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temperature rise. The Reissner assumptions are adopted and truss cores are
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Introduction

Sandwich panels with truss cores (SPTCs) have been considered to be promising candidates for load
bearing components and thermal protection systems (TPS) in high speed flights, due to the superior
characteristics such as high specific strength, high specific stiffness and multifunctional properties.
When being used in TPS, the SPTC typically experiences large non-uniform temperature rise and
may buckle due to thermal stresses. Therefore, the prediction of the thermal buckling response of the
SPTC becomes of utmost importance, in order to integrate this novel lightweight and multifunctional
structure into a flight-ready aircraft. In recent years, SPTCs have been extensively investigated on their
fundamental properties, thermal insulation, shock resistance and energy absorption behaviors [1-12].
However, the post-buckling behavior of SPTCs under thermal loadings, which is quite different from
conventional panels and may demonstrate unique properties, have not been systematically studied.

There have been a wealthy of theoretical works on the prediction of the critical buckling temperature
(CBT) for plates and laminates. Based on the first-order shear deformation theory, Kabir et al. [13]
obtained the CBT of clamped rectangular plates with symmetric angle-ply lamination. Kant and Babu
[14] analyzed the buckling behavior of skew fibre-reinforced composites and sandwich plates by using
shear deformable finite element models. Mansourand Shariyat [15] obtained the CBT of the functionally
graded orthotropic plates by using a new differential quadrature method. Since plates and laminates
always have initial imperfections, there also have some theoretical and numerical analysis on the thermal
post-buckling behaviors. Mossavarali and Eslami [16] studied the thermal post-buckling behavior of thin
plates which has initial flaws.

Based on the classical thin plate theory, Singh et al. [17] studied the thermal post-buckling behavior
of rectangular antisymmetric cross-ply composite plate by using the Rayleigh-Ritz method. Thankam
et al. [18] analyzed the thermal post-buckling behavior of laminated plates by using the finite element
method. Sohn and Kim [19] used finite element method to calculate the thermal post-buckling response
of functionally graded panels subjected to combined thermal and aerodynamic loads. Shen [20] analyzed
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the thermal post-buckling behavior of shear deformable functionally graded plates with temperature-
depended properties by using a two-step perturbation technique.

For SPTCs that have weak cores and strong facesheets, the transverse shear deformation is mainly
produced by the truss cores and should not be neglected. Therefore, the SPTC cannot be simplified as
a thick plate or a laminate. To obtain the CBT of the SPTC, Chen et al. [21] solved the characteristic
equations of simply supported SPTC under uniform thermal loading based on the Reissner model
[22]. Yuan et al. [23] obtained CBTs of SPTCs under fully clamped boundary conditions by using
double Fourier expansions to the virtual deformation mode. Later on, Yuan et al. [24] also performed
experimental study on the thermal buckling behavior of SPTCs under uniform high temperature
environments, and captured the full-field deformation history through the revised noncontact three-
dimensional digital image correlation technique. It is found that the sandwich panel deformed in
asymmetric mode in high temperature environments, due to fabrication defects. However, there have
been few theoretical works on the thermal post-buckling behavior of the SPTC.

The present work focuses on the thermal post-buckling behavior of simply supported SPTCs
subjected to uniform thermal loading. To obtain the buckling deformation of SPTCs, the truss core is
assumed to be a continuous material. For the equivalent mechanical behavior, Deshpande et al. [25] gave
the three-dimensional elastic constitutive relationship of lattice truss cores. Hyun et al. [26] obtained the
properties of Kagome and tetragonal truss cores by using the finite element method. In general, the
equivalent mechanical properties of truss cores are derived by geometric deformation of the lattice truss
cells. Subsequently the governing differential equations of SPTCs with initial imperfection are obtained
by using the variational principle. The thermal post-buckling equilibrium path is obtained by using the
perturbation method. Structure parameters that affect the thermal post-buckling response of SPTCs are
also discussed.

Theory and formulation

In the present study, a simply supported SPTC subjected to uniform thermal loading is considered.
The most commonly investigated configurations of truss cores are pyramidal, tetrahedral and Kagome,
which are illustrated in Figures la and 1b. The equivalent analytical model is shown in Figure lc. In
the Cartesian coordinate system, the OXY plane is located in accordance with the middle plane of the
SPTC, and the edge lengths of the SPTC along the X and Y directions are a and b, respectively. The
thicknesses of the truss core and SPTC along the Z direction are h, and h, respectively. For the SPTC,
the buckling deformation is small and the major deformation is produced by the facesheet. In addition,
the deformations of the facesheet and truss core are compatible and continuous. Therefore, the rotation
of the truss can be neglected. To obtain the theoretical model, the following assumptions are made:
(1) The size of the unit truss cell is small in comparison with the size of the SPTC, therefore the truss
core is considered as a continuous and homogeneous material.
(2) The truss is pin-jointed at the core-facesheet interface; therefore, the truss core does not contribute
to the overall flexural rigidity.
(3) The transverse shear stiffness of the SPTC is only contributed by the truss core.
Due to the thin facesheet and the soft truss core, the shear deformation of SPTC is mainly produced
by the truss core, and the transverse shear deformation of the facesheet can be neglected. Therefore, the
first-order deformation theory is adopted. Strains of the facesheet are given by [16]

AU 1 /aW\? awaw, AVx
o) LR SO
£x ax+2(ax)+ax ax T <ax>

AV 1 aW\> W aW, Iy
_ OV L(OWAT OWEW, | (VY 1
Y 8Y+2(8Y)+8Y oy T <8Y) W

1(aU AV AWIW  aWo aW  dW AW, Z(ax/fx ax/fy>)

xr=o\y Tax Tax oy T ax oy T ax av 0y T ax




158 (&) W.YUANETAL

(b) truss core: tetrahedral, pyramidal and Kagome configuration

facesheet

|

(c) Equivalent analytical model

Figure 1. Theoretical analysis model of SPTC.

The equivalent strains of truss cores can be expressed as

1 aw
exz = > (lﬁx+ —)

2 0X
1 ow
Eyz = 5 (I/fY + W)

)

where U, V and W are displacements of the middle plane of the SPTC in the X, Y, and Z directions,
while ¥x and ¥y are rotations of the normal to the XZ and YZ planes, respectively. Additionally, Wy is

the initial geometric imperfection of the SPTC.
According to Hooke’s law, stresses in the facesheet are expressed as

E
ox = 1——IL2(8X + uey — (1 + waAT)
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E
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IR T

And stresses in the truss core are written as
xz = 2Gcexz

tyz = 2Gceyz

€)

(4)
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where E and p are the elastic modulus and Poisson’s ratio of the facesheet respectively. G is the equivalent
shear modulus of truss core, which is obtained by using the representative unit cell approach. « and AT
are the coefficient of thermal expansion of the facesheet and the temperature rise, respectively.

The strain energy of the facesheet and the truss core are

1
Ufactsheet = 5 / f / (oxex + oyey + 2txyexy) dXdYdZ
Vfactsheet

)
Ucore = / / / (txzéxz + Tyzeyz) dXdYdZ
Veore
According to the minimum potential energy principle
Su = Sufactsheet + Sticore = 0 (6)
by using U, V, W, ¥x, Yy as independent variables, the governing differential equations can be deduced
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It is assumed that the SPTC is subjected to uniform thermal loading. In this case, the internal force
can be expressed as

X 2

0X

Y

E(hy —ho) (8U 1 (dW\> aW aW, AV 1AW\ AW aWp
Ny=—"t—7"| == v . TH lay) *

1—pu? IX X Y oY

>—(1+u)ozAT>

Ny e —ho) oV 1 (ow 2+awaw0+ U 1 (0w 2+awawo (1 + DaAT
= — —_— —_— —_— — e _— — o
YT \ay T2 \oy oy oy M ox T2\ ox 9X 0X *

doU 0V oWaoWwW aWyoW 9w oW,
Nyy = G (hy — he) (22 4 OV OWOW., 9Wo 0., 9W 6 Wo
Y 0X 0X 0Y X d9Y 0X 0Y

Yx Yy Yy Yx (1—w)D (dpx gy
My =D (22X YY) My =D 22X TVXN) My = =07 (2x, O97
X <3X +“<ay>> Y (E)Y T x Xy 2 oY T ax

ow ow
QX:C(l/fx-f-f), QY=C<¢Y+7>

(8)

0X Y
E(hy — k)
= C = G h
12(1 — pu?) e

where C and D are the shear stiffness and flexural rigidity of the SPTC, respectively.
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In addition, the deformation compatibility equation and stress functions are considered
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Before proceeding, it is convenient to define the following dimensionless quantities in the differential
governing equations
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Therefore the nonlinear differential governing equations of the thermal post-buckling of SPTC in the
dimensionless form can be obtained
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And the end-shorting relationships can be expressed as [27]
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Asymptotic solutions

Applying Eq. (11), the buckling behavior of SPTC is determined by the two-step perturbation technique
[20]. Solutions of unknown functions are assumed to have the following forms

w(x, y,6) = E e'wi(x,y), F(xye) = E e'Fi(x,y)
i=1 =
(14)

(Px(x>)’> 8) = Zgi(ﬂxi(x;)’): ‘Py(x>)’> 8) = Zgi(ﬂyi(x:)’)

i=1 i=1
where ¢ is a small perturbation parameter and the first term of out-of-plane displacement can be
expressed as the classic solution of small deflection

wi(x, y) = Ay SinmxsSinny (15)
The initial geometric imperfection of the SPTC is assumed to have a similar form
wo(x,y) = eAA11 SNmxSinny (16)
For the SPTC that has no initial geometric imperfection
A=0 (17)

Substituting Eqgs. (14)-(16) into Eq. (11) and collecting terms of the same order of ¢, a set of
perturbation equations is obtained. Unknown functions can be obtained by using the perturbation
equations of each order. Finally, up to the fourth order, asymptotic solution are obtained

w(x, y,€) = ¢ [A11 Sinmxsinny] + &3 [A13 Sinmxsin3ny + Az Sin3mxsinny] + 0(°)
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and parameters in Eq. (19) can be expressed as
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In the present work, the global buckling behavior of SPTC is considered. The maximum out-of-plane

displacement, which is assumed at point x = 5., y = 7-, can be expressed as

A?p f2 =

Wi = Anie + & (A1 + As1) + O() (1)
Then the perturbation parameter can be obtained

A+ 21+ 20)mip?y? (14 20)(1 + 1) B2ntp2y?
1682 A+ 16
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where

A1z = (833855 — £35853) /X1
A31 = (44866 — Ca6864)/ X2
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Substituting Eq. (18) into boundary conditions §; = 0, 8, = 0, the thermal post-buckling equilibrium
path can be obtained

Qr = Qo + Qwl, + Quaw), (23)
where

Qp = EaAT
O — (1—w)p? (m mkiy — Brky; , Bnkiy — mka
072020 1) m? + n2Y) U kitkas — kizka ki1kas — kiakay
1 2 L (B =) (5, nP(1+20)B%?
912 = 3 (1 + 2)\,) m° + )/2 <—m2 T 2 (21’7’1 n (—32m2
m*(1+20)y* (> +20)(B*n’ — m2)> (y> +23)(B*n* — m2)>
32282 801+ ) 8(1+ )
B2 (1—pw) 2¢%m*n? <n2(1 + 208272 (1 + M) (1 + 20)mip?y?
A
y2 (L4 1) (m2? + B2n2¢?) 32m? 16p2
m?(1 4 20)y% (1 +20) (1 + 1) B2ntep?y?
A3
32n2 2 16
(14101 + 20)m*p?y? (L4200 + 2Bne?y? )
31

+m? + ,32n2>

Quu = 13

Az +

20
et ( 1682 16

Results and discussions

In this section, the post-buckling behavior of the SPTC is obtained according to the theoretical model.
The geometric parameters and material properties used in the theoretical analysis are listed in Table 1.

Comparison of CBTs with different theories

To solve the CBT of SPTC, the small deflection theory may lead to desirable results. Figure 2 shows
the comparison of CBTs of pyramidal SPTC obtained from the present theory with that from the
small deflection theory [21, 23]. It can be found that CBTs from the present theory model are in
good agreement with the small deflection theory. However, the linear small deflection theory may lead
to significant errors due to the large amplitude thermal post-buckling deformations. Therefore, the
nonlinear large deflection theory is used to get the thermal post-buckling response of SPTC.

Effects of initial geometric imperfection

Figure 3 shows the effect of initial geometric imperfection on the thermal post-buckling behavior of
SPTCs. Lines with Wy/h, = 0 are thermal post-buckling equilibrium paths of SPTCs that do not
have initial geometric imperfections, and Wy/h, = 0.05 are equilibrium paths of imperfect SPTCs.
For perfect SPTCs, there is no out-of-plane displacement when the temperature rise is under the CBT,
whereas it increases dramatically when the temperature rise is larger than the CBT. Unlike the perfect
SPTC, there is initial out-of-plane displacement and the displacement increases dramatically when the
temperature rise is approaching to the CBT of the perfect SPTC. The out-of-plane displacement of SPTC
with large imperfections is larger than those with small imperfections due to the influence of initial

Table 1. Parameters used to calculate the thermal post-buckling path theoretically.
he (mm) hp (mm) E (GPa) n o (><10_6) a(mm) b (mm)
8 10 200 0.3 17 300 300
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Figure 2. Comparisons of CBT predicted by different theories.
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Figure 3. Effect of initial imperfection on the thermal post-buckling behavior of SPTC.

geometric imperfection, whereas all of them tend to be the same when the dimensionless displacement

Effects of truss core configuration and relative density

Figure 4 shows the effect of truss configurations on the thermal post-buckling behavior of SPTC. For
the three configurations of truss cores illustrated in Figure la, the equivalent shear stiffness can be
expressed as

1_
prramid = prramidhc = ngho
. (24)
Cret = Ckagome = Gtethc = 55Ehc

where Cpyramid> Cret and Ciagomeare the equivalent shear stiffness of the pyramidal, tetrahedral and
Kagome truss cores, respectively. Gpyramid> Gtet and Giagomeare the equivalent shear modulus of the
pyramidal, tetrahedral and Kagome truss cores [23]. D is the relative density of the truss core. From
Eq. (24), the shear stiftness of the pyramidal truss core is larger than the Kagome and tetrahedral cores,
when they are in the same relative density. Therefore, the resistance to thermal post-buckling of a SPTC
with pyramidal truss cores will be higher than those of the other two configurations. In addition, the
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Figure 4. Effect of truss configuration on the thermal post-buckling behavior of SPTC.
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Figure 5. Effect of relative density of truss core on the thermal post-buckling behavior of SPTC.
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Figure 6. Effect of truss core thickness on the thermal post-buckling behavior.

difference is significant when the relative density is 0.01, but not so obvious when the relative density

gets 0.1.

Figure 5 shows the thermal post-buckling behavior of pyramidal SPTC when the relative density of
the truss core p is raised from 0.01 to 0.1. It can be seen that, the increase of relative density p yields



166 W. YUAN ET AL.

300 - T

Figure 7. Effect of SPTC aspect ratio on the thermal post-buckling behavior.
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Figure 8. Effect of facesheet thickness on the thermal post-buckling behavior of SPTC.

an improved resistance of thermal post-buckling deformation. According to Eq. (24), the shear stiffness
of the SPTC is directly related to the relative density. Therefore, the thermal post-buckling strength can
be improved by using a higher relative density. However, according to Figure 2 and also ref. [23], the
tendency slows down when the relative density is approaching to 0.06.
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Figure 6 shows the effect of truss core thickness /. on the thermal post-buckling behavior of SPTC
when the facesheet thickness is 1 mm and relative density is 0.03. When the truss core relative density
P and the facesheet thickness are constant, the flexural rigidity grows dramatically as the truss core
thickness is elevated. Therefore, the resistance to thermal post-buckling of SPTC is enhanced as the
truss core thickness k. grows.

Effects of aspect ratio and facesheet thickness

Figure 7 shows the effect of aspect ratio 8 on the thermal post-buckling behavior of pyramidal SPTC
when panel length a is 300 mm. The increase in the width b means the slenderness ratio of SPTC is
increased, therefore, the CBT and thermal post-buckling resistance is decreased.

Both the in-plane load and the flexural stiftness of SPTC increase when the facesheet thickness is
increased. Asaresult, the facesheet thickness has different effects on the thermal post-buckling resistance
of SPTC when the truss core relative density p is varied. As Figure 8a shows, for the relative density
© = 0.1, the CBT and post-buckling resistance of SPTC are improved as the facesheet thickness is
increased. When the relative density decreases to 0.01, as Figure 8b shows, the CBT decreases when the
facesheet thickness is increased. However, the out-of-plane displacement of SPTC with smaller facesheet
thickness is larger than that has bigger thickness when the temperature rise is increased.

Conclusions

This article presents a theoretical analysis on the thermal post-buckling behavior of simply supported
SPTC under uniform temperature rise. Based on the first-order shear deformation theory, the governing
differential equations of SPTC are developed by using the variational principle. The CBT and the
thermal post-buckling equilibrium path of SPTC are obtained by using the perturbation technique.
CBTs calculated by the present model are in good agreement with that from the small deflection theory.
Parameters that influence the post-buckling behavior of SPTC, including initial geometric imperfections,
truss core configurations, relative densities, truss core thickness, aspect ratio, and facesheet thickness,
are discussed. The resistance to thermal post-buckling of pyramidal SPTC is highest of the three
configurations. The CBT and thermal post-buckling strength of SPTC can be improved by using a higher
relative density. The stability of SPTC can be improved by adding the truss core thickness, but weakened
when the length of SPTC increases. In addition, the effect of facesheet thickness on the CBT and thermal
post-buckling resistance of SPTC is different when the relative density of the truss core is varied.
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Nomenclature

»
S8

Sandwich panel length

Shear stiffness of sandwich panels
Flexural rigidity of sandwich panels
Modulus of the material

Stress function in dimensionless units
Stress function

Equivalent shear modulus of the lattice truss core
Core thickness

Sandwich panel thickness

Bending moment in x-direction
Torsional moment

Fommmoo

S
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M, Bending moment in y-direction
N, Ny, Nyy Compressive in-plane force
Qx, Qy Shear force
U Displacement in X-direction
u Displacement in X-direction in dimensionless units
14 Displacement in y-direction
v Displacement in Y-direction in dimensionless units
w Displacement in Z-direction
Wo Initial geometric imperfection
w Displacement in Z-direction in dimensionless units
wo Initial geometric imperfection in dimensionless units
Win Maximum displacement in z-direction in dimensionless units
o Coeflicient of thermal expansion of the sandwich panel
AT Temperature rise
8x> By End-shorting of sandwich panel
£X> EY> EXY Strains of facesheet
£x7, €Y7 Strains of truss cores
m Poisson’s ratio
0 Relative density of sandwich panel
Oxs Oy» Tyy Stress of facesheet
X7, TYZ Stress of truss cores
vx, Uy Rotations of the normal in the XZ and YZ planes
©x> Py Rotations of the normal in the XZ and YZ planes in dimensionless units
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