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Abstract Flow through arrays of micropillar embedded inside microfluidic chip systems
is important for various microfluidic devices. It is critical to accurately predict the mass
flow rate through pillar arrays based on the pillar design. This work presents a dissipative
particle dynamics (DPD) model to simulate a problem of flow across periodic arrays of
circular micropillar and investigates the permeability of two types of micropillar arrays.
The flow fields including horizontal and vertical velocity fields, the number density field,
and the streamline of the flow are analyzed. The predicted solid volumes by the presented
DPD simulation of both types of arrays are quite close to the actual counterparts. These
quantitative agreements show usefulness and effectiveness of the DPD model in simulating
arrays of micropillar. By comparing two types of micropillar arrangement patterns, we
find that the arrangement pattern of micropillar does not have significant influence on
the permeability of the array.
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Nomenclature

ri, position of DPD particle i;
vi, velocity of DPD particle i;
mi, mass of DPD particle i;
fi, total force acting on particle i;
f int

i , inter-particle force acting on particle
i;

f ext
i , external force acting on particle i;

F C
ij , conservative force on particle i due to

j;
F D

ij , dissipative force on particle i due to j;

F R
ij , random force on particle i due to j;

aij , repulsion parameter between particles
i and j;

rij , relative position between particles i
and j;

rij , distance between particles i and j;
brij , unit vector directed from particle j to

i;
wC(rij), conservative weight function;
rc, cut-off radius for F C

ij ;
γ, amplitude of F D

ij ;

σ, amplitude of F R
ij ;
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wD(rij),weight function of F D
ij ;

wR(rij),weight function of F R
ij ;

vij , relative velocity between particles i and
j;

ξij , random variable with Gaussian statis-
tics;

T , absolute temperature;
kB, Boltzmann constant;
rd, cut-off radius for F D

ij and F R
ij ;

s, exponent of weighting function wR(r);
ρ, density of fluid;
μ, viscosity of fluid;

d, pillar diameter;
v, flow velocity relative to object;
A, area;
CD, drag coefficient;
Re, Reynolds number;
FD, drag force;
h, height of channel;
l, length of channel;
ϕ, solid volume fraction;
K, permeability;
g, body force exerting on every DPD par-

ticle.

1 Introduction

Arrays of micropillar are gaining popularity quickly due to their potential applications in a
wide range of areas. Flow across arrays of pillars embedded inside microfluidic chip systems is
one of the most active research fields and is of great importance for high-performance liquid
chromatography[1], thermal management[2], dielectrophoresis[3], and isolating diseased cells[4].
These micropillars can increase mass and heat transfer coefficients, surface-to-volume ratio,
surface chemical reactions, and heat conductivity with the compromise of a decrease in the
effective cross section area[5]. The decrease of the flow area causes an overall increase of the
pressure drop. This competitive trend indicates that an optimum value can be found for
various application designs. One of the important parameters for arrays of micropillar inside
microfluidic chips is the volume fraction of micropillar or porosity (fluid volume fraction). Small
porosity with large pillar radii or densely alignment can lead to a high driving capillary pressure
and decrease the permeability. For micropillar arrays to be considered as an effective porous
medium, it is very important to accurately predict the maximum mass flow rate pass arrays
based on the micropillar array design.

Flow around regularly arranged micropillar has been the subject of numerous analytical
and numerical works. Most of numerical works[6–9] focus on the analytical solution of the
flow resistance to the two-dimensional flow through a periodic array of circular cylinders. In
experimental or analytical works, it is difficult to accurately predict the flow through the cylinder
array when the cylinder array embedded inside microfluidic chip and channel boundary effects
cannot be dismissed[5]. As an effective alternate, numerical simulation of flows in microfluidic
with pillar arrays attracted more and more researchers. Srivastava et al.[10] and Ranjan et
al.[11] used the finite element method to simulate flow through a square pillar array, and they
derived a function to describe the relationship between the permeability and the dimensionless
geometric parameters. Ellero and Adams[12] presented a numerical approach based on the
smoothed particle hydrodynamics (SPH) to study a very viscous Newtonian liquid through a
linear cylinder array embedded in a channel. Liu et al.[13] presented a modified dissipative
particle dynamics (DPD) model to study the unsaturated multiphase flow through porous
media.

This paper presents a particle-based simulation approach, the DPD[14], to model flow
through periodic arrays of circular micropillar. The DPD is a recently developed mesoscale
approach which can be used to simulate the hydrodynamic behavior of simple and complex
fluids. As Hoogerbrugge and Koelman[14] stated, the DPD method is a novel particle-based
approach combining the good features of both the molecular dynamics (MD) and lattice gas
automata (LGA) approaches, which is much more flexible than the LGA and much faster than
the MD. In the DPD framework, each particle represents a cluster of atoms or molecules that
interact via conservative (non-dissipative), dissipative, and random forces. The repulsive poten-
tial between the DPD particles is much softer than that between individual atoms or molecules,
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making larger time steps possible relative to the MD approaches. The longer time steps and
the larger particle size can be used in the DPD, which makes the DPD much more practical
than the MD to simulate complex hydrodynamics. Because the number of particles in the DPD
system remains unchanged and each particle has the same mass, the DPD conserves the total
mass of the system. The total momentum in the typical DPD simulation is conserved because
the interactions between the particles are symmetrical. The Galilean invariant is observed,
since the interactions between particles only depend on relative positions and velocities. The
DPD is more flexible than the lattice Boltzmann method (LBM) since it does not suffer from
the numerical instability. It is not as computationally efficient as the LBM simulations. It is
more suitable to use the DPD for the simulation of complex fluids on interestingly physical
time and length scales, including polymer suspensions[18], colloids and gels[20], and liquids with
interfaces[19].

In this work, we present a DPD model to simulate flow through periodic arrays of circular
micropillar. The paper is organized as follows. In Sections 2 and 3, the DPD methodology and
theory for circular micropillar arrays are described, respectively. In Section 4, the results of
numerical simulations are provided and analyzed. The paper concludes in Section 5 with some
remarks.

2 DPD method

In the DPD system, it is generally assumed that all particles have equal mass, and use this
mass as a unit. The interactions between particles are assumed to be pairwise additive. The
time evolution of DPD particles is governed by Newton’s equations of motion. Therefore, the
governing equation for a simple DPD particle i can be expressed as

dri

dt
= vi, mi

dvi

dt
= fi = f int

i + fext
i , (1)

where ri and vi are the position and the velocity of a particle i, respectively. mi is the mass
of a DPD particle i, usually taken as unity, and fi denotes the total force acting on a particle
i. fext

i is the external force, such as the gravity. The inter-particle force acting on a particle i,
f int

i consists of three parts, namely, the conservative force F C
ij , the dissipative force F D

ij , and
the random force F R

ij ,

f int
i =

∑
j �=i

Fij =
∑
j �=i

F C
ij + F D

ij + F R
ij , (2)

where Fij denotes the inter-particle force on the particle i by the particle j, which is equal
to Fji in the magnitude but opposite in the direction. The pairwise inter-particle interactions
have a finite cut-off radius, rc, which is generally taken as the length unit in the DPD systems.

The conservative force describes the thermodynamic properties of the fluid and can be
derived from the interaction potential between the particles i and j as

F C
ij = aijw

C(rij)r̂ij , (3)

where aij represents the repulsion amplitude between the particles i and j; rij = ri − rj

represents the relative position between the particles i and j; rij = |rij |, r̂ij = rij/rij is the
unit vector directed from the mass center of the particles j to i; wC(rij) is the conservative
weight function, and in the conventional DPD implementations, it takes a simple form as

wC(rij) =

{
1 − rij/rc, rij < rc,

0, rij � rc.
(4)

Here, rc is the cut-off distance. Equations (3) and (4) show that the conservative force is
only repulsive over a finite distance rc and acts in the direction of the r̂ij vector. The soft
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conservative force makes it possible to choose a large time step in a numerical method for
integrating the equations of motion.

The dissipative force represents the viscous effects of the DPD system, while the random
force is responsible for the eliminated degrees of freedom. Both dissipative and random forces
are dependent on the relative positions of the particles. Moreover, the random force is related
to relative velocities of the particles. The dissipative force and the random force are written as

F D
ij = −γwD(rij)(r̂ij · vij)r̂ij , (5)

F R
ij = σwR(rij)ξij r̂ij , (6)

where γ and σ are two coefficients which describe the strength of the dissipative and random
forces, respectively. wD(rij) and wR(rij) are two weight functions which represent the variation
of the friction coefficient and the noise amplitude with distance, respectively. vij(= vi − vj)
is the relative velocity between the particles i and j. ξij is a random variable with Gaussian
statistics.

It is seen that the dissipative force acts to reduce the relative velocity of the particles, thus
removing the kinetic energy and decreasing the temperature of the system, while the random
force acts to heat up the system. Therefore, the dissipative and random forces act together
to keep the system at a constant temperature with small fluctuations about the designed tem-
perature T . In order to correct isothermal balance, the coefficients (γ and σ) and the weight
functions (wD and wR) of the random and dissipative forces must satisfy two constraints[16],

γ =
σ2

2kBT
, (7)

wD(r) = (wR(r))2, (8)

where kB is the Boltzmann constant, and T is the absolute temperature of the system. kBT is
usually taken as the energy unit, and then it can be used to express all the interaction energies
of the system. There are different forms of wD(r) and wR(r). In a typical DPD formulation,
wD(r) and wR(r) are

wD(r) = (wR(r))2 =

{
(1 − r/rd)s, r < rd,

0, r � rd,
(9)

where rd is the cut-off radius for the dissipative and random forces. The choice of rd may
be different from that of the conservative force rc, and it influences the computation cost by
affecting the number of pairs of interacting particles. s is the exponent of the weighting function,
while different s can result in different dynamic behaviors of the DPD system. It is shown in
Refs. [15] and [17] that s can influence the viscosity and the Schmidt number of the fluid by
affecting the strength of dissipative force between particles. In a typical DPD simulation, the
choices can be taken as rc = rd = 1 and s = 2.

3 Theoretical analysis

The correct simulation of flow around a single circular pillar is the base of modeling flow
through multi pillars. To this end, we first use the DPD to simulate flow around a circular
pillar. Then, the permeability is calculated for circular pillar arrays with different porosities.
In this section, the theories for flow around single circular pillar and circular pillar arrays are
presented, respectively, and further a comparison with simulation results is presented in next
section.
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3.1 Flow around single circular pillar
Before modeling the flow around circular pillar arrays, we first simulate the flow around

a single stationary circular pillar between two infinite parallel plates. As shown in Fig. 1, the
distance between two plates is h. The density and the viscosity of fluid are ρ and μ, respectively.
The pillar is at the center between two plates, and its diameter is d.

Fig. 1 Stationary circular pillar between two parallel plates

The hydrodynamic drag force exerted on a rigid object suspended in a Newtonian fluid flow
has been intensely researched over the past century. The drag force of an object depends on
the properties and velocity of the fluid and the size and shape of the object. The drag force of
a stationary object can be described as follows:

FD =
1
2
ρvCDA, (10)

where v is the velocity of the fluid. A is the reference area of the object, and CD is the drag
coefficient. Consider that the diameter of the pillar is very small compared with the distance
between two plates, namely, d � h, making it possible to ignore the h effect. The experiment[21]

showed that the drag coefficient is a function of the Reynolds number for two-dimensional
circular cylinders, and in small Reynolds numbers, the drag coefficient can be approximated as
follows:

CD =
6

Re
. (11)

3.2 Flow around circular pillar arrays
In this paper, we are finally interested in calculating the permeability of micropillar ar-

rays. Two types of periodic circular micropillar arrays are shown in Figs. 2 and 3. The pillar
diameter is d, and the solid volume fraction of the arrays is ϕ = πd2/(4L2). Spielman and
Goren[22] obtained a function of permeability for fibrous arrays by simulation, which has been
proven[23–25]. The function gives relationships between the dimensionless permeability K/d2

(K is the permeability) and the solid volume fraction of the medium ϕ. For matrices with fibers
aligned perpendicular to the flow, the form of the function is

1
2

+
√

K

d

K1(d/
√

K)
K0(d/

√
K)

=
1
4ϕ

, (12)

where Kn(x) is the modified Bessel function of the second kind and order n with argument
x, and ϕ < 0.75. From Eq. (12), it should be noted that the dimensionless permeability is an
immutable value when the solid volume fraction is constant. In the present DPD simulation,
the flow is driven by a body force g exerting on every DPD particle. Therefore, the permeability
can be expressed as

K =
vμ

ρg
or v =

Kρ

μ
g. (13)
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Fig. 2 Schematic square array Fig. 3 Schematic hexagonal array

4 Simulation and results

In Subsection 4.1, we use the DPD to simulate the flow around a single micropillar. The
relationship between the drag coefficient and the Reynolds number Re of the experiment is
compared with that of the DPD simulation. In Subsection 4.2, we use the DPD to simulate the
flow around micropillar arrays, and the simulation permeability of circular micropillar arrays is
compared with Eq. (12).
4.1 Flow around single micropillar

In this subsection, the DPD is used to simulate the flow around a single micropillar with
parameters ρ = 4, r = 1, kBT = 1, γ = 4.5, σ = 3, a = 18.75, and s = 0.25. With these
parametric values, the viscosity of DPD fluid is μ = 2.40. As shown in Fig. 1, the height and
length of the channel are h = 30 and l = 60, respectively. The diameter of the pillar is d = 6.
The non-slip boundary condition is implemented by frozen particles in the solid obstacle areas
together with the Maxwellian reflection model when a fluid particle enters a thin reflecting
boundary layer. This solid boundary treatment has been proven to be effective in preventing
the unphysical particle penetration, and density oscillations can be controlled in a reasonably
low level[15,26]. In our simulation, different Reynolds numbers are simulated by adding different
body forces g exerting on every DPD fluid particle. In the xz-plane, the computational domain
is divided into 120×66 bins, and local data are collected in each bin. We can obtain all local flow
properties by averaging the sampled data in each bin over 105 time steps. Horizontal and vertical
velocity fields are shown in Figs. 4 and 5. The results indicate that the horizontal velocity tends
to zero near the channel walls and pillar. The vertical velocity is almost zero in the region far
away from the cylinder, while it increases in the region above or below the cylinder. The number
density and streamline of the flow field are shown in Figs. 6 and 7. The number density is almost

Fig. 4 Horizontal velocity field vx Fig. 5 Vertical velocity field vz
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Fig. 6 Number density field ρ Fig. 7 Streamline of flow field

uniform across the channel. The streamline of the flow field indicates that the velocity along
the surface of the cylinder is parallel to the surface of the cylinder, which is consistent with the
horizontal velocity field and the vertical velocity field.

The flow past a two-dimensional cylinder is one of the most studied problems in hydro-
dynamics. It is relevant to many engineering applications. Studies have shown that the flow
pattern and the drag on a pillar under steady flow only related to the Reynolds number. In
our simulation, the drag force is determined by computing the vector sum of the forces acting
on all particles comprising the cylinder or micropillar, and its value is averaged over 105 time
steps. The comparison of the drag coefficient of circular cylinder is shown in Fig. 8. Figure 8
shows that the drag coefficient of circular cylinder agrees well with the experimental results for
Re from 0 up to 100. The error between the numerical and experimental data increases with
the increase of Re. When Re is increased to 100, the drag coefficient from the simulation is
smaller than that from the experiment.

Fig. 8 Comparison of drag coefficient of circular micropillar with experimental data[21]

4.2 Flow around circular micropillar arrays
After successful simulation of the flow around a single micropillar, we use the DPD to simu-

late the flow around two types of circular micropillar arrays in this section. The computational
domain is indicated in the dashed frame, as shown in Figs. 2 and 3. All DPD parameters are
the same as those mentioned in the previous simulation. By changing the distance between
two consecutive pillars with fixed diameter, we can obtain the differential permeability. In our
simulation, different Reynolds numbers are simulated by adding different body forces g exert-
ing on every DPD fluid particle. The flow fields including the horizontal and vertical velocity
fields, the number density field, and the streamline of the flow of square and hexagonal arrays
are shown in Figs. 9 and 10, respectively. The relationships between the horizonal body force
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and the mean horizonal velocities of square and hexagonal arrays are shown in Figs. 11 and 12,
respectively. From Figs. 11 and 12, we can see that the mean horizonal velocities of both square
and hexagonal arrays are proportional to the horizonal body force, which is consistent with the
theoretical equation (13). In legends of Figs. 11 and 12, ϕ and ϕ′ represent the actual value
and the predicted value of solid volume fraction, respectively. ϕ is calculated from the initial
computational setup, and ϕ′ is estimated by putting permeability from the DPD simulation
into Eq. (12). The predicted solid volume is quite close to the actual counterpart, especially the
moderate one. By comparing square arrays and hexagonal arrays under the same ϕ, we find
that there is no significant difference between two types of micropillar arrangement pattern.
These results suggest that the arrangement pattern of micropillar does not have significant
influence on the permeability of the arrays.

Fig. 9 Flow fields of square array at g = 0.02

Fig. 10 Flow fields of hexagonal array at g = 0.02

Fig. 11 Relationship between body force
and outflow velocity of square ar-
rays

Fig. 12 Relationship between body force and
outflow velocity of hexagonal arrays
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5 Conclusions

In this paper, we present a DPD model to simulate the flow through periodic arrays of cir-
cular micropillar and investigate the permeability of two types of micropillar arrays. Numerical
results of permeability show a quantitative match with the theoretical solutions. First, we use
the DPD model to simulate the flow around a single micropillar. The flow fields including the
horizontal and vertical velocity fields, the number density field, and the streamline of the flow
are analyzed. We also analyze the drag coefficient for the micropillar at different Reynolds
numbers. The drag coefficient of circular cylinder is close to the experimental results for Re
from 0 up to 100. These results indicate that the presented DPD method is useful and effective
for the simulation of flow around a single micropillar. Later, we use the DPD model to sim-
ulate and investigate the permeability of two types of micropillar arrays. The predicted solid
volume by the DPD simulation of two regularly distributed arrays is quite close to the actual
counterparts. By comparing the two types of micropillar arrangement patterns, we find that
there is obviously no difference in permeability of two types of micropillar arrays.
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