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As a part of the preliminary studies for the future space experiment (Zona-K) in the
Russian module of the International Space Station, some bifurcation routes to chaos
of thermocapillary convection in two-dimensional liquid layers filled with 10 cSt
silicone oil have been numerically studied in this paper. As the laterally applied
temperature difference is raised, variations in the spatial structure and temporal
evolution of the thermocapillary convection and a complex sequence of transitions
are observed. The results show that the finite extent of the liquid layer significantly
influences the tempo-spatial evolution of the thermocapillary convection. Moreover,
the bifurcation route of the thermocapillary convection changes very sensitively by
the aspect ratio of the liquid layer. With the increasing Reynolds number (applied
temperature difference), the steady thermocapillary convection experiences two
consecutive transitions from periodic oscillatory state to quasi-periodic oscillatory
state with frequency-locking before emergence of chaotic convection in a liquid layer
of aspect ratio 14.25, and the thermocapillary convection undergoes period-doubling
cascades leading to chaotic convection in a liquid layer of aspect ratio 13.0. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4948400]

I. INTRODUCTION

Turbulent phenomenon is inherent in nature.1,2 The bifurcation routes to chaos for a buoyant
natural convection have attracted extensive studies.3–11 Typical bifurcation routes that might
announce chaos are identified, such as frequency-locking,4,7 period-doubling route,4,8 the Ruelle-
Takens-Newhouse route,4,9,10 and the intermittent route,4,11 depending on the controlling parameters
of the dissipative dynamical systems such as the Rayleigh number, the Prandtl number, and the
geometric aspects. Different from the buoyant natural convection, thermocapillary convection is the
principal natural convection in microgravity or in shallow liquid layers in the terrestrial conditions
in which the capillary effect is dominant. As a relatively new dissipative dynamical system, thermo-
capillary convection has become one of the fundamental subjects in microgravity fluid physics and
space fluid/heat management.12–14 The liquid layer is usually adopted as one of the typical models
for the investigation on the thermocapillary convection, which is driven by the surface tension
gradient induced by the temperature gradient along the free surface. Smith and Davis15,16 studied
the stability of an infinite liquid layer driven by imposed temperature gradient parallel to the free
surface in case of zero gravity. They found stationary longitudinal rolls and unsteady hydrothermal
wave for the case with flat and non-deformable free surface and surface wave for the case with
deformable free surface. The mechanism of the hydrothermal wave is further explained by Smith.17

Thereafter, the hydrothermal wave instability has received considerable attentions, and many exper-
imental and numerical studies associate with the hydrothermal wave have been performed. Thermo-
capillary convection and its stability have been experimentally studied in shallow liquid layers in the
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terrestrial conditions by many researchers.18–22 However, the experiments on the thermocapillary
convection in the terrestrial conditions are complicated by the coupling with buoyancy effect. For
instance, the results shown by Riley and Neitzel reveal that the characteristics of the hydrothermal
wave (angle of propagation, frequency of oscillation) are different for liquid layers with different
thickness,18 which may be due to the effect of gravity as studied by Chan and Chen.23 On the
other hand, there are few space experiments on the problem. Kamotani et al. studied the steady
and oscillatory thermocapillary convection in cylindrical containers experimentally on board the
Space Shuttle.24,25 The liquid layer used is relatively deep with aspect ratio around 1. Schwabe
et al. investigated thermocapillary convection and its stability in a large and shallow annular gap
heated from the outer wall.26,27 Under high supercritical condition, the thermocapillary convection
will bifurcate further until evolve to chaos convection. Few pioneer experiments on secondary
instability of hydrothermal waves in horizontal pools under high super-criticality were reported.28–30

Mukolobwiez et al. studied the nonlinear dynamics of hydrothermal waves in a long and thin
annular channel heated from the side and showed a supercritical Eckhaus instability.28 Garnier
et al. investigated the nonlinear dynamics of waves and modulated waves in long and narrow
1D channels (annular or bounded) and presented the observations in the framework of complex
Ginzburg-Landau equations.29,30 There are also many numerical investigations associated with the
thermocapillary convection and its instability. Carpenter and Homsy performed a linear stability
analysis of the thermocapillary convection in a rectangular liquid pool.31 Xu and Zebib numerically
simulated the two-dimensional (2D) and three-dimensional (3D) thermocapillary convection in
rectangular liquid layers under zero gravity condition.32 Ma and Bothe studied the thermocapillary
convection in liquid layer with dynamically deformable interface by direct numerical simulation
based on the volume of fluid method.33 Sáenz et al. studied the linear and nonlinear stability
of hydrothermal waves in shallow planar liquid layers driven by thermocapillarity by means of
two-phase direct numerical simulations taking into account the dynamical interfacial deformation.34

A few numerical studies were conducted on the bifurcation routes of thermocapillary convection to
chaos in rectangular liquid layers in which the Ruelle-Takens-Newhouse route was indentified.35,36

As shown above, most studies now available are focused on the critical conditions for the onset of
the oscillatory thermocapillary convection, which is the very initial regime of the bifurcation route
to chaos, and the exploration of possible bifurcation routes to chaos of the thermocapillary convec-
tion is still an attractive open question due to its strong nonlinear characteristics. And most of the
studies have been performed using rectangular or annular pools with relatively small lateral distance
and liquids of intermediate Prandtl number (around 10). On the other hand, the thermocapillary
convection and its instability are strongly dependent on the physical property of the liquid and pool
geometry. Therefore, it is necessary to figure out the effects of Pr and pool geometry on the stability
limits and secondary bifurcations of purely thermocapillary convection.

Recently, the researchers from National Microgravity Laboratory of Chinese Academy of Sci-
ences are preparing a space experiment (Zona-K) on the transition to the spatiotemporal chaos
of thermocapillary convection in liquid layers of finite extent under increased laterally applied
temperature difference. The experiment will be conducted in the Russian module of the Interna-
tional Space Station (ISS) in cooperation with the Russian researchers. As the preliminary studies
for the space experiment, a series of on-ground experiments are carried out based on thin liquid
layers of 10 cSt silicone oil (Pr = 105.6) in which the thermocapillary convection is dominant even
in the terrestrial conditions. As a part of the preliminary studies, the present numerical simula-
tion aims to identify the bifurcation routes to chaos of the thermocapillary convection in liquid
layers of finite extent with increasing laterally applied temperature difference. As a first step to
this subject, two-dimensional (2D) liquid layers are considered in the present study and extension
to more detailed three-dimensional (3D) analyses is planned as the next subject in the future. The
paper is organized as follows: the section of model and method gives a brief description of the
model and mathematical formulations for the present problem. In the section of Numerical Results,
nonlinear dynamic behavior of the thermocapillary convection is analyzed through the portraits of
the stream-function fluctuations and the free surface velocity fluctuations. Then, the bifurcation
route to chaos of the thermocapillary convection is identified through the frequency power spectra,
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FIG. 1. Schematic of a 2D liquid layer of finite extent.

the correlation dimensions, and the trajectories in the reconstructed phase space. The conclusions
are provided in Sec. IV.

II. MODEL AND METHOD

Note that real hydrothermal waves mostly appear as three-dimensional waves obliquely traveling
toward the hot wall. However, the Prandtl number in the present study is large, and the preferred
mode is a hydrothermal wave propagating almost upstream (about 10◦ off) as predicted by Smith.15

Moreover, the side wall effects are expected to be weak since the distance between the two side walls
is relatively long (aspect ratio in the transversal direction is large). Therefore, as a first step of this
project, two-dimensional (2D) liquid layers are adopted in the present numerical study. The on-ground
experiments are conducted using liquid pools with different aspect ratios in the lateral direction (Γ)
ranging from 13.0 to 15.0. Present numerical simulations are conducted for pools of Γ = 14.25 and
13.0, which give two representative situations of the tempo-spatial evolution of the thermocapillary
convection and the corresponding sequence of bifurcations with the increasing Reynolds number.

Figure 1 shows the 2D model of liquid layer of finite extent filled with 10 cSt silicone oil (the
corresponding physical properties are shown in Table I). The liquid layer has a rigid solid at the
bottom and free surface on the top, which are both assumed to be adiabatic. The temperature Th at
the left wall is higher than Tc at the right wall with ∆T = Th − Tc. The depth of the liquid layer is h,
and the liquid layer extent is l. The liquid is assumed to be incompressible with constant viscosity
and thermal diffusivity. The temperature coefficient of surface tension σT is assumed to be constant.

Present numerical simulations start with an initial condition of uniform temperature (the
applied temperature difference ∆T is zero) and motion-less fluid. A semi-stepwise heating method is
adopted in the present study, which is similar to the corresponding on-ground experimental studies,
i.e., the temperature of the cold wall is kept at Tc and the hot wall temperature is increased at a
ramping rate of 0.05 K/s for a time span of 1 s, which results in the applied temperature difference
∆T = 0.05 K. Then, the applied temperature difference is kept constant over a time span more
than 5000 s, which is long enough to allow the full development of the thermocapillary convection
under the assigned ∆T . Then, the hot wall temperature is further raised at the same ramping rate of
0.05 K/s for a time span of 1 s and then ∆T = 0.10 K is kept over a time span more than 5000 s once
again. By repeating the same process of “semi-stepwise increase of ∆T followed by a long enough
time span with the constant ∆T ,” the process toward the chaos is investigated.

In the present study, vorticity ω and stream-function ψ are, respectively, introduced as

∇ × ψ∗ = V∗, ∇ × ∇ × ψ∗ = ω∗, (1)

TABLE I. Physical properties of 10 cSt silicone oil.

ρ (kg/m3) ν (m2/s) µ (kg/ms) α (m2/s) σ (N/m) σT (N/mK) Pr

935 10−5 9.35×10−3 9.47×10−8 2.01×10−2 −6.12×10−5 105.6
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TABLE II. Physical scales.

Variable x, z u, w p T −Tc (K) t ω ψ f

Scale h U = |σT |∆T /µ |σT |∆T /h ∆T h2/ν U/h Uh ν/h2

where V∗(u∗, w∗) is the flow velocity with the components u∗ and w∗ along the horizontal direction
x∗ and the vertical direction z∗, respectively. Then, the dimensionless governing equations can be
expressed as follows:

∂ω∗

∂t∗
+ ReV∗ · ∇ω∗ = ∆ω∗ (2)

Pr
∂T∗

∂t∗
+MaV∗ · ∇T∗ = ∆T∗, (3)

where the asterisk (∗) is for the dimensionless values. Note that the equation of mass conserva-
tion is automatically satisfied. The corresponding dimensionless numbers are defined as Pr = ν/α,
Re = |σT |∆T h/µν, Ma = Re × Pr = |σT |∆T h/µα, Γ = l/h. Here, Pr is the Prandtl number, Ma the
Marangoni number, Γ the aspect ratio, and the scales for the physical quantities are given in Table II.

The dimensionless boundary conditions are as follows:

x∗ = 0 : ψ∗ = 0,ω∗ = −∂
2ψ∗

∂x∗2
,T∗ = 1, (4)

x∗ = Γ : ψ∗ = 0,ω∗ = −∂
2ψ∗

∂x∗2
,T∗ = 0, (5)

z∗ = 0 : ψ∗ = 0,ω∗ = −∂
2ψ∗

∂z∗2
,
∂T∗

∂z∗
= 0. (6)

The free surface is considered as a plane in initial quiescent liquid layer. The deformation of the free
surface is negligible in the present study since it is so small compared to the height of the liquid
layer of 10 cSt silicone oil.37 Therefore, the free surface is located at z∗ = 1. The vorticity at free
surface is determined from the equilibrium of tangential stress, and the boundary condition at the
free surface is

ψ∗ = 0, ω∗ =
∂T∗

∂x∗
,

∂T∗

∂z∗
= 0. (7)

A hybrid finite element method of fractional steps38 is adopted in the present study. The num-
ber of grids is 121 × 21 in the directions of x and z, respectively, and the computation domain
is divided into 4800 irregular triangular elements with 2541 nodes. The details of the numerical
method and code validation can be found elsewhere39 and the non-dimensional time step 0.0001
for the calculation is adopted. To identify the different states in the bifurcation route to chaos of
the thermocapillary convection, the fast Fourier transform is adopted on the time history of the
dynamic variables at the monitoring points. The periodic oscillation, quasi-periodic oscillation, and
period-doubling scenarios can be recognized from the corresponding FFT power spectrum. Chaotic
convection is considered to occur when the signal spectrum develops into broadband. Moreover,
the time history of the dynamic variable can be represented in the reconstructed phase spaces of a
train of embedding dimensions. Then, the final embedding dimension and the correlation dimension
can be obtained through G-P algorithm.40 In this way, the nonlinear dynamic characteristic of the
thermocapillary convection in the 2D liquid layers of finite extent can be explicitly described.

III. NUMERICAL RESULTS

The thermocapillary convection is steady at a small Reynolds number and transfers to oscil-
latory convection when the Reynolds number exceeds a critical value Rec (the critical Reynolds
number for the onset of hydrothermal wave instability). At further increased Reynolds number, the
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thermocapillary convection evolves through various complex ways (depending on the parameters Pr
and Γ) into chaotic flow. The over-critical-parameter from the transition point Rec is described as
ε = (Re − Rec)/Rec. Note that non-dimensional numerical simulations are carried out in the present
study, and the results are described in both non-dimensional and dimensional way for the future
direct comparison with the on-ground experimental results.

For the liquid layer of aspect ratio 14.25, the steady thermocapillary convection ends up at
the critical temperature difference ∆Tc = 18.80 K (Rec = 49). When the thermocapillary convection
get unsteady as ∆T goes beyond the critical value, the fluctuation is defined as the difference be-
tween the dynamic variable and its time-averaged value, e.g., ψ(x, z, t) = ψ ′(x, z, t) + ψ0(x, z), where
ψ ′(x, z, t) is the stream-function fluctuation and ψ0(x, z) = 1

τ

 τ
0 ψ(x, z, t)dt is the corresponding

time-averaged stream-function, τ is the time length much larger than the oscillation period. The
numerical results show that the strength of the fluctuation (ψ ′) is at least two orders less than the
time-averaged value (ψ0). Therefore, the portraits of the stream-functions qualitatively keep
the general trend of the unicellular structure with increasing applied temperature difference, i.e., the
temperature gradient on the free surface drives the fluid from the hot wall to the cold wall, while the
liquid at the bottom of the liquid layer flows from the cold wall to the hot wall.

At Rec = 49 (∆Tc = 18.80 K), as shown in Fig. 2(a), two pairs of stream-function fluctuation
cells arise and occupy the partial region of the liquid layer near the hot region. In the following plots,
solid line corresponds to a positive stream function fluctuation while dashed line to a negative one.
As the Reynolds number increases, the number of the fluctuation cells increases. The fluctuation
cells become more rectangular with similar sizes and distribute regularly in the central region of the
liquid layer. The fluctuation cells near the hot and cold walls are relatively small and weak. When
the Reynolds number is increased up to Rec = 105, ε = 1.14 (∆T = 40.00 K), as shown in Fig. 2(b),
the limited extent of the liquid layer does not allow further increase of the fluctuation cell number and
the boundary effect becomes significant. The fluctuation cells become irregular with different size and
strength. Further increase of the Reynolds number to Re = 157, ε = 2.20 (∆T = 60.00 K), as shown
in Fig. 2(c), the fluctuation cells become very irregular. Figure 3 shows the SpatioTemporal-Diagram

FIG. 2. Time evolutions of the stream-function fluctuations ψ′ (right) of the thermocapillary convection in liquid layer of
aspect ratio 14.25 at different instants: (a) ∆T = 18.80 K (Re=Rec = 49) from 5010 s (top) to 5034 s (bottom) at an interval
4 s, (b) ∆T = 40.00 K (Re= 105, ε = 1.13) from 5010 s (top) to 5022 s (bottom) at an interval 2 s, (c) ∆T = 60.00 K (Re= 157,
ε = 2.19) from 5000 s (top) to 5036 s (bottom) at an interval 6 s. The stream-function fluctuation is positive for the solid lines
in the plots while negative for the dashed lines.
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FIG. 3. Spatial-temporal diagram of surface velocity fluctuation u′(x, t) with various temperature differences (Reynolds
numbers): (a) ∆T = 18.80 K (Re=Rec = 49), (b) ∆T = 22.00 K (Re= 58, ε = 0.17), (c) ∆T = 24.50 K (Re= 64, ε = 0.30),
(d) ∆T = 28.65 K (Re= 75, ε = 0.52), (e) ∆T = 33.00 K (Re= 86, ε = 0.76), (f) ∆T = 40.00 K (Re= 105, ε = 1.13), (g)
∆T = 50.00 K (Re= 131, ε = 1.66), (h) ∆T = 60.00 K (Re= 157, ε = 2.19). The diagrams indicate the propagation of wavy
propagation of the surface velocity fluctuations.

(STD) of the surface velocity fluctuation u′(x, t) at different Reynolds numbers (applied temperature
differences). When the Reynolds number is relatively small Re < 80, ε < 0.63 (∆T < 30.00 K), as
shown in Figs. 3(a)-3(d), the strong velocity fluctuation appears in the central region of the liquid
layer, while the fluctuation near the hot and cold walls is relatively weak, and the region with strong
fluctuation spreads with the increasing Reynolds number. It can be clearly seen that the fluctuation
arises in the cold region and propagates toward the hot region. This structure keeps until it reaches the
hot wall and gets weakened. Therefore, the fluctuation shows a typical feature of hydrothermal waves
as expected by the stability analysis of Smith and Davis15 in the central region of the liquid layer
and is weakened in the regions close to the hot and cold walls. When the Reynolds number is further
increased, as shown in Figs. 3(e)-3(f), the fluctuation gets stronger in the whole liquid layer. Near
the hot wall, the fluctuation shows a complex spatiotemporal evolution without traveling wave. In the
other region, relatively regularly structured traveling fluctuation appears with fluctuating period. At
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FIG. 4. Time histories, power spectra, and phase trajectories of the surface velocity fluctuations in liquid layer of aspect
ratio 14.25 with various temperature differences (Reynolds numbers): (a) ∆T = 18.80 K (Re=Rec = 49), (b) ∆T = 22.00 K
(Re= 58, ε = 0.17), (c) ∆T = 24.50 K (Re= 64, ε = 0.30), (d) ∆T = 28.65 K (Re= 75, ε = 0.52), (e) ∆T = 33.00 K (Re= 86,
ε = 0.76), (f) ∆T = 60.00 K (Re= 157, ε = 2.19).

last, when the Reynolds number is increased up to Re > 157, ε > 2.20 (∆T > 60.00 K), the region
occupied by the irregular fluctuation spreads over the whole liquid layer as shown in Fig. 3(h).

Time histories of the free surface velocities are recorded at two monitoring points, x1 =

14.25 mm (x∗1 = Γ/4) and x2 = 28.5 mm (x∗2 = Γ/2). The free surface velocity fluctuation u′(x2,h, t)
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TABLE III. Parameters selected for the reconstructed phase space and the
correlation dimensions calculated with u1 or u2 at various temperature
differences.

∆T (K) 18.80 22.00 24.50 28.65 33.00 60.00

Fluctuation velocity u1 u2 u2 u2 u2 u2

Embedding dimension 3 3 3 3 3 6
Time delay τ 16 16 17 17 11 15
Correlation dimension 1.0 1.0 1.1 1.0 1.5 3.3

(noted as u2 hereafter) is adopted to investigate the nonlinear dynamic characteristics of the ther-
mocapillary convection. Such a selection is to minimize the boundary effects of the limited liquid
layer. With various Reynolds numbers, Fig. 4 shows the sequence of the sample signals of u2 with
corresponding power spectra and the projections of the trajectories in the reconstructed phase space.
The parameters selected for the phase space reconstruction and the correlation dimensions obtained
are listed in Table III. At the critical Reynolds number Rec = 49 (∆Tc = 18.80 K), u1 = u′(x1,h, t)
is also studied as it is much larger than u2. A fundamental frequency f1 = 0.046 Hz can be
clearly identified in the power spectrum. The correlation dimension is 1.0 and the corresponding
phase trajectory is a typical limit cycle. The scenarios demonstrate that the steady thermocapillary
convection ends up and shifts to periodic oscillatory convection via Hopf bifurcation. This periodic
oscillatory state remains till Re = 60, ε = 0.22 (∆T = 23.00 K), and the fundamental frequency f1
slightly decreases with the increasing ∆T . The periodic oscillatory state also emerges in the range
of Re = 73-79, ε = 0.49-0.61 (∆T = 28.00 K-30.00 K) with the significant development of the har-
monics of the fundamental frequency. Besides the periodic oscillatory states, the power spectra for
the other temperature differences are relatively complex. Some typical cases are analyzed in Fig. 4.
At Re = 64, ε = 0.31 (∆T = 24.50 K), the signal broadband develops; however, the fundamental
frequency f1 = 0.045 Hz still can be identified and a second fundamental frequency f2 = 0.019 Hz
appears (peaks of the fundamental frequencies are marked by a circle in the plot). Other peaks
can be expressed by linear combination of two incommensurate fundamental frequencies. This
is a typical quasi-periodic oscillatory state of the thermocapillary convection. The corresponding
correlation dimension is 1.1 and the trajectory in the reconstructed phase space shows the form
of a circle “cluster” formed by a single closed line. At Re = 86, ε = 0.76 (∆T = 33.00 K), the
number of the peaks in the power spectrum increases and some locally broadened peaks appear
due to the overlap of the peaks. However, two incommensurate fundamental frequencies, f1 and f2,
still can be identified, and all other peaks can be expressed by the linear combination of these two
incommensurate fundamental frequencies. Therefore, the thermocapillary convection is still in the
quasi-periodic oscillatory state. The corresponding correlation dimension is 1.5 and the trajectory in
the reconstructed phase space also shows the form of a closed circle “cluster” but with more random
spatial distribution compared to the case of Re = 64, ε = 0.31 (∆T = 24.50 K). The power spectrum
at Re = 157, ε = 2.20 (∆T = 60.00 K) finally develops to a state of broadband without any funda-
mental frequency, and the corresponding trajectory in the reconstructed phase space is random.
The correlation dimension is 3.3 significantly larger than the other cases in Table III. This sudden
increase of the correlation dimension implies a transition to a different state. On the other hand, the
existence of the correlation dimension distinguishes the present state from the signal random. To
verify that the state is chaotic, the largest Lyapunov exponents for selected values of the bifurcation
parameter are calculated. The results demonstrate a good convergence of the algorithm and reveal
the positive value of 0.057. This proves that for this value of the forcing parameter, the state is
chaotic. The fundamental frequencies indentified in the power spectra with various Reynolds num-
bers are summarized in Fig. 5. It can be seen that the fundamental frequency f1 slightly decreases
with the increasing Re (∆T) in the range of Re < 79, ε < 0.61 (∆T < 30.00 K) and then shows
a relatively quick decrease in the range of Re = 79-105, ε = 0.61-1.14 (∆T = 30.00-40.00 K).
The fundamental frequency cannot be indentified in the range of Re = 105-183, ε = 1.14-2.73
(∆T = 40.00-70.00 K). On the other hand, the second fundamental frequency f2 only emerges in
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FIG. 5. (a) Two fundamental frequencies ( f1 and f2) and (b) their ratios of the oscillatory thermocapillary convection in
liquid layer of aspect ratio 14.25 with various temperature differences. The colored dots are the fundamental frequencies for
the periodic oscillatory state.

the periodic oscillatory states in the range of Re = 60-73, ε = 0.22-0.49 (∆T = 23.00-28.00 K) and
Re = 79-105, ε = 0.61-1.14 (∆T = 30.00-40.00 K), as shown in Fig. 5(a). The ratio f1/ f2 plotted
in Fig. 5(b) reveals that the frequency-locking emerges in both quasi-periodic oscillatory states
at f1/ f2 = 13/7 = 1.8571 and f1/ f2 = 16/11 = 1.4546, respectively. Note that the emergence of
frequency-locking or a third incommensurate fundamental frequency is necessary for the shift from
quasi-periodic oscillatory state to chaos.

A complete overview on all bifurcation sequence identified in the present case (Pr = 105.6, Γ =
14.25) is as follows: steady state (Re < 49, ∆T < 18.80 K) → periodic oscillatory state

FIG. 6. Spatial-temporal diagram of surface velocity fluctuation u′(x, t) with various temperature differences (Reynolds
numbers): (a) ∆T = 21.02 K (Re=Rec = 55), (b) ∆T = 30.20 K (Re= 79, ε = 0.44), (c) ∆T = 32.10 K (Re= 84, ε = 0.53),
(d) ∆T = 35.00 K (Re= 92, ε = 0.67). The diagrams indicate the propagation of wavy propagation of the surface velocity
fluctuations.
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FIG. 7. Time histories of the free surface velocity and corresponding power spectra at x = 26.0 mm (0.5Γ) in liquid layer
of aspect ratio 13.0 at with various temperature differences (Reynolds numbers): (a) ∆T = 21.02 K (Re=Rec = 55), (b)
∆T = 30.20 K (Re= 79, ε = 0.44), (c) ∆T = 32.10 K (Re= 84, ε = 0.53), (d) ∆T = 35.00 K (Re= 92, ε = 0.67).

(Re = 49-60, ε = 0-0.22, ∆T = 18.80-23.00 K) → quasi-periodic oscillatory state with frequency-
locking (Re = 60-73, ε = 0.22-0.49, ∆T = 23.00-28.00 K)→ periodic oscillatory state (Re = 73-79,
ε = 0.49-0.61, ∆T = 28.00-30.00 K) → quasi-periodic oscillatory state with frequency-locking
(Re = 79-105, ε = 0.61-1.14, ∆T = 30.00-40.00 K) → chaos (Re = 105-183, ε = 1.14-2.73, ∆T =
40.00-70.00 K). Note that the Reynolds number ranges are approximately divided and the interme-
diate state may exist between neighboring oscillatory states.

For the liquid layer of aspect ratio 13.0, the steady thermocapillary convection ends up at
the critical Reynolds number Rec = 55 (∆T = 21.02 K) and periodic oscillatory thermocapillary
convection arises. Similar to the case of the liquid layer of aspect ratio 14.25, the surface velocity
fluctuation u′(x, t) arises at the partial region near the hot wall, while the fluctuation in the other
region is very weak as shown in Fig. 6(a). However, the region occupied by the fluctuation is
much wider than the case of the liquid layer of aspect ratio 14.25 due to the emergence of three
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pairs of stream-function fluctuation cells with similar rectangular shape. As shown in Fig. 6(a), the
fluctuation propagates from the cold region toward the hot region, which shows the typical feature
of hydrothermal wave. With the increasing Reynolds number (applied temperature difference),
the surface velocity fluctuation u′(x, t) gets strong and spreads over the whole liquid layer, and
the fluctuation near the hot wall becomes complex with irregular spatiotemporal evolution, while
the fluctuation in the other region keeps the pattern of hydrothermal wave as shown in Figs. 6(b)-
6(d). When the Reynolds number is further increased up to Re = 105, ε = 0.91 (∆T = 40.00 K), the
fluctuation in the whole region gets complex and irregular and the flow becomes chaotic.

The time history of the free-surface velocity at x∗ = Γ/2 (x = 26.0 mm) is adopted to inves-
tigate the nonlinear dynamic characteristics of the thermocapillary convection. Figure 7 shows the
sequence of the sample signals and the corresponding power spectra with various Reynolds num-
bers (applied temperature differences). At the critical condition for the onset of hydrothermal waves
Rec = 55 (∆Tc = 21.02 K), the periodic oscillatory thermocapillary convection arises in the liquid
layer, and the major frequency f1 = 0.045 12 Hz relating to the highest peak can be clearly identi-
fied in the power spectrum. Note that the peak at its sub-harmonic frequency f2 = f1/2 emerges in
the power spectrum simultaneously. With the further increase of the Reynolds number, the peaks at
f1/4 with its harmonics and the peaks at f1/8 and its harmonics emerge in the power spectrum at
Re1 = 79, ε = 0.44 (∆T1 = 30.20 K) and Re2 = 84, ε = 0.53 (∆T2 = 32.10 K) successively. When
the Reynolds number is further increased to Re = 105, ε = 0.91 (∆T = 40.00 K), the power spec-
trum develops into the signal broadband without any fundamental frequency, and the flow becomes
chaotic. For the present case, the typical period-doubling bifurcation route can be clearly identified
from the power spectra, and the investigations on the trajectories in the re-constructed phase space
are ignored. In summary, the steady state of the thermocapillary convection in the present case
undergoes period-doubling cascades leading to chaos. The Feigenbaum constant for the present case
is calculated as Re1−Rec

Re2−Re1
= 79−55

84−79 = 4.8 with the relative error 3.0% compared to the theoretical value
of 4.664 20.3

IV. CONCLUSIONS

As a part of preliminary studies for the future space experiment (Zona-K) in the Russian mod-
ule of the International Space Station (ISS), thermocapillary convection in two-dimensional liquid
layers of 10 cSt silicone oil was numerically investigated in the present study. The results show
that the onset of oscillatory convection is accompanied by the fluctuations of dynamic variables
and the propagation of small perturbation roll cells just like the hydrothermal waves in an infinite
liquid layer predicted by Smith and Davis.18 On the other hand, the finite extent of the liquid layer
significantly influences the development process of the thermocapillary convection at highly super
critical states. The secondary instabilities of the hydrothermal waves are caused by local changes of
surface temperature gradient, which may be caused by merging of neighboring roll cells or splitting
of roll cells. Considering the number and size of the roll cells is limited by the aspect ratio of the
liquid layer, secondary instabilities may be influenced not only by the Reynolds number (the applied
over-all temperature difference) but also by the aspect ratio. The present results show that in a
liquid layer of aspect ratio 14.25, with the increasing Reynolds number, the steady thermocapillary
convection experiences two consecutive transitions from periodic oscillatory state to quasi-periodic
oscillatory state with frequency-locking before emergence of chaotic flow. In the liquid layer of
aspect ratio 13.0, the steady thermocapillary convection undergoes period-doubling cascades lead-
ing to chaotic flow. These results clearly indicate that the bifurcation route of the thermocapillary
convection changes very sensitively by the aspect ratio of the liquid layer.
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