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Abstract 

Thermocapillary flows are important in many applications, such as the floating-zone and Czochralski crystal growth techniques. 
In production of crystals by the floating zone method, the feed and crystal rods are often rotating in order to suppress the 
azimuthal asymmetry. We perform the linear stability analysis of the thermocapillary flows between counter-rotating disks. The 
basic flow and temperature solutions are obtained by using the pseudo-spectral Chebyshev method. The perturbation equations 
are solved with Chebyshev polynomial expansions in the radial and vertical directions. When no rotation is applied, the 
instability depends on the Prandtl number. For small Prandtl number liquids (Pr <= 0.1), the first instability of the axisymmetric 
flow is a stationary secondary flow. When a rotation is applied, the bifurcation is from the axisymmetric state to an oscillatory 
state. The most unstable mode is a traveling wave. The critical frequencies changes with the rotation Reynolds number 
significantly, and the direction of wave propagation can be opposite for high rotation Reynolds numbers. The flow is destabilized 
by weak rotation but stabilized by strong rotation. As the rotation Reynolds number increases, the appearance of the secondary 
vortex in the basic flow can decrease the growth rate of perturbation significantly. Energy analysis shows that the perturbation 
energy consists of the viscous dissipation, the work done by Marangoni forces and the interaction between the perturbation flow 
and the basic flow, respectively. For Prandtl numbers lower than 0.01, the perturbation energy mainly comes from the third part, 
which suggests that the perturbation is hydrodynamic. When Prandtl number is larger than 0.1, the second part becomes more 
important, and the perturbation consists of hydrothermal waves, which shows that the thermocapillary effects are important for 
large Prandtl number. The work done by Marangoni forces decrease with the rotation Reynolds number. 
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1. Introduction 

Thermocapillary flows are important in many applications, such as the floating-zone method and Czochralski 
crystal growth techniques. In the production of crystals by the floating zone method, the feed and crystal rods are 
often rotating in order to suppress the azimuthal asymmetry. In Figure 1, a model of liquid bridge with counter-
rotating disks is proposed [1]. We numerically simulate the basic flow and perform the linear stability analysis. 
Energy analysis is used to study the mechanism of the instability. 

 

Fig. 1. Schematic of a liquid bridge between counter-rotating disks. 

 
Nomenclature 

0R  disk radius  

L           the distance of two disks 

0   liquid density 

 kinematic viscosity  

            thermal diffusivity 
k             thermal conductivity 

 '
T       surface tension derivative with respect to temperature 

            angular velocity of   rotation for the disks 

T         temperature difference of two disks 

 
Typical dimensionless parameters such as aspect ratio, Reynolds number, Marangoni number and Prandtl 

numbers are defined as 

02/ RLA , /Re 00 RU ,  /Pr ,                            (1) 

where the reference velocity is 0

 '
T0 /TU . /Re 2

0R  is the Reynolds number for the disk 

rotation. 
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2. Governing equations 

The dimensionless governing equations of the flow are as follows [2], 
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Here, pT ,,u are velocity, temperature and pressure, respectively. At solid disks, non-slip boundary conditions are 

imposed for velocity, 1,0T for the cold and hot disks, respectively. The boundary conditions at the free surface 

are  

0nu , 0)( TnSt , 0Tn
  

                          (3) 

where n denotes the normal unit vector at the free surface, t denotes the tangential unit vectors in the vertical cross-
sections, and S  denotes the rate-of-strain tensor. 

The basic flow and temperature solutions are obtained by using the pseudo-spectral Chebyshev method. The 
perturbation quantities can be expanded as a sum of normal modes, and their equations are solved with Chebyshev 
polynomial expansions in the radial and vertical directions. 

3. Numerical results 

3.1. Basic flow 

Figure 2 shows the flow pattern in liquid bridge with Pr = 0.1, A = 1, Re = 4000 and different rotation Reynolds 
numbers. When no rotation is applied, the flow pattern has a primary vortex, which is caused by thermocapillary 
forces. As the rotation Reynolds number increases, a secondary vortex appears in the upper core region, whose 
streamtraces rotate in the opposite direction. This vortex caused by rotating disks has a great impact on flow stability.  

 

 
(a)                                                                                                         (b) 

Fig. 2 The basic flow and temperature field for 
 (a) ; (b) . 

When no rotation is applied, the instability depends on the Prandtl number. For small Prandtl number liquids (Pr 
<= 0.1), the first instability of the axisymmetric flow is a stationary secondary flow. When a rotation is applied, the 
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bifurcation is from the axisymmetric state to an oscillatory state. The most unstable mode is a traveling wave. The 
critical frequencies changes with the rotation Reynolds number significantly, and the direction of wave propagation 
can be opposite for high rotation Reynolds numbers. The flow is destabilized by weak rotation but stabilized by 
strong rotation. 

3.2. Energy analysis 

We study the instability of the most unstable mode by energy analysis. The perturbation energy can be obtained 
as follows.  

S S u S n u u 0u                     (4) 

Here, 0u is the velocity of the basic flow, u and S are the velocity and the rate-of-strain tensor of the perturbation 
flow,  is viscous dissipation,  is the interaction between the perturbation flow and the basic flow,  are the 
work done by Marangoni forces on the surface, respectively [3]. As the viscous dissipation is always positive, it is 
set as a unit. 

In Table 1, we list the perturbation energy for various Prandtl numbers and rotation Reynolds numbers. For 
Prandtl numbers lower than 0.01, the perturbation energy mainly comes from the interaction between the 
perturbation flow and the basic flow, which suggests that the instability is hydrodynamic. When Prandtl number is 
larger than 0.1, the work done by Marangoni forces become more important, the perturbation consists of 
hydrothermal waves. So the thermocapillary effects are more important for the larger Prandtl number. 

Table 1. The perturbation energy for various Prandtl numbers and rotation Reynolds numbers. 

   Ω    

0.001 0.6 1500 0 1 -0.0006 1.0222 

0.01 1.2 800 0 1 0.0005 1.1136 

0.1 0.8 4500 100 1 0.0713 0.9420 

1 0.5 2500 50 1 0.6314 0.3484 

4. Conclusions 

In this paper, we study the linear stability of the thermocapillary flows between counter-rotating disks. The 
Chebyshev-collocation method is used to solve the basic state and perturbation equations. As the rotation Reynolds 
number increases, the secondary vortex appears in the basic flow, which can decrease the growth rate of 
perturbation significantly.The perturbation energy consists of the viscous dissipation, the work done by Marangoni 
forces and the interaction between the perturbation flow and the basic flow, respectively. When Prandtl number is 
larger than 0.1, the second part becomes more important. 
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