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A dynamic procedure based on subgrid-scale dissipation is proposed for large eddy
simulation of turbulent flows. In the new method, the model coefficients are deter-
mined by minimizing the square error of the resolved dissipation rate based on the
Germano identity. A dynamic two-term mixed model is tested and evaluated both
a priori and a posteriori in simulations of homogeneous and isotropic turbulence.
The new dynamic procedure proves to be more effective to optimize the model
coefficients as compared with traditional method. The corresponding dynamic mixed
model can predict the physical quantities more accurately than traditional dynamic
mixed model. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4940044]

As an important numerical simulation method of turbulent flows, large eddy simulation (LES)
has been widely applied to scientific research1–3 and engineering prediction of turbulence.4–6 Sev-
eral different subgrid-scale (SGS) models have been proposed, such as Smagorinsky model (SM),7

similarity model,8 gradient model (GM),9 mixed model,10,11 and eddy-viscosity model based on he-
licity.12 At the same time, some methods have also been developed to optimize the SGS models. The
widely used approach is the traditional dynamic method which is based on the Germano identity13

Li j = Ti j − τi j, (1)

where Li j = uiu j − uiu j is resolved stress, τi j is the SGS stress, Ti j is the subtest-scale (STS) stress.
The tilde and the overbar denote spatial filtering at the grid scale ∆ and a test scale β∆, respectively.
It should be mentioned that the test-filtered quantities are at scale α∆ (1 < α 6 2). For spectral
sharp cut-off filter, β is equal to α. For Gaussian filter, as used in this letter, however, β is equal to√
α2 − 1. Substituting τmod

i j and Tmod
i j for τi j and Ti j in Eq. (1), one gets

Lmod
i j = Tmod

i j − τmod
i j . (2)

For Smagorinsky model, we have

τmod
i j −

1
3
δi jτ

mod
kk = −2Cs∆

2|S|Si j, (3)

Tmod
i j −

1
3
δi jTmod

kk = −2Cs(α∆)2|S|Si j, (4)

where Si j =
�
∂jui + ∂iu j

�
/2 is the resolved strain rate tensor at the grid scale, |S| = (2Si jSi j)1/2, and

Cs is the model coefficient. The Germano identity denoted by Smagorinsky model can be expressed as

Lmod
i j =

1
3
δi jLmod

kk − Cs(2α2
∆

2|S|Si j − 2∆2|S|Si j). (5)

Germano et al. put forward the original dynamic method,14 which contracts Eq. (5) with Si j to
obtain the model coefficient. This method has no obvious physical meaning,15 and cannot be
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applied to mixed model. The dynamic procedure has been subsequently modified and refined by
Lilly, Piomelli, and Meneveau et al.15–17 and becomes the most commonly used method for SGS
model optimization. In this method, the least-squares method is used to minimize the ensemble
average (denoted by ⟨·⟩, which can be regarded as the spatial average over statistically homogeneous
regions) of square error of the resolved stress,

E = ⟨(Li j − Lmod
i j )2⟩, (6)

to obtain the model coefficient. Recently, Shi et al. suggest the dynamic mixed model (DMM) under
the constraint on energy fluxes through two different scales.18 The constraint of helicity flux and
the joint-constraint of energy and helicity fluxes are proposed by Yu et al. to constrain the dynamic
mixed SGS model for LES of helical turbulence.19,20 Meneveau redefines the Germano identity
with a generalized style which can improve the simulation result in dynamic model for LES of
turbulence.21

A proper dynamic method for optimizing the SGS model should have explicit physical mean-
ing in order to model the SGS effect on the large-scale motions. In this letter, we suggest a new
dynamic procedure based on the SGS energy dissipation rate for LES of turbulent flows. We select
the mixed model, which is composed of the SM term and the GM term, to discuss the features of the
present dynamic optimization method.

For LES of incompressible turbulent flow, we need solve the filtered Navier-Stokes equations,

∂tui + ∂j(uiu j) = − 1
ρ
∂ip + ν∂j∂jui + f i − ∂jτi j, (7)

where f̃ i is the filtered driving force, and τi j = uiu j − uiu j is the SGS stress tensor generated by
motions of small scales less than ∆.

From Eq. (7), we can obtain the conservation equation of the resolved kinetic energy E∆ = u ·u/2
as follows:

∂tE∆ + ∂j
�
u jE∆

�
= ∂jJj − 2νSi jSi j + 2f iui − Π∆, (8)

where Jj = ui(2νSi j − p
ρ
δi j − τi j) is the spatial transport term of the large-scale kinetic energy and

Π∆ = −τi jSi j is the local SGS dissipation (or the energy flux across scale ∆).
In LES, τi j and Π∆ are two important quantities and need to be determined by SGS model. For

different SGS models, the pointwise correlation coefficients can evaluate the relevance between the
modeled SGS stress and the real SGS stress or the relevance between the modeled energy flux and
the real energy flux. The expression of the correlation coefficient ρ is

ρ =
⟨(M − ⟨M⟩)(R − ⟨R⟩)⟩

(⟨(M − ⟨M⟩)2⟩⟨(R − ⟨R⟩)2⟩)1/2 , (9)

where M denotes the component of the SGS stress model or the modeled energy flux, and R denotes
the component of the real SGS stress or the real energy flux. A two-term mixed SGS and STS
models are selected here as

τmod
i j = Csm∆

2|S|Si j + Cgm∆
2∂kui∂ku j, (10)

Tmod
i j = Csm(α∆)2|S|Si j + Cgm(α∆)2∂kui∂ku j, (11)

where Csm and Cgm are the model coefficients of the Smagorinsky model term and the gradient
model term, respectively. The correlation coefficients relevant to the Smagorinsky model term and
the gradient model term are first evaluated a priori using the data from direct numerical simulations
(DNS) of three dimensional incompressible homogeneous isotropic turbulence. The Navier-Stokes
equations are solved numerically by using a pseudospectral code in a cubic box with periodic
boundary conditions. A Gaussian random field is used as the initial condition, which has an energy
spectrum in the form E0(k) = Ak2U2

0 k−5
0 e−2k2/k2

0, where k0 = 4.5786, U0 = 0.715, and A is selected
such that the initial kinetic energy is equal to 3U2

0/2. The whole system is maintained by a constant
energy input rate ϵ = 0.1 in the first two wave-number shells. The numerical resolution is 5123 and
the kinematic viscosity ν = 6 × 10−4. A Gaussian filter function is used for data analysis.
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FIG. 1. Correlation coefficients between components of the real SGS stress and component of SM and GM with respect to
the normalized filter width obtained a priori using DNS data. (a) ρ(τ11) and (b) ρ(τ12). η is the Kolmogorov length scale.

Shown in Figs. 1(a) and 1(b) are the behaviors of ρ(τ11) and ρ(τ12) as a function of the normal-
ized filter width δ/η, where δ is the filter width varying from small scale to large scale and η is the
Kolmogorov length scale. We can see clearly that the correlation coefficients ρ(τ11) and ρ(τ12) of
GM decrease monotonically with the filter width and are greater than 0.85 within the whole range
of δ. However, ρ(τ11) and ρ(τ12) of SM show different behaviors from those of GM and increase
monotonically with the filter width. Neither ρ(τ11) nor ρ(τ12) for SM is greater than 0.4. Displayed
in Fig. 2 are the correlation coefficients of SGS energy dissipation rate ρ(Πδ) versus the normalized
filter width δ/η from a priori test of GM and SM. It is seen that ρ(Πδ) of GM and that of SM have
little difference with each other, and meanwhile, both of them have high values on almost every
filter width, greater than 0.8.

The least-squares method will overestimate the coefficient of undetermined quantity which has
high correlation with the known quantity, and conversely will underestimate it. Thus, the traditional
dynamic method based on resolved stress will overestimate GM term and underestimate SM term in
the mixed model. Here, a new dynamic method based on SGS dissipation is proposed to solve this
problem.

Using Germano identity (1), the expression of the SGS energy dissipation rate at the subtest-
scale α∆ can be written as follows:

FIG. 2. Correlation coefficients ρ(Πδ) between the real energy flux and the modeled energy flux caused by DM and GM
with respect to the normalized filter width obtained a priori using DNS data.
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FIG. 3. Correlation coefficients ρ(τ12) between component of the real SGS stress τ12 and the modeled τ12 from NDMM
(dashed line) and DMM (dashed-double dotted line) with respect to the normalized filter width obtained a priori using DNS
data.

Πα∆ = −Li j
Si j − τi jSi j, (12)

where Πα∆ = −Ti j
Si j, and −Li j

Si j is the resolved energy dissipation rate. From Eq. (12), the square
error of the resolved energy dissipation rate is

Emod
α∆ = ⟨(−Li j

Si j + (Tmod
i j − τmod

i j )Si j)2⟩. (13)

Substituting Eqs. (10) and (11) into Eq. (13), and using the least-square approach, we can
obtain the coefficients of SM and GM terms,

Csm =
⟨MSMLi j

Si j⟩⟨M2
GM⟩ − ⟨MGMLi j

Si j⟩⟨MSMMGM⟩
⟨M2

SM⟩⟨M2
GM⟩ − ⟨MSMMGM⟩2 , (14)

Cgm =
⟨MGMLi j

Si j⟩⟨M2
SM⟩ − ⟨MSMLi j

Si j⟩⟨MSMMGM⟩
⟨M2

SM⟩⟨M2
GM⟩ − ⟨MSMMGM⟩2 , (15)

where MSM = ∆
2(α2|S|Si j

Si j − |S|Si j
Si j) and MGM = ∆

2(α2∂kui∂ku j
Si j − ∂kui∂ku j

Si j).
First, the new dynamic method is validated a priori by using the DNS data mentioned above.

For this purpose, the new dynamic mixed model (NDMM) is compared with the traditional DMM.
The pointwise correlation of the modeled SGS stress with the real SGS stress is an important

criterion to evaluate the property of the SGS models. By a priori test, we can get the result that
the pointwise correlation coefficients of τ12 from NDMM and DMM are both greater than 0.85 in
inertial subrange, which is displayed in Fig. 3. We show in Fig. 4 the probability density functions

FIG. 4. The PDFs of the modeled SGS stress τ12 at a filter width ∆= 80η: NDMM (dashed line), DMM (dashed-double
dotted line), and DNS (the bold solid line). The horizontal axis is normalized by the characteristic stress τ0=U

2
0/2.
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FIG. 5. The PDFs of the local energy flux Π∆ at a filter length ∆= 80η calculated by use of different SGS models: NDMM
(dashed line), DMM (dashed-double dotted line), and DNS (the bold solid line). The horizontal axis is normalized by the
energy injection rate ε.

(PDFs) of the component of the modeled SGS stress τ12 and that of the real τ12 at a filter width
∆ = 80η. We can see that the PDF for DMM is much wider than the real SGS stress, while the
PDF for NDMM is much closer to the latter. Shown in Fig. 5 are the PDFs of the modeled energy
flux Π∆ across the given filter scale ∆ = 80η. It is shown that the pdf of NDMM is closer to the
DNS curve, especially for the positive branch. Both of the two models can predict the phenomena of
backscatters which are important physical processes of energy transfer in turbulence.

In Fig. 6, we show the r.m.s values of τ12 from NDMM, DMM, and DNS. We can see that the
value from DMM is greater than that from DNS, and while the result from NDMM is less than
the DNS value. Fig. 7 displays the absolute value of the difference between the modelled τ12 and
the real one versus the varying filter length. From the figure, we can see that the value from NDMM
is smaller than that from DMM, which indicates that τmod

12 from NDMM is closer to the real τ12. In
Fig. 8, we show the mean energy flux through δ as a function of δ/η for NDMM, DMM, and DNS.
It is clear that the result predicted by NDMM is closer to DNS value than that by DMM at most of
the δ.

The intermittency effects of turbulent energy cascade can be explained by the refined similarity
hypothesis (RSH) introduced by Kraichnan.22 Adopting the method of Chen et al.,23 we show in
Figs. 9(a) and 9(b) different order moment of the normalized energy flux ⟨(|δΠδ |/u′3)p/3⟩ (p = 1, 3,
6, and 8) as function of the normalized filter width δ/η for NDMM and DMM, respectively, and the
results from DNS are also displayed for comparison. It can be seen from the figures that the energy
flux structure functions predicted by NDMM are approached to the results from DNS more closely
than those of DMM for every p in the inertial subrange.

FIG. 6. The r.m.s value of τ12 versus the normalized filter δ/η for a priori: NDMM (dashed line), DMM (dashed-double
dotted line), and DNS (the bold solid line).
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FIG. 7. The absolute value of the difference between τmod
12 and the real τ12 versus the normalized filter δ/η for a priori:

NDMM (dashed line) and DMM (dashed-double dotted line).

FIG. 8. The mean energy flux versus the normalized filter scale δ/η for a priori: NDMM (dashed line), DMM (dashed-
double dotted line), and DNS (the bold solid line).

FIG. 9. Moments of the normalized energy flux of order p/3 (where p = 1,3,6, and 8) as functions of the normalized filter
scale δ/η: (a) NDMM, and (b) DMM. The dashed lines: results of the models; the solid lines: results of DNS. u′ is the r.m.s.
velocity.
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FIG. 10. Energy spectra from LESs using different SGS models: NDMM (dashed line), DMM (dashed-double dotted line),
and the energy spectrum from DNS.

The new dynamic method is also tested a posteriori in LES of forced and freely decaying incom-
pressible homogeneous isotropic turbulence. Filtered Navier-Stokes equations (7) were numerically
solved for the forced case. The numerical algorithm and settings are the same as those for DNS
mentioned above. For the decaying case, the energy input rate ε = 0. The grid resolution is 643.

Fig. 10 shows the energy spectra obtained from LESs using NDMM and DMM, and the DNS
spectrum is plotted for comparison. It is noted that NDMM can predict the energy spectrum better
than DMM for almost all the wavenumbers, especially in the middle-wave-number range. The
model coefficients of SM model term (Csm) and GM model term (Cgm) from different models can
show the optimization effects of the two dynamic methods directly. The absolute value of Csm ob-
tained for NDMM is about 0.023, while that for DMM is about 0.017, which means that the effects
of SM model term in NDMM prevail over that in DMM. The value of Cgm obtained for NDMM
is about 0.078, and it is obviously smaller than that for DMM which is about 0.146. The value of
Cgm for NDMM is much closer to the standard value of the GM coefficient, i.e., 1/12, while DMM
overestimates Cgm obviously.

The new dynamic method is also tested a posteriori in freely decaying isotropic turbulence.
A statistically steady flow field is extracted from the DNS data as the initial condition of the
computation. Shown in Fig. 11 is the evolution of the mean energy ⟨E⟩ calculated using different
models with respect to the normalized time t/τ0 in LES of freely decaying isotropic turbulence. ⟨E⟩
obtained from the filtered DNS data of freely decaying flow is plotted for comparison. ⟨E⟩ from

FIG. 11. The evolution of the mean energy in regard to t/τ0 calculated a posteriori in freely decaying isotropic turbulence.
NDMM (the dashed line), DMM (dashed-double dotted line), and the mean energy from DNS (bold solid line).

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:

159.226.199.84 On: Tue, 01 Mar 2016 05:50:27



015113-8 Yu, Xiao, and Li Phys. Fluids 28, 015113 (2016)

FIG. 12. The evolution of SGS energy dissipation across filter width ∆ in regard to t/τ0 calculated a posteriori in freely
decaying turbulence. NDMM (the dashed line), DMM (dashed-double dotted line), and the real SGS dissipation from DNS
(bold solid line).

NDMM is much closer to the DNS result than that from DMM in almost the whole decay process.
In Fig. 12, we display the mean energy flux through a filter scale predicted by NDMM, DMM,
and DNS with respect to the normalized time t/τ0 in the freely decaying isotropic turbulence. We
can see that the curve of ⟨Π∆⟩ predicted by NDMM almost collapses onto the real energy flux, and
obvious improvement is observed compared with the result predicted by DMM.

The new method has been also applied to optimize other SGS models in LES. For the similarity
mixed model,10 both of the tested results from the two methods are not so good, but the new method
still has the obvious advantage in contrast with the traditional one. For the Smagorinsky model,
the new method has negligible advantage over the traditional one. And after analyzing the expres-
sions of model coefficients predicted by the two dynamic methods, we know that it is the special
modelling form of Smagorinsky model that causes the similar results by the different methods.

In summary, a new dynamic method based on energy flux at the subtest-scale is proposed
for SGS modeling in large eddy simulation of turbulent flows, which is physically different from
the traditional dynamic procedure based on resolved stress. Compared with traditional dynamic
method, the new method of minimizing the SGS dissipation error can keep the dissipation to
approach the real dissipation of the flow field, which is the assurance of obtaining the better re-
sults. Both a priori and a posteriori tests have been conducted to assess the performance of the
new dynamic mixed model in simulation of homogeneous and isotropic turbulence. Compared
with the traditional dynamic mixed model, the new dynamic mixed model proves to provide better
predictions in energy spectrum, energy flux, intermittency of energy cascade, etc. Therefore, it is
suggested that the present dynamic method shall serve as a useful option for optimization of the
coefficients of SGS models. The new dynamic optimization method can be used in channel flow and
other inhomogeneous turbulence, and it will be shown in a future paper.

We wish to thank Dexun Fu and Yanwen Ma for fruitful discussions on this work. This work
was supported by the NSFC Projects (Nos. 11472278, 91441103, 11372007, and 11372330), the
863 Program (No. 2012AA01A304), and the CAS Program (Nos. KJCX2-EW-J01 and XXH12503-
02-02-04).
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