
X,, X, can be finite quantities. The other is an approximate matrix as fime {secs)

shown in Eq. 40, where the angles are assumed to be infinitesimal, and Fie. 6 Transient ¢ ds

the components of the matrix are truncated after the first order small 1g. 6 Transient response ol surge and sway

magnitude. The first order transformation matrix is given as:

L, Ly Ul 1 “Xﬁ Xs ,J / / //\ 78
L Iy Iy)= Xs 1 —XA (40 . od /
Ly Iy L =X, X, 1 \

1 e~ surge of Case A by Eq.40 5 surge of Case B by Eq.40
2 sway of Case A by £q.40 [ sway of Casa B by £q.40
The primary properties of the circular cylinder with taut tether are 4 3 suee ot Case AbyEas 210 7 sungeof Case B by Eqo2.40

4 === sway of Case A by Eqs.2-10 8

sway of Case B by £qs.2-10

surge and sway (m)

shown in Table 1.

Table 1. Primary properties of the cylinder
T P R P P M )
Description Value time (secs)
Mass (kg) 2300000 Fig. 7 Steady-state response of surge and sway
Tether length L (m) 300
Water depth (m) 335 , . s
0.0+ o » a5 5 P
ES/L (kKN/m) 308028 ¥ 7? f\f\ ) M ‘ \
Diameter of cylinder D (m) 16 o8] f \ \/\\ X ‘ j
B )
C.G. above keel A (m) 28 s
7; (m) 17.9 D |
7, (m) 179 I P ieniad
l"{ (m) 5.7 i ——Z:E::::::-w
0 fo 2 % 4 8 60 70 6 S0 10
time (secs)
T, 1, and 1, are the radii of gyration about the £ axis, # axis and
¢ axis respectively Fig. 8 Transient response of heave
Two wave conditions are considered as shown in Table 2.
Table 2. Two wave conditions considered 00w
Description Case A Case B 05+
Wave height (m) 4 6 _
Wave period (s) 9 9 % 10-
Wave heading angle (deg.) 45 45 b
-15-
204 1. ~--— Case A by Eq40 3 ~—— Case Bby £q.40.
2 - Gase Aby Eqs.2-10 4 —sene Case B by Eqs 2410
704 7(‘)8 7‘;2 7;6 750 7&4 758 752 7;)6 7;0
time (secs)

Fig. 9 Steady-state response of heave .




roll (rad)™

roll (rad)

pitch (rad)

0.25
0.20 4 1 Case Aby EQ.40 4
2 ——- Case A by Eas.2-10
0.15
0.10:
0.05
D.OO-:
-0.05-‘-
0104
—0.15-‘
-0.20 4
025 3 Case B by Eq.40
030] 4 Case B by Egs.2-10
T T T Y T T T T T 1
0 10 20 30 40 50 60 70 80 4] 100
time (secs}
Fig. 10 Transient response of roll
0.204 1 Case A by Eq.40 3 Case Bby Eq.40

Case Aby Egs.2-10 4

Case B by £gs.2-10

L} ¥ 1 M 1 1 v L L}
700 704 708 712 716 720 724 728
fime (secs)

T 1
732 736

Tig. 11 Steady-state response of roll

0.30 =

Case AbyEq.40
Case A by £gs.2-10

0.25+
0.20
0.15+
0.10
0.05+
0.00 -
-0.05

-0.10

-0.15+ 3 — Case Bby Eq40

4 e Case B by £05.2-10
-0.20

time (secs)

Fig. 12 Transient response of pitch
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pitch {rad)

yaw (rad)

yaw (rad)

0.30

1 Case Aby Eq.40 3 ~~—=Case B by £q.40
0.25
0.20
0.154
0.104
005+
0.00
0054
0104
0.15
0204 2 Case A by Eqs.2-10 4 Case B by Egs.2-10
L L3 L 1 L} L} 1 T 1
700 704 708 712 76 720 724 728 7R 736
time {secs)
Fig. 13 Steady-state response of pitch
0.035
1 Case A by Eq.40
0.030 2 Case Aby Egs.2-10
3 — Case B by Eq.40
0.0254 4 Case B by Egs.2-10
0.020~
0.0154
0.010
0.005 4 IR
0.000
Tt ¥ v i E 1 M ¥ v 1 1 v ¥ v 1
0 10 20 30 40 50 60 70 80 90 - 100
time (secs)
Fig. 14 Transient response of yaw
0.040
E 1 Case A by E4.40 3 Case B by Eq.40
0.0354 2 Case Aby Egs.2-10 4 Case B by Egs.2-10
0,030 ;
4.
0.0254
0.020
6.015
0.010 \ 5
0.005 4 /\ /’\‘ /\ pan
1,3 .
0.000 \\/ £

T T T T T T T e~
704 708 712 0 71607200 7240072800732 730 740
time (secs) :

Fig. 15 Steady-state response of yaw . -




300.08
Case A by Eq.40 Case B by £q.40

£ 30005 Case Aby Egs.2-10 Case B by Egs.2-10
& 30004
<
2 30003
@
i«j_ 300.02
£
£ 30001
o
2 30000
13
3
2 29999
%
£ 20998
©
g 0w

299.96

time (secs)

Fig. 16 Transient response of length of tether

300.08

Case Aby Eq.40
Case AbyEgs.2-10

Case Bby Eq.40
Case B by Eqs.2-10

300.05

300.04

L
(LS

L] 13 L} i L] 1 1 L L
762 705 708 711 --714. . 717 720 .- 723 726
time (secs)

300.03+4 ¢

300.024 41§
300.01 43 )
300.00 “, 1A
209.99]!
299.98

200.97

instantaneous length of the tether (m)

209.96

Fig. 17 Steady-state response of length of tether

For two wave conditions (case A and B), the transient and steady-state
responses of nonlinear rigid body motion in six degrees of freedom and
the instantaneous length of the tether are shown in Figs: 6~17. The
surge and sway motions coincide with each other as shown in Figs. 6~7
because the wave heading angle is 45 degree. It is seen from Figs.
10~14 that the maximum values of the angular displacements (roll,
pitch and yaw): are less than 15 degree. Even for such magnitude of
rotation, the truncation-induced error of the components of the first
order transformation matrix (shown in Eq. 40) is small. The differences
between the components of the first order transformation matrix in Eq.
40 and that of precise transformation matrix of Eq. 1 (shown in Egs.
2~10). are about 1% ~ 3%. However, it can be found that, the
differences of displacements between two methods (i.e. by using the
first order and. the precise transformation matrices respectively) are
remarkable, and the differences become more distinct as the wave
height increases. The difference of respective heave between the two
methods is the largest, which can be dozens of times. The differences of
surge, sway, roll and pitch between the two methods are also large,
which can be multiple folds. For response of yaw, the results obtained
by the first order transformation matrix are zeros, while the results by
the precise matrix are nonzero. The differences of instantaneous length

of the tether are relatively small compared to that of the motions, and
the differences also become more distinct when the wave height
increases. The two methods are identical except that the transformation
matrices are different. Therefore, such large differences of motions
must be induced by the infinitesimal rotation assumption. The
differences may be attributed to both the complicated nonlinear
coupling among six degrees of freedom and the nonlinear wave-
structure interactions (i.e. wave loads are response dependent).
Consequently, it may be acquired that the rotational displacements
should not be assumed infinitesimal when the overall motions are to be
computed.

CONCLUSIONS

The nonlinear rigid body motion and instantaneous length of the tether
of a floating circular cylinder with a taut tether have been calculated by
two methods developed in this paper. One method is based on complete
finite displacements assumption (i.e. both translational and rotational
displacements are finite), the other assumes that the translations are
finite, and the rotations are infinitesimal. As a result of the numerical
study, the following conclusions can be drawn:

1. The rotational angles play an important role in the computation of
the six degrees of freedom motions of the tethered cylinder, and the
rotation should not be assumed infinitesimal.

2. For analogous offshore structures, such as tension leg platform or
tethered spar platform, similar problem may be taken into account.
Some validations may be needed to perform before any
approximation related to rotation is made.
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