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ABSTRACT

Fluidized beds with pulsing inlet flow are of considerable
interest in process engineering. Quantitative understanding of the
two-phase flow behaviors in pulsed beds is very important for
design and optimum operation of such reactors. The aim of this
paper is to understand the mathematical models for pulsed par-
ticulate fluidization and its dynamic processes. Two-Fluid Model
(TFM) and its simplified version, Local Equilibrium Model
(LEM), are solved for pulsed fluidization. LEM is proposed to
model pulsed fluidization with acceptable engineering accuracy
compared with experimental data, its shortcomings are also dis-
cussed at length by analyzing the relaxation processes of
two-phase flow due to a jump change of fluidizing velocity and
the structure of concentration discontinuity which forms in bed
collapse process.

Keywords: Fluidization; Pulsed flow; Two-Fluid model; Local
Equilibrium Model.

INTRODUCTION

Fluidized beds are common and important reactors in proc-
ess engineering because of the high mass or heat transfer rate
between the fluid and particles. It is well known that there are
non-uniform flow structures such as bubbles and slugs in fluidi-
zation which are undesirable for efﬁcxent operations, because
they can reduce the contact efficiency!'.

As a method of eliminating slugs and gas channeling, reduc-
ing the size of bubbles, thus improving the fluidization quality,
puised fluidization is an operation in which the fluidizing veloc-
ity U(t) pulsates thh tlme as rectangular wave, cosinoidal wave
or any other patterns' Although many peoplc have studied the
behaviors of transient flows in fluidized beds*®), however, the
flow patterns of unsteady two-phase flows are very complex, the
quantitative understanding of the flow in pulsed fluidized beds is
far from being complete. Few papers modeled the bed height,
especially the distribution of particle concentration along the bed
when the pulsation frequency of U(?) is not very low. As an im-
portant aspect of the quantitative understanding of the flow be-
haviors in pulsed beds, the main aim of this paper is to under-
stand the mathematical models for pulsed particulate fluidization
and predict the dynamic processes in the beds.

In our liquid pulsed fluidization experiment, the
one-dimensional character of the flow, i.e., the distinct planar
wave character of particle concentration in the bed, can be obvi-
ously seen. The concentration waves (expansion wave and shock
wave) travel upwards from the distributor (See Fig.1). Fig. 1
shows the transient distribution of particle concentration along
the bed at different times in a period, recorded by a digital cam-
era. The gray scale of the photos represents the particle concen-
tration; the darker the photo, the denser the particle concentra-
tion. From Fig. 1, one can know that bed height A(r) oscillates up
and down in a cycle, a concentration wave from the distributor
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travels upward periodically as a result of the periodical change
of fluidizing velocity U(#), dilute and dense sections of particle
concentration distribute alternately, accompanying concentration
discontinuities a, b and ¢ between the dilute and dense sections.
The above facts show that the axial movement of two-phase flow
prevails in pulsed fluidized bed. As a first approximation, it is
appropriate to use the one-dimensional mathematical model to
simulate the main character of the flow, i.e., particles moving up

and down.
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Fig. 1 Transient distribution of particle concentration when U(?)
varies with time as a rectangular wave with a period of 4 s
(semi-on period 1 s and semi-off period 3 s).

MATHEMATICAL MODEL

Two-Fluid Model

The model used in this paper is based on the following as-
sumptions: the two phases are incompressible, the fluid density
pr and the particle density p, are constants; the diameter of
the bed is large enough to ignore the drag force of the sidewall;
the gradient of viscous normal stress of fluid phase 7, is
ignored because it is much smaller than that of fluid pressure.

Then, the equations used in [7] to describe fluidization can be
written as:

da, ﬁ(au) -0 (l)
Jt T 9x
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where @,,q;,u,andu, are volume fraction and velocity of

particle phase and fluid phase respectively, F, is the interphase

force per unit volume except for buoyancy, pis fluid phase

pressure, p,, 7, are particle phase pressure and viscous
stress respectively.

The unknowns @,, @,, u, and u, can be calculated by

solving the equation set (1), (2), (3) and (5), then p can be got-

@

ten from Eq. (4).
F, includes drag force F, and virtual mass force F,,
F=F+F, 6)
One can express the inter-phase drag force F, as
Fy =(p, ~ p1)8 0,00 (g —u,) fur . ™

where n is the Richardson—Zaki exponent that depends on the
particle settling Reynolds number Re; =du.p, [, ™.
Virtual mass force F,, can be expressed as'”
Ou, U, du

- = —Cmapp, [—a—t-+ u, = —K U, X] ®)

where C,, is virtual mass force coefficient.
The expressions for p, and 7, used in this paper are

P, = stuf‘ap/(ap.c —a,). ®
Ju
=t 22 ao)

where s is an adjustable parameter. Duru et al. (2002)!" obtained
the expression of 4, through experimental method

4= Cuppdp"'r (ap.c -, )
where C, is0.18 in their paper.

The above set of equations (1)~(5) including the p,, Fp, Fin
and 7, terms to close it is named the General Form of
Two-Phase Model (GTFM) in this paper.

The boundary conditions and the initial conditions are

x=0: u,(1,0)=0, a,(1,0)=1-(U®)/u;)"; 12)
x=h(t): u,(t,h)=dh(r)/ds; (13)
t=0: ap(O,x)=app, u,(0,x)=0, h(0)=h,.(14)
where a uniform fluidized state is assumed at =0, a,,and

an

h, are initial particle concentration and bed height respectively,
h(r) is the instantaneous bed height, u,(t,h) is the instantane-

ous particle velocity at the bed surface.

Although the inclusion of p, and Fy, in GTFM can make it
well-posed, the understanding of the constitutive relation of p,,
Fym and 7, ; are not complete now, and the adjustable parameters
in these expressions cannot be accurately determined and are
chosen at will to some extent. In order to grasp the main effects
of the pulsed flow in the bed, we intend to propose a simplified
mode] of TFM, in which there are no adjustable parameters.

Local Equilibrium Model (LEM)

If both terms on the left hand side of Eq. (3) are neglected, as
well as the particle stress terms on its right hand side, the first
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order partial differential equation degenerates into an algebraic
relation

0=F, -(p, - p ), g (15)
Introducing Eqgs. (7) into Eq. (15) yields,
U@®)—u,(t,x) =ur (1- @, (1, x))" (16)

There are no partial derivatives of the variables to time ¢ and
space coordinate x in the above equation, it is the local equilib-
rium equation among the fluidizing velocity U , particle veloc-
ity u, and particle volume fraction &,, thus it can be named
Local Equilibrium Model (LEM).

Introducing Eq. (16) into Eq. (1) and eliminating particle
velocity u, yields the hyperbolic concentration wave equation

92, +Vaa{p =0 a7n
ot ox
where V is the concentration wave
Hau) du
V= PP —u+a —2=
da, " %oq
U(t)+[nap(1—ap)"" —(l—a’p)"]u-r (18)

For a given fluidizing velocity U, V has a maximum at
a=qa,, =2/(n+1) . Under our experimental conditions

n=2414, and q,, =05858=qg,, so V usually increases
with the increasing of a,.

Let V, be the speed of concentration shock, integrating the
solid phase mass conservation Eq. (1) yields

V= @, 5lpp ~ Cp by =

Qp—Cp
U(r)~ apll(l —ap-B)" _ap.F(l _ap.F)" u 19
@y —Cp

where @,;, @,; are particle volume fraction at the back and
front of the shock respectively and u,,, u,, are particle ve-
locity at the back and front of the shock respectively.

NUMERICAL RESULTS AND COMPARISON
WITH EXPERIMENTAL DATA

In this section, we show the numerical results from GTFM
and LEM. The method of characteristics and a five order WENO
(Weighted Essentially Non-Oscillatory) scheme ® are used to
solve LEM and GTFM respectively.

We also give the experimental results to check the numerical
results. Details about the experiments please refer to [9]. The
summaries of the physical properties of materials and test case
are listed in Table 1 and Table 2 respectively.

Table 1 Physical Properties of the Particles and Fluid

. d A, Uy T, o
Particles °* ' P
_(mm) (kg/m®) (m/s) () (kg/m’)
Glass beads 1.8 2600.0 0.1937 2.412 0.032 1000.0
Table2 Summary of the Test Case
U, 2 T; T, hy
__(m/s) (m/s) (s) (s) (m)
0.055 0.1482 3.0 1.0 1.950




Fig.2 shows the bed height variation vs. time responding to a
pulsed fluidizing velocity from GTFM, LEM and the experi-
mental data when the state is fully developed and periodical. Fig.
3a-3c shows the distribution of particle concentration at different
times in a period. The dynamic behaviors are depicted photo-
graphically in Fig.1.
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Fig. 2 Bed height variations vs. time responding to a periodically

pulsed fluidizing velocity.
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Fig. 3 Distribution of particle concentration at different times in
a period, where s=0.07, C, =0,C,, =0.5

From Figs. 2 and 3, one can know that the numerical results
of GTFM and LEM also fit the experimental well.

However, several undetermined constitutive relationships are
included in GTFM, the adjustable parameters of which are al-
ways chosen at will to some extent. Although LEM, a further
simplification of TFM, is very simple, it is highly capable of
simulating complex processes in pulsed fluidization over a broad
range of operating parameters, and its numerical results well fit
experimental results in both the variation of bed height and the
distribution of particle concentration as fluidizing velocity var-
ies.

According to the experimental data, it is not true that the
concentration discontinuity from LEM is a plane without thick-
ness as shown in Fig. 3. The limitations of LEM will be dis-
cussed at length in the following section.

LIMITATIONS OF LEM

In this section, we will discuss the time scale that errors exist
after & sudden change of fluidizing velocity and the spatial re-
gion where errors exist when sharp gradient of particle concen-
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tration exists in the flow field.

Relaxation Processes of the Two-Phase System After a Sud-
den Change of Fluidizing Velocity

The uniform flow field in the bed is assumed in this subsec-
tion, i.e., d/0x=0. If the fluidizing velocity U gets a sudden

increment AU at t=1,, according to LEM, the corresponding
increments of u,, ¥, a,and @, can be obtained from the
Egs. (1), (2), (5) and (16): (AQ,)imy =(AG )5 =0 ,
(Au,) ey = (Aug) gy =AU ,
where, Ap=9(1,,)-9(1,_), @= a,, o, u,,u, U,

the inertia of the two phases is different and it becomes very
important when fluidizing velocity U gets a jump change, so the
difference of the inertial forces between the two phases has con-
siderable influence. The effect of inertia on the relaxation proc-
ess after a jump change of U is discussed as follows.

If the virtual mass is ignored, the increments Aa,, Aa;,

Au, and Aw, can be obtained from Egs. (1), (2), (3) and (5),

considering the different inertia between the two phases due to
the sudden increment AU at r=t¢,.

(AQ, )1y = (A, )1y =0 (20)
(A, ) ey = (P, AU) (@, 0 + &, P,) (2
(At )y = (P, AV) (@, p, + @, p,) 22

There is a relaxation process for the relative velocity be-
tween two phases to adjust it to another equilibrium state.

For the simple bed expansion and bed collapse process, flu-
idizing velocity U does not change after r=t,,, and the dis-
tribution of various parameters can be thought to be uniform in
the bed before the ending of the inertial relaxation process. Un-
der such conditions, the solid phase velocity and relative velocity
between the two phases in the relaxation process are

4, (1) =[U(t,) - w07 [ 1-exp(~(t - 1,,)/7,,) |+

up (t0+ ) exp(_(t - t0+ )/T:ys) (23)
u ()=, (1) = (g —u)|, [1-exp(~(t-1,,)/7,,) ]+
(4, — up)|b exp(~(t —1,,)/%,,,) 4

where the relaxation time of mixture system 7, is

] 2] o

&
and 7, =u((1-p,/p,)8)™" is the relaxation time for a single

afpp +appf
afpp

- WOy
A-p/p;)8

7, =7,

4

particle. For the solid-liquid system studied in this paper,
7,=0.032s.

In the expansion process when fluidizing velocity U sud-
denly increases from U =U, =0.055m/s to

U=U,=0.128m/s , 7,, =0.367,=0.012s, and in the col-
lapse process when U decreases from U =U,=0.128m/s to
U=U,=0055m/s, 7,,=0817, ~0.026s. The two relaxation

processes after the sudden changes of U are shown in Fig. 4. In
order to be convenient for comparison, the changes of velocity
from LEM are also shown in the figures.
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Fig. 4 The relaxation processes of the solid and fluid phase ve-
locity when fluidizing velocity suddenly changes

From Fig. 4, Eqgs. (23) and (24), when (¢—1,,) passes sev-

times  of T (about m=3~4 times),

eral

up(t)l>l,+mf, g U(’(H-) - uTa;' =AU +up(to_) = (up)ur_M

>80,
CRORUR() N RS )L» = (4, — 1)1 |% , the veloci-

ties almost reach the values computed from LEM.

The above analyses show that ignoring the difference of in-
ertial forces between the two phases introduces certain errors in
a very short period only about tens of milliseconds after
U changes suddenly. After that, LEM is applicable.

Structure of the Particle Concentration Discontinuity in
Simple Collapse Process

Egs. (1), (2), (5), (16) show that the flow field is continuous
except for finite number of discontinuities in pulsed flow field.
According to LEM, these discontinuities are planes without any
thickness, relative velocity between the two phases has a jump
change through the discontinuous planes. The difference of the
inertial forces between the two phases must have an important
influence when the relative velocity has a jump. Therefore, it is
improper to ignore the difference of inertia near the discontinui-
ties. In experiment, one can observe that the discontinuity has
certain thickness, though it is very thin. The transition from the
upper dilute section to the lower dense section in the collapse
process is analyzed using GTFM.

According to the experimental observation, the discontinuity
speed V, does not change during the collapse process (it can

also be derived from LEM, Eq. 19). First, we make a coordinates
transform, using a moving coordinate £ with the discontinuity

speed V, to substitute the laboratory coordinate x , ie.,
&=x-V,z,s0Egs. (1) and (3) can be transformed into

dia, (, V)] _

0 26
e (26)
du, du; _
Py (1, ‘V-)'(E—Pr("r —V')E_
F 1 d(=p, +7,.)
(0. —p)g+——r o=l (7

P P

Eqgs. (7), (8), (9) and (11) are used to model the drag force
F,, virtual mass force F,,, solid phase pressure p, and vis-
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cous coefficient u, respectively, where s, C,, and C, are
model parameters.

Letiing ,=p,/p, » L, =0, (0, - &) (2, - 2;,)
L, = @,0,,(2,,07;" ~ 3,,05,")/ (@, ~ @)
L=a,/@, -a,) L,=3C,(1-p)ed,[u;
Y =£1-p,)e/4
B=sL [a,~(1+Cpp, /e )L [0y - p,(1+ Crufot ) L [ 07
0=1-[a, .} /@, -,)~0a,.0} [(@, -a)+L [ o
onecan get u,=V,—Lu /e and u, =V, +Lu /e, from Egs.
(26) and (2). Introducing them into Eq. (27) yields

’

’

-1
B[ dy J o-
de,
-3 -2
Lo —L (9| &F , 2 -3 [dY
(@, -o)x\de, ) de} (@, -a)d)|de,
For a small value of C,, the above equation can be approxi-
mated as
gar _ B
da Q

'0-BQ' 20, -3
x{1-L,L, 1__BQ-B0', “%h.~% € llng
(@,.-a)y B (a,.-2,)a, B
where B'and Q' are the derivativesof B and Q to @,

respectively.
The asymptotic conditions are: Y — +oo when @, —»¢,;.,

and ¥ ——o when &, —¢,,. Integrating Eq. (28), the line
for o (Y) isshown in Fig. 5. For comparison, the result about
a,(Y) computed from LEM is also shown in it (represented by a

solid line, there is a discontinuity at ¥ =0).
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Fig. 5 Influence of s, C,, and C, on the structure of

the transitional layer

From the results above, one can see that the particle concen-
tration gradually transits from the upper dilute section to the
lower dense section when the inertial force, solid phase pressure,
viscous stress, and virtual mass forces are considered in GTFM.
The thickness of the transition layer depends on the values of
coefficients s , C,, and C, . Letting the three coefficients be zero



and only maintaining the inertia terms of the two phases, TFM
becomes ill-posed for initial-value problems "' Therefore, the
three forces are very important. Further researches show that the
most important term is the solid phase pressure and the variation
of the coefficient s greatly influences the thickness of the tran-
sition layer (Fig. 5a). When the coefficient s is small (its exact

value depends on C, and C,, generally speaking, when it is

less than 0.1~0.2 ), the correct solution does not exist.
C.,and C, may be zero (Fig. Sband c), but s can not be.

However, the above results are only of qualitative signifi-
cance, because the models used in this paper for virtual mass
force F,,, solid phase pressure p, and viscous coefficient

4, can not be accurately determined and the values are chosen

at will to some extent.

It is not true that the thickness of transition layer is zero and
there is a jump for every parameter through the discontinuity
according to LEM. In fact, the transition layer has certain thick-
ness and every parameter transits smoothly (but quickly). How-
ever, this layer is very thin (commonly it is only several milli-
meters, equivalent to several times of particle diameter), LEM is
approximately proper except for the sections near the discontinu-
ity planes.

In order to get reasonable results from GTFM, the principle
for choosing the coefficients s C,, and C, is to insure the

eigenvalues be real numbers firstly, then to let them be small
enough because the too thick transitional layer does not fit the
result observed in the experiment.

The errors in the simulation resuits from LEM only exist in a
time interval of tens of milliseconds (several times of particle
relaxation time) and a spatial interval of several millimeters
(several times of particle diameter) when simulating the pulsed
flow in the fluidized bed. The above limitations of LEM are
insignificant for practical simulation.

DISCUSSIONS AND CONCLUSIONS

1) It is visually observed that concentration waves and shock
waves continuously travel upwards from the distributor as the
pattern of a planar wave, resulting from the periodical variation
of fluidizing velocity U(f) (see Fig.1), which demonstrates that
the pulsating two-phase flow in the bed is almost
one-dimensional. The good agreement between the numerical
results and experimental data further accounts for the rationality
of the one-dimensional model for the flow studied in the paper.

2) Although GTFM is a general model, in which various in-
fluencing factors such as solid phase pressure p,, viscous stress

7, and virtual mass force F,, are included, researches on
the constitutive relationships of p,, 7,., and F, for clos-

ing the model are not yet satisfying, the expressions used in dif-
ferent literatures are distinct from each other. For a particular
choosing of constitutive relationships of p,, 7, and F,_,,a

P xx
group result of the flow in pulsed bed can be gotten by numeri-
cally solving GTFM, however, these results imply great unde-
terminedness due to the adjustable coefficients in these constitu-
tive relationships.

3) Just as the detailed information in the wall boundary layer
of the single-phase flow is lost when Navier-Stokes equation set
is simplified into Euler equation set, LEM loses the capability to
capture some details of the two-phase flow in pulsed fluidized
bed.

The velocities of the two phases get different increments be-
cause of the different inertia of the two phases when fluidizing
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velocity has a jump change. The aftereffect caused by the differ-
ent inertia vanishes after a short relaxation process following the
jump change. In LEM, the different increments for the velocities
of the two phases and the relaxation process following that are
lost because the difference of the inertial forces is neglected.

The concentration shock obtained from LEM is a geometri-
cal surface without any thickness for the same reason that the
difference of the inertial forces is neglected. In fact, the very
large gradients of concentration and velocities are finite in
strength near the discontinuities in the flow field, the difference
of the inertial forces is also very important near the discontinui-
ties, thus making the concentration shocks have certain thickness.
The flow structure in concentration shock is lost using LEM.

The relaxation process after the jump change of fluidizing
velocity is very short (only tens of milliseconds, ie., several
times of system relaxation time) and the real thickness of the
concentration shocks is very thin (only several millimeters, i.e.,
several times of particle diameter), so the above limitations of
LEM are insignificant for practicality.
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