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ABSTRACT

Although the Local Equilibrium Model (LEM) is simple, it
can predict the change of the bed height and the dynamic con-
centration distribution in a bed with pulsing inlet flow, and its
numerical results coincide well with the experimental results. In
order to go into the study of the flow character and attenuation
of concentration shockwave in the bed, the numerical results are
not enough. This paper presents the analytic solution of
one-dimensional LEM, gets the law of attenuation of concentra-
tion shockwave from the solution and, at the same time, gives
the leading factors that affect the law of attenuation.

Keywords: Local Equilibrium Model, the analytic solution,
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INTRODUCTION

Pulsed fluidization, an operation in which the fluidizing ve-
locity U(f) pulsates as rectangular wave or any other wave pat-
terns, is an effective method to eliminate slugs and gas channel-
ing, to reduce the size of bubbles, and thus to improve fluidiza-
tion quality. When the fluidizing velocity U(t) changes alter-
nately between U; and U, (ur > Uy > Uy> Upy, Uy is particle
terminal velocity and U, is minimum fluidizing velocity), series
of dilatation waves and concentration shockwaves will come
into being in the bed, they transmit up to the bed and, as the
result, the particle concentration changes alternately. The inter-
action of the concentration shockwave and dilatation wave will
decrease the concentration change extent, and therefore will
affect the quality of fluidization.

The numerical results of the LEM coincide quite well with
the experimental results (See Fig.1), it shows that the LEM can
predict the change of the bed height and the dynamic distribution
of concentration. Although the LEM equations are much more
simple than that of Two-Fluid Model, it is very useful to have
research on the attenuation law thoroughly and quantitatively if
we get the analytic solution of the LEM.

The paper gives the analytic solution of LEM, which fits
quite well with the numerical results of LEM. It is demonstrated
that the analytic solution is right. In order to calculate the con-
centration distribution, it is more convenient and accurate to use
the analytic solution than to use the numerical method. (See
Fig.1).
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HYDRODYNAMIC EQUATIONS OF LOCAL
EQUILIBRIUM MODEL (LEM) AND ITS BOUND-
ARY CONDITIONS

With pulse period T as the characteristic time, particle ter-
minal velocity #y as the characteristic velocity and (Tur) as the
characteristic length, the one-dimensional dimensionless LEM
equations and the boundary conditions can be written as !'%;

Hydrodynamic Equations:

da, +z9(a'pup)

=0 1
d: ax M
U, 0st-N<T,

= = 2

au, +au, =U(t) {Ux I,<1-N<l )
U(t)—-up =a; 3)
a,+a, =1 )

Boundary Conditions:

up(t,0)=0 s)

where ¢ is time coordinate(s), x is space coordinate up the bed,
a,(t x) and @, (1, x) are the particle volume fraction and the
fluid volume fraction, uy(r, x) and u, x)are solid phase velocity
and fluid phase velocity, g is gravity acceleration, n is the
Richardson-Zaki number (n=2.414), N is an integer, indicating
the number of pulses. There are four dimensionless parameters
Uy, Uy, U 3, and T in the Egs.1-5, but only three of them are
independent. The four dimensionless parameters meet with U=
(1- T) U+ Tals, Uy is the average fluidizing velocity.

From the Eq.3 we can get the volume fraction a, (or a,z)

and the particle concentration &,, (ora,,) that under condi-

tions of U, (or U,) and the solid phase velocity is zero:

(6)
¢))

1-a, =a, =U"

- v
l-a,=a, =U;"



THE ANALYTIC SOLUTION OF CONCENTRA-
TION SHOCKWAVE ATTENUATION AND CON-
CENTRATION DISTRIBUTION IN A FLUIDIZED
BED WITH PULSING INLET FLOW

As it is shown in Fig.1c and Fig.2d, particle concentration
@, changes just between the two curves, &, (f,(xs)) and

o, (t,(xs)), which show the particle concentration before and
after the shockwaves respectively. When we get the @, (1),

a,, (9) and xg(#) from the analytic solution, where xg(¢) is the

position of shockwave in the bed, the law of concentration
shockwave attenuation is determined. Underside the analytic
solution of the attenuation of concentration shockwave is given
under the two different instances that To<¥ and Tp>W, in
which W and xg (¢) are defined as follows:

¥= ', [l— a7, %, M@, —ap) )
a;;lail —a;glaiz a"fz "a"ﬂ a,a,,
Xp(f) = L[U(t')—Um]dt'
[<-T)T-0W,-U)  0st-N<T, ©
T -Le-T,)U,-U,) T,<t-N<l

xr(r) changes periodically between 0 and [-T>(1- T2)(U,- U})].

1)

Shockwaves come into being at the distributor when time ¢
=N+T, (N=1,2,...), they will not intersect with the dilatation
wave before time t=N+T>+ 7, , thus their intensity and transmit-

the case of To<¥

ting velocity will not change; At time t=N+T>+ 7, they begin
intersect with the dilatation waves that come into being at the
distributor at time ¢ =N, the voidage before shockwave @, .

decreases, the intensity of the shockwave weakens and the wave
velocity changes gradually. From =N+T,+7, the shockwave

will intersect with two series of dilatation waves that comes into
being at the distributor at time ¢ =N and ¢ =N+1 respectively,
the voidage before shockwave @, . decrease and the voidage

after shockwave @, , increase gradually, so the attenuation of
concentration shockwave is accelerated. Based on the aj,
@y, Trand Up, we can get 7,, 7, and o p, (the voi-
dage before shockwave at time =N +T>+7,) from Eq.(10a)
and Eq.(11a).

T,(a, —-a’
T, = x = n) (10a)
(a;2 —a;)) —nay, a,la;, _aj‘l)/apl
e
° apfl_lail —d.j]lroai.m (11a)
U = & 101 (@ g =0 1= ) =102, 2]
»

aﬁ‘aﬁ, —a/,'f,'.,,a:_m
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According to ¢, 7, and7,, the volume fractions o )

and @, , () and the shockwave position xs(f) can be expressed

as:
o, =0,
@, , =y
x5(0) =[U, - (@@}, -a,,a},)[(@, -2,3) ¢ ~T,)
+x,(t)
O<t<1,) (12a)
t= Tz(a;z _a;l)apl
(a;-F _a;l)apl _na;._;'ap,f‘ (af.F _afl)
{a, =,
a0 - 0
xg (1) = xp () + _[T' [ Lt el e L35 g
\ 2 a, -0,
(z, <t<7p) (13a)
[ g, _,
a,;'-;a,; _a;.—;'ai.r

B
1

o] 50 5 (@ r =0 p)1=C) £ Oy 5 =N, £ Q) =y

af"f"l"a:", —a;_';.a:_‘,
¢ a .. - o ,
xg (1) =xp (1) + I U, - (Xl B Ml Yl A P
L L ap.B —ap,p
(7p <) (14a)

When U,=0.284, U,=0.765 and T,=0.25, then U,=0.404,
¥ =0756, l-a,=a, =05%4, l-a, =, =0.89,
T, =0375, 7, =2224, l-@, ., =@, , =0.743. Fig.2b
shows the trace of shockwave that comes into being at the dis-
tributor at time ¢ =T>-4, t =T1»-3, t =T>-2, ¢t =T,-1 and ¢ =T,.
Fig.2b also shows the dilatation waves that come into being
from the distributor at time ¢ =-4, ¢t =-3, ¢ =-2, ¢t =-1 and ¢ =0.
Each dilatation wave corresponds to a certain voidage, so the
analytic solution of the concentration distribution @, (1x) at
any time can be gotten. Fig.2c shows the concentration distribu-
tion at time £=0.65 and Fig.2d shows the concentration distribu-
tion at time £=0.05. Fig.1 and Fig.2 show the concentration
distribution at different time £=0.05, 0.25 and 0.65 that gotten

from the analytic solution, as well as the concentration distribu-
tion from experiment.

2) thecaseof T,>¥

When T>W, the shockwave coming into being at the
distributor at time $=N+T,(N=1,2,---) will intersect with the
dilatation waves that come into being at the distributor at time ¢
=N firstly and then intersect with the dilatation waves that come
into being at the distributor at time t=N+T>+ 7, so the expres-

sions are different with those in case 7o< ¥ .



_naja, (@, -a,)/a, -T,(a},-a},)

T, = - (10b)
nay'a, (@, —ap)/a,, — (@], -a})
L ahd
D= "4 -
a;.;nai.m ‘a}'leaiz
= a}/";ldj.',-;D(afz _af.BD)[l—afzaf.BD —mpzap..ﬂb]
" a.'f..:nai.ao _a;;laiz
(11b)
ar,_, = an
ar,., = a,,

x5 (1) = x (1) + [U,_ - @) ~a,.e},) (@, -a,)]¢-T,)

O<t<7,) (12b)
t=1+ A-T,)a, —27)%,
na;.-ﬂ!ap.ﬂ (afz _af.a) - (a;z —a}_g)apz
<af.F=af2
a a; . — O 0
xs(t)=x,,(t)+£ U, -2 L8 2P gy
- ! aP-B—ap2
(t, <t<7,) (13b)

Expression for Eq, (14b) is the same as Eq. (14a).

The analytic solution of the concentration distribution
@,(t,x) islisted in Appendix A.

EFFECT OF THE DIMENSIONLESS PARAME.
TERS ON THE ATTENUATION OF CONCENTRA-
TION SHOCKWAVE

According to Eqs.(13)-(14), we can observe the effect of the

dimensionless parameters on the attenuation of concentration
shockwave, such as Uy, U}, and U,. Fig.3 and Fig.4 give the
main results in the case T,< 'V . It is shown in Eq.(14a) and Fig.3
that o, (f), @, ,(r) and the main part of xs(f) are com-

pletely dependent on U, and independent of U, and U, when
t > 17,,bowever, 7, is determined by the Uyand U,. a;r o,

&, p () and main part of xi() are completely dependent on Uy,

and U, and independent of {; when 7, <t<7,,but 7, isa

function of U, U, and U,. It is similar to the case T,> ¥, only
the roles of U, and U, change with each other.

CONCLUSIONS

(1) Integrating Egs. (1)-(4), we can get @, (1), @, , () and

x; () at any time  during the transmitting process of concen-

tration shockwave (See Egs. (12)-(14)), and the analytic solu-
tions of the concentration distribution along the bed height.

(2) This paper gets the attenuation law of concentration
shockwave from the analytic solution, A) The attenuation height
is in proportion to the pulsed period T and terminal velocity ur,
which are the main factors. B) Uy/ut is the secondary factor
affecting the attenuation. C) Parameters U\/ut and U,/ut affect
the attenuation only in the shallow section of bed.
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APPENDIX A

For 0Sx” Sx;(¢t+1) wehave

'af,2 Osx' <y (t,2,,) Fre<T ’
X)) Wta,)sxspy) 2
a; O<x" S x (1)
a syl @ BOSE e i KO<v6ap) SRR
e Lex) Wea,)sy spy) L if 2T,
, ©o<x Sx;(r»} £y
. . . 02y (ap,)
£(57) (@ Sx <p) s =W ] J
& W <x* Sxp(e+1)
where:
X =x-x,
_ v, ¢ta,) if ¥ @a,)<x)
# xg(t+1) if u/,’(:,aﬂ)>x;(t+l)

20, 20, ,(+1) ife<T,

. - _ _1_
vitha)=U,~U,)L,+{U, +lna;" ~(n+Dajl}t  for {a”(,)zafz,,f_s(ﬁl) ife27,

and f"(t,x") is a inverse function of v (ta;).

For x;(ty)Sx<x;(ty,) and N 21 wehave

a, (xs(ty)Sx" <vy)
af(tvx.)= fN.-o-l(tfx.) (VN <x' S:UNH)
afl (luNH <x's X; (tN+l ))

where
ty=t+N

xg(ty) =x;(t+N)=x,(t+N)—x, (1)

Vo= Via(hap,) if x50y Sy, (ap,)
N EA O if x5(6)> ¥ (1,2,,)

Ly, = Vialt@p) if Wy (o)< x(y,)
i x5 (tya) if yhata,)>x0y,,)

Vaalta,)=U,-U)T, +{U, +[ne}” —(n+Dag ]}t +N] for @, (8y) 2, 20, ,(ty,) and fy(t,x')is a

inverse function of ¢t.a;).
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