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ABSTRACT A three-stage model is introduced to describe the tensile failure process of rock and
concrete materials. Failure of the material is defined to contain three stages in the model, which
include elastic deformation stage, body damage stage and localization damage stage. The failure
mode change from uniform body damage to localization damage is expressed. The heterogeneity
of material is described with strain strength distribution. The fracture factor and intact factor,
defined as the distribution function of strain strength, are used to express the fracture state in
the failure process. And the distributive parameters can be determined through the experimental
stress-strain curve.

KEY WORDS three-stage constitutive model, tensile failure, distribution of strain strength, frac-
ture factor, rock and concrete

I. Introduction

Rock and concrete materials are usually discontinuous with joints and pre-existing cracks on the
micro scales!!]. The internal micro cracks and micro defects will occur and grow in the failure process
of the brittle materiall?. It is difficult to describe the failure behavior of rock and concrete materials
because of its discontinuity and heterogeneity. Tensile failure is one of the most common failure modes
of rock and concrete materials. Commonly, the tensile strength is much lower than the compressive
strength and shear strength of these materials. Although rock and concrete would hardly be in the
simple state of pure tension or direct tension, the splitting failure in compression and the bending
failure of rock and concrete beams are both caused by the tensile stress in local domain. So it is of
great significance to understand and describe the constitutive relationship, the bearing capacity, the
mechanism of deformation and the failure during tensile failure process!®.

The constitutive relationship of materials is usually expressed by the relationship between stress
and strain, which could be described intuitively with the complete stress-strain curves. The complete
stress-strain curve of uniaxial tension test is usually divided into two parts by means of simple analysis
of the experimental curve, e.g. the rising part before the peak stress is reached and the strain softening
part after. The fitting methods of simple linear type, polynomial type, fractional type and mixed
type have been used to fit the complete stress-strain curves!®7l. However, most of these methods are
usually phenomenological without considering the mechanism of mesoscopic damage and fracture.
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The damage and fracture will occur before the peak stress is reached in the tensile failure process,
which is the internal reason for the nonlinear phenomenon on the macroscopic stress-strain curves. The
research results in mesoscopic scale can explain the damage mechanism for tensile failure process of
rock. And some damage constitutive models considering mesoscopic mechanical properties have been
proposed!8:9. However, these models are homogeneous models without considering the phenomena, of
failure localization in the strain softening stage. And most of the mesoscopic models are too complex
to be used in the analysis of practical problems directly. The macroscopic constitutive relationship
which is capable of describing the mesoscopic damage mechanism and considering the convenience of
application needs to be established!!?.

The constitutive model based on strain strength distribution!!! =13 was proposed in order to establish
the relationship between mesoscopic damage and macroscopic property. Strain is the strength measuring
index and the material properties are described by the distribution density function. Fracture state
is expressed by the fracture factor. Considering the internal heterogeneity of strain strength and the
friction on fractured micro planes, the macroscopic mechanical behavior of nonlinearity and strain
softening can be obtained naturally.

The objective of this paper is to introduce a statistic damage model to describe the constitutive
relationship for the tensile failure process of rock and concrete materials. It is a three-stage model for the
representative volume element (RVE) based on strain strength distribution. Considering the mesoscopic
damage and fracture mechanism in the process of tensile failure, the relationship between mesoscopic
damage and macroscopic property is established by using the strain strength distribution model and
experimental stress-strain curves. In this model, the complete stress-strain curve is divided into three
parts, including the linear part, the nonlinear part and the strain softening part. A modified plan of
softening strain for the stress-strain curve is introduced in this paper based on the traditional modified
plan(415] so that the strain softening property can be described in a unified form. The parameters of
distribution density function of tensile strain strength can be obtained by means of curve fitting and
then the whole failure process can be described quantitatively.

I1. Statement of the Problem

The occurrence and development of damage and fracture in the test specimen can be observed in
both laboratory experiments and numerical simulations. New cracks do not initiate in the early stage of
the loading process. Damage occurs and grows when the load exceeds the linear elastic limit. And then
the micro cracks grow randomly all over the specimen. The principal crack forms in the localization
band as the load continues to increase. In this process, the damage mode changes from the uniform
body damage to the localization damage. The peak stress is the feature point of the change and the
indication of the occurrence of failure. Generally, the failure process mentioned above can be divided
into three stages, as shown in Fig.1.

Fig. 1. The fracture state during failure process. (a) No damage takes place in the elastic deformation stage, (b) Damage
occurs and micro cracks grow randomly all over the specimen in the uniform damage stage, (c) A principal crack forms
in a finite narrow region because of the damage localization.
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The complete uniaxial tensile stress-strain curve of rock and concrete materials usually contains
three parts, i.e. the linear part, nonlinear part and strain softening part. The typical complete uniaxial
tensile stress-strain curve is shown in Fig.2. Those three parts characterize the three different stages
in the deformation and failure process.

In the linear stage, the deformation of the material is linear elastic and the stress-strain curve is
linear, shown as part AB in Fig.2. No damage occurs in this stage.

[ensile

|

Tensile strain (e

Fig. 2. The typical stress-strain curve of uniaxial tensile test. It contains three parts, the linear part AB, nonlinear part
BC and strain softening part CD. The linear proportional limit is point B and the stress and strain are o);pear and €)ipear-
Point C is the peak stress. At this point, the stress and strain are omax and €o max. Point D is the end point of the
stress-strain curve. The stress and strain at this point are g4 and £4. The fracture factor values in the states of B, C, and
D are a%,, o} and a%,.

When the deformation of the material exceeds the linear proportional limit, the nonlinear stage
begins. The linear proportional limit is point B and the corresponding stress and strain are cijjpear
and €)ipear, respectively. The fracture factor is used to express the degree of damage. At point B, the
linear proportional limit, the fracture factor is alD, which is equal to zero. In the nonlinear part, the
damage grows in the body of the specimen, leading to the degradation of macroscopic properties. The
stress-strain curve exhibits nonlinear characteristics.

Point C is the peak stress. At this point, the stress and strain are omax and €, max, respectively,
and the fracture factor is a3. After the peak stress is reached, the deformation and damage grow in
the localization band. Finally, a principal crack forms and the stress-strain relationship exhibits strain-
softening. Point D is the end point of the stress-strain curve. The stress and strain at this point are oy
and g4, respectively.

II1. Tensile Failure Based on the Original Model of Strain Strength Distribution

The strain strength distribution model is used to describe the heterogeneous characteristics of rock
and concrete materials and to establish the relationship between the macroscopic properties and the
mesoscopic damage. The assumption of strain strength distribution is the major feature of this model.
The strain strength complies with a certain distribution law in the representative volume element. Any
section or plane in the representative volume element can be composed of elastic micro planes and
fractured micro planes, as shown in Fig.3. The interactions remain elastic on the elastic micro planes,
but turn into contact on the fractured micro planes. The tensile tress on fractured micro planes is zero.
The interactions on fractured micro planes comply with the Coulomb’s friction law. The expressions for
the mechanical behaviors of microplanes on the fracture plane have been discussed by Li and Zhoul!213],

Considering the tensile failure behavior in the original model of strain strength distribution, a tensile
plane may be composed of the intact part and the fractured part in the progressive process of tensile
failure. The intact part consists of elastic micro planes whose tensile strains are always below their
tensile strain strengths. The fractured part consists of fractured micro planes whose tensile strains
exceed their tensile strain strengths. The elastic micro planes remain linear elastic, but the fractured
micro planes can bear no more tension. The fracture factor ap and the intact factor o are defined in
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Fig. 3. Elastic microplanes and fractured microplanes on the fracture plane in RVE.

the model to represent the damage state of the tensile fracture plane. ap is expressed as

/:ﬁn f(e)de
JLCLE

Emin

(1)
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where Sp is the damage area, S, is the total ares, £ is the maximum tensile strain in history, emin is
the linear limit strain, emax is the failure strain strength, ¢ is the integral variable, and f (¢) is the
distribution density function of tensile strain.

The fracture factor ap and the intact factor oy are used to describe the damage state, and the
values of oy and ap are both between 0 and 1, which satisfy

oj+ap=1 (2)

If £ is less than the value of the tensile strain strength enin, @p is equal to 0 and «y is equal to 1,
which means no damage occurs. If £ is larger than the value of the tensile strain strength epax, ap is
equal to 1 and «; is equal to 0, which means the tensile plane is totally fractured. Otherwise, the tensile
plane is partly fractured, and ap can be expressed as the integration of distribution density function
of the tensile strain strength from emiy to £. The fracture state of the material can be expressed by the
fracture factor ap.

Different distribution laws of the tensile strain strength can be applied according to different material
properties. The material property can be described by the distribution density function of tensile strain
strength f (&).

With the intact factor a; and the fracture factor ap defined above, the stress-strain relationship
on the tensile plane can be written as

1-— al)Eé‘ (E < 0)

—agEe+

on = ay 5+{0 (e > 0) (3)
where F is Young's modulus, o, is the effective normal stress on the tensile plane, and Ee is an
abbreviated expression of the elastic constitutive equation of Ee = 2ue, + Age, in which ¢ and Ag are
Lame constants, €, is the normal strain, and e is the body strain. The typical complete stress-strain
curve of tensile failure is shown in Fig.4.

IV. The Expression of the Three-Stage Model for Failure Process

A three-stage model is proposed to describe the three stages of the failure process for rock and
concrete materials. The linear part, nonlinear part and strain softening part of the stress strain curve
are expressed separately. The difference between the three-stage model and the original model is shown
in Fig.5.
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Fig. 4. The stress-strain curves of uniaxial tensile by the
original model of strain strength distribution[12:13]
€min 15 the linear limit. When the strain exceeds this
point, the stress-strain curve will be nonlinear. emax
is the tensile strain strength. When the strain exceeds
this point, complete failure of the material takes place.
A and k are the shape parameter and scale parameter
of Weibull distribution, respectively. k determines the
shape of the curve and A determines the peak value and

Fig. 5. Comparison of the stress-strain curves between
the three-stage model and the original model. Those
two curves are overlapped before the peak stress is
reached. The nonlinear part of the three-stage model
is part of the original model and emin = €)inears Emax i8
the failure strain in the original model of strain strength
distribution. It cannot be obtained from the experimen-
tal stress-strain curve.

the scale of the curvel12:13],

4.1. Expressions of the fracture factor and the intact factor with Weibull distribution

Supposing that the strain strength complies with the Weibull distribution law, the distribution
density function is expressed as

s@=5(5)" e @

where f () is the distribution density function of tensile strain strength, € is strain, A and k are the
shape parameter and scale parameter of Weibull distribution law, respectively.
According to formula (1), the fracture factor ap can be written as

e—(s/)\)k —e_(smin/)‘)’c

= e"‘(Emax/)\)’c —_ e_(Emiﬂ/A)k

ap (Smin <e< Emax) (5)

and the intact factor oy can be written as
e—(emBX/A)k — e_(e/)‘)k

e_(emax/’\)k — e“(Emin/A)k

ar=1—-ap = (Emin <e< Emax) (6)

Considering the mesoscopic damage and fracture mechanism in the process of tensile failure, the
complete stress-strain curve should be divided into three parts, the linear part AB, the nonlinear part
BC(C, and the strain softening part C D, as shown in Fig.2. The nonlinear part BC represents the meso-
scopic damage. The mechanism is body damage. The strain softening part C'D represents damage of the
localization band. Supposing that the strain strength in each part complies with the Weibull distribution
law, then each part of the model is introduced respectively as follows.

4.2. Linear part

Deformation of the material is linear elastic in the linear part AB. No damage would generate during
this stage.

In the linear part, the fracture factor is zero, and the relationship between strain and stress can be
written as

o=EFEe (7

4.3. Nonlinear part

The stress-strain curve exhibits nonlinearity when the stain exceeds the linear proportional limit
strain €)jnear- Damage occurs and microcracks develope all over the specimen in the nonlinear part BC.
The homogeneous damage within the material body takes place. The macroscopic effective modulus
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reduces because of the damage and microcracks. The fracture state in this stage can be characterized by
the fracture factor ap which is controlled by the distribution density function of tensile strain strength

f (e).

In the nonlinear part, the body fracture factor can be written as

e— (/M Yk e (Emin/M )F1

= e—(Emax/M)*1 _ p—(emin/A1)k2

ap (Elinear <e< Eamax) (8)
where £, is the linear proportional limit strain which can be obtained from the stress-strain curve
Emin = Elinear- €max 18 the failure strain strength in the original model. But it is unknown in the three-
stage model because of the change of failure mode. Ay and k; are the parameters of Weibull distribution
in the nonlinear part which can be obtained by means of curve fitting. £, yax is the strain value at the
peak stress.

In order to obtain the fracture factor ap in the nonlinear part, both the numerator and the denomi-
nator of formula (8) are multiplied by (e“(f" max/A1)* _ o= (etinear /A1) ), and ap can then be expressed
as

e—(€omax/A1)*¥1 _ o —(elinear/A1)" e~ (€/X)*1 _ o—(Etinear/M1)*?
= x (9)
@p e‘(é'mzu(/Al)k1 — e—(Elinear/Al)kl e‘_(ea max/Al)k:l —_ e“(eliuear/)\l)k1
The fracture factor at the peak stress o} can be expressed as
e—(EcI max/)\l)kl —_ e—(slinenr/)\l)kl
ap = k 3 (10)
e—(5max/)\l) T _ e-(glinear/Al) 1
Then expression (9) can be written as
m e_(E/Al)kl — e_(fflinem‘/Al)k1
ap = Qp (Elinear <e< 5amax) (11)

e—(fa max/Al)k1 —_ f:—(é'linear/Al)k1
According to formula (3) and the value of fracture factor, o at the peak stress can be expressed as
Omax = (1 — oF) Eegmax (12)

a'B is obtained from formula (12) and expressed as

m __ Omax
ap 1 Eeo, . (13)

4.4. Strain softening part

The stress-strain curve exhibits strain softening when the strain exceeds £, max at the peak stress. A
localization band forms in this stage, and damage grows primarily in the localization band. The peak
stress is the start of this stage. The fracture factor ap represents the damage degree of the localization
band, which can be used to represent the fracture state in the strain softening stage. In this stage, the
strain used in the expression should not be the global strain of the RVE. Strain of the localization band
must be used to express the localization behavior.

In the strain softening part, the fracture factor ap in the localization band can be written as

e—(e/22)*2 _ o—(emin/32)*2

D = eV — g—emarayE (Comax S € S €a) (14)

And it can also be expressed as

e"(emax/Aﬂk2 —_ e_(e/)‘2)k2

e—(Emax/A2)*2 _ g—(emin/A2)*2

ap=1- (Eamax <e< Ed) (15)
where iy and €y ax are the minimum strain strength and the maximum strain strength of the localization
band, respectively. Ay and k2 are the parameters of Weibull distribution in the strain softening part,
€0 max 18 the strain of the peak stress.
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In order to obtain the expression of fracture factor ap in the localization band, both the numerator
and the denominator of the second part in formula (14) are multiplied by (e_(emx /NP _ (8o mux/ )‘)k) ,
and the fracture factor ap is then expressed as

e_(en]ax/)\Z)k2 . 6_(50 rnax/AZ)k2 6_(5max/A2)k2 — e—(E/AZ)k2

e_(ema.x/A2)k2 — e_(emin/)\2)k2 x e-(ema.x/>\2)k2 — e_(ea max/A2)k2

ap = 1-— (16)

At the peak stress, the value of fracture factor ap can be expressed as

e—(emax/)\z)k2 _ e_(sc max/)\Z)kZ

mo_ —
ap = ! e_(Emax/)O)kz — e‘(Emin/)\z)k2 (17)

At point D the value of fracture factor ap can be expressed as

e—(emax/AZ)k2 — e_(sd/A2)k2

d _ —
@D = ! e_(Emax/)\z)kz _ e“(f'-'min/)\z)kz (18)

According to expressions (16}, (17) and (18), the localization band fracture factor ap can be expressed
as
(ad — am)e (/2" 4 (1 — o))~ (Eomax/A2)" _ (] _ qm)e—(ea/r2)*e
e_(Ea m&-ux/)\Z)’c2 — e—(Ed/)\Z)kz

(o max < € L €q)

(19)
The fracture factor ap in localization band can be obtained if adD is known. At point D, expression
(3) can be written as

ap=1-—

04=(1-0a}) Feq (20)
a4, can be expressed as
d 9d
—1-24
=17 ey 1)

4.5. Three-stage model for tensile failure process
Considering the tensile failure behavior in the three-stage model of strain strength distribution, the
stress-strain relationship can be
g=(1-ap)FEe (22)

where the fracture factor ap can be expressed as

0 (E S elinear)
e— (/M) 1 _ o—(Elinear/A1)™
am

D e_(Ea max/)\l)kl pu— e"‘(slinear/)‘l)kl
(0, — am)e~ (/2™ 4 (1 — gd Je~(comax/32)* _ (1 _ gm)e—(ca/22)*

e—(sa' ma.x/)‘2)k2 — e"‘(ed/A2)k2

ap = (Elinear <e< Eamax)

1- (Edmax <& S Ed)

(23)

So the fracture factor function ap is a piecewise function with different parts representing different
modes of damage. The first part represents the state of linear elastic deformation and there is no damage
in the specimen. The second part describes the uniform damage of the material body and represents
the damage degree of the representative volume element. The third part describes the evolution of the
localization damage and represents the damage degree of the localization band in the representative
volume element. The linear proportional limit and the peak stress are key points to determine the
fracture factor a.p. The damage occurs and micro cracks begin to initiate when the strain exceeds the
linear limit strain. So the point of linear proportional limit can be considered as the end of the linear
elastic deformation and the beginning of the uniform body damage. The peak stress is the turning point
from the uniform damage mode of the material body to the localization damage mode.

The inhomogeneity of rock and concrete materials is considered in the three-stage model and is
expressed by the distribution density function of strain strength. The distribution density function of
strain strength controls the development of damage in the specimen and the change of damage mode
from the homogeneous body damage to localization. The distribution density function of strain strength
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f (¢) can be expressed as the derivation of the fracture factor on the strain according to equation (23),
and written as

0 (5 < 5linear)

a’g kl & k1 -1 ( //\ )Ic
—(e/A1)F1
fle)= o—(Etimear /AL _ g (0 man/A1)F (:\I) ()\_1> € (€linear < € < € max) (24)
d

k2—1
ap —of LAYES ~(e/x2)"2
e‘_(Ed/)‘Z)kz _ e“’(so’ max/)\2)k2 <)\2 /\2 e 2 (Ea’max S 2 S Ed)

where A\ and k; are the parameters of the distribution density function of tensile strain strength in
the material body in the nonlinear stage; and Ay and k3 are the parameters of the distribution density
function of tensile strain strength in the localization band in the strain softening stage.

4.6. Determination of the parameters

Some of the parameters in the three-stage model can be directly obtained from the experimental
complete stress-strain curves, which include the linear proportional limit strain €jjpea, in the nonlinear
part, the strain at the peak stress £, max, and the end point of the experimental curve 4. The fracture
factor value at the peak stress o} and the fracture factor a4, at point D can be obtained from the data
of the stress-strain curve according to formulas (13) and (21).

Other parameters in this model cannot be directly obtained from the experimental stress-strain
curves, which include A1, k1, A2 and ks. However, these parameters can be obtained by means of curve
fitting based on the nonlinear least square method!['6-18]

V. Applications and Verification
5.1. Modification of the softening strain of the complete stress-strain curve

A closed-loop servo-controlled testing machinel'19) was used to obtain the complete stress-strain
curve in uniaxial tension experiment. Loading rate was controlled by the rate of fracture propagation
in the strain softening stage. Damage developed in the localization band while elastic unloading took
place in other parts of the specimen simultaneously. The increment of the deformation was provided
entirely by the deformation of the localization band.

The macroscopic strain measured by the testing machine was affected by the incremental deformation
of the localization band and the deformation recovery of the non-localized parts was disregarded. So
the macroscopic strain measured could not reflect the real deformation of localization band!1+ 15!, It is
necessary to modify the softening stain, in order to express the deformation of localization band. The
basic idea of the modification method is based on the assumption that the damage only takes place on
the localization band during the localization damage stage, so that the strain of localization band can
be easily determined through the global strain and the strain recovery of the non-localized parts.

The typical stress-strain curve is shown in Fig.6 . Point @ is in the strain softening part. The stress
and strain at point @) are oo and &g, respectively. Point @) changes to point @’ after modification. The
corresponding stress and strain are gy and ey, respectively. The macroscopic deformation of specimen

4§ at point @) can be expressed as
6 = 05 max — el + Af (25)
where ¢ is the deformation measured by the testing machine; d; max is the deformation of the specimen
at the peak stress; Acl is the unloading deformation of the elastic parts; [ is the effective length of the
specimen; and AJ is the incremental deformation of the localization band.
Formula (25) can be further expressed in the form of strain as

€0 = €5 max — A€ + ¢ (26)

where ¢y is the macroscopic strain measured by the testing machine; £, ax is the strain at the peak
stress; Ae¢ is the strain of unloading; and é¢ is the effective incremental strain of the localization band.

For the strain of localization band, the deformation recovered from the unloading of non-localized
parts should not be considered. The modified strain of the localization band can be written as

66 = £omax + 55 (27)
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) Fig. 7. Experimental complete stress-strain curves of
uniaxial tension(19]. Three typical rocks, honkomatsu

Fig. 6. The typical stress-strain curves before and after andesite, inada granite and sanjome andesite, were

modification. tested by Okubo,S. and Fukui,K. The stress-strain

curves of those three typical rocks are very similar in

shape and the strain softening parts are very steep.

According to expression (26), € should be further written as

eg = €0 + Ae (28)
Where Ae can be written as
Ae = Omax — 00 (29)
(-ap)E

The new point Q' can be obtained after modification and then the macroscopic strain can reflect the
real deformation of localization band. The incremental strain is entirely provided by the localization
band.

The experimental results of uniaxial tensile tests by Okubo,S. and Fukui,K.['% are shown in Fig.7.
The modification is used in those experimental results, and the complete stress-strain curves of uniaxial
tensile tests after modification are shown in Fig.8. The strain softening parts after modification become

less steep.

5.2. Determination of the distributive parameters for different rock materials

The modified experimental complete stress-strain curves of uniaxial tension in Fig.8 are used as an
example. The parameters for the three types of rock are listed in Table 1. Although the peak stress
of Honkomatsu andesite is considerably higher than that of Sanjome andesite, there is little difference
in the shapes of the stress-strain curves for the two sandstones. Each curve is divided into three parts
according to the three-stage model, including the linear part, nonlinear part and strain softening part.

Elinears €0 max and €4 are directly obtained from the stress-strain curves. o7 and a‘}, are obtained
by expressions (13) and (21). A, ki1, A2 and kg are obtained by means of curve fitting based on the
nonlinear least square method. The parameters obtained are listed in Table 1.

Table 1. The tensile property parameters of different rock types

Specimen number E €linear £o max ) ap o A k1 A2 ko
Honkomatsu andesite 1.25e10 Pa  4.39e—4  6.25e—4 2.01e-3 8.70% 99&; 6.25¢e—2 6.13 6.25e—6 0.445
Inada granite 1.06e10 Pa 4.91e—4 6.78¢—4 2.04e—3 9.40% 988% 6.78e—2 4.47 6.78¢—6 0.430
Sanjome andesite 8.45¢9 Pa 3.49¢e—4 5.87e—4  1.89e—3 186% 100% 5.87e—2 2.60 5.87e—6 0.445

The theoretical complete stress-strain curves of Honkomatsu andesite, Inada granite and Sanjome
andesite obtained from the three stage model are shown in Fig.9. The elastic moduli of Honkomatsu
andesite, Inada granite and Sanjome andesite are 1.25e10 Pa, 1.06e10 Pa and 8.49e9 Pa, respectively.
The stress-strain curves show nonlinear properties when the strains exceed the linear proportional limits.
The strains of the peak stresses are 6.25¢—4, 5.87e—4 and 6.78e—4, respectively. Strain softening takes
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Fig. 8. Complete stress-strain curves of uniaxial ten-
sion after modification. The strain softening parts after
modification become less steep.

T T T
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Fig. 9. Comparison of the theoretical results and the
experimental complete stress-strain curves. The exper-
imental data is expressed by discrete points and the the-
oretical curves are expressed by solid lines. The elastic
moduli of Honkomatsu andesite, Inada granite and San-
jome andesite are 1.25¢10 Pa, 1.06e10 Pa and 8.49¢9 Pa,
respectively. The stress-strain curve becomes nonlinear

when the strain exceeds the linear proportional limit.
The strains of the peak stresses are 6.25e—4, 5.87e—4
and 6.78e—4, respectively. The curve becomes strain
softening when the strain exceeds the peak stress.

place when the strain exceeds the peak stress. The theoretical complete stress-strain curves agree with
the experimental data very well.

The tensile fracture factors of Honkomatsu andesite, Inada granite and Sanjome andesite are shown
in Fig.10. They are very similar in shape. The fracture factor at the peak stress of Honkomatsu andesite
is 8.70% and that of Inada granite is 9.40%. o} of Sanjome andesite is 18.6%, which is larger than the
other two. The fracture factor at the peak stress oF is relatively small, which means that the damage
and fracture in the specimen at nonlinear stage are not obvious. But the fracture factor exhibits a rapid
increase when the strain exceeds the peak stress.

The density functions of tensile strain strength distribution for Honkomatsu andesite, Inada granite
and Sanjome andesite are shown in Fig.11. They are also very similar in shape. The distribution density
is in a low level in the nonlinear part, but in a high level near the peak stress. The density function of
tensile strain strength distribution is a monotone increasing function before the peak stress is reached,
but decreases monotonously after that. The distribution density function of strain strength is a piecewise
function and there is an obvious jump at the peak stress. The obvious jump at the peak stress point
is caused by the change of damage mode. The change is from body damage to the localization band
damage.

The distribution density function of tensile strain strength can be used to describe the material
properties and to determine the failure process of material. The distribution density function of tensile
strain strength can be obtained through the derivation of the fracture factor function.

5.3. Determination of the distributive parameters of concrete material

The experiment results of uniaxial tensile tests of Wu Feng!(!5! are shown in Fig.12.

More than one specimen with the same material were tested in order to avoid accidental error in the
uniaxial tension tests. In Wu’s tests, all the parameters can be obtained by averaging the test results.
Elinear: Eomax and g4 are directly obtained from the stress-strain curves. o5 and a‘{, are obtained by
expressions (13) and (21). A, k1, A2 and k2 are obtained by means of curve fitting based on the nonlinear
least square method. The parameters obtained are listed in Table 2.

There is little difference between the parameters of different samples listed in Table 2. So the
parameters of concrete can be determined by averaging the results.

The theoretical complete stress-strain curve and the experimental data of this concrete material
are shown in Fig.13. The average elastic modulus in the linear part is 3.20e10 Pa. The average linear
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Fig. 10. Curves of the tensile fracture factor for Honko-
matsu andesite, Inada granite and Sanjome andesite.
The fracture factor at the peak stress of Honkomatsu
andesite is 8.70% and that of Inada granite is 9.40%.
a7 of Sanjome andesite is is 18.6%, which is larger than
the other two. The damage and fracture grow rapidly
near the peak stress.
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Fig. 11. The distribution density functions of tensile
strain strength for Honkomatsu andesite, Inada granite
and Sanjome andesite. The distribution density is in a
low level in the nonlinear part but in a high level near
the peak stress. The distribution density function is a
monotone increasing function before the peak stress is
reached, but decreases monotonously after that. The
tensile strain strength distribution density function is
a piecewise function and there is an obvious jump at
the peak stress.
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Table 2. The tensile property parameters of different specimens of the same concrete

Specimen number E €linear €0 max £4 o cde A k1 Az k2
PC301 3.2¢10 Pa 4.1e—5 1.12e—4 1.00e—-3 0.253 0.997 1.12e—2 1.79 1.12¢e—6 0.373
PC302 3.2e10 Pa 4.le-5 97e—4 1.00e—3 0.253 0.997 97e-2 1.42  0.97e-7 0.367
PC303 3.2¢e10 Pa 4.1e—5 1.0le-4 1.00e—3 0.288 0.998 1.0le—2 1.35 1.0le—-6 0.351

average parameters 3.2¢10 Pa 4.1e—5 1.03e—4 1.00e—3 0.265 0.997 1.03e—2 1.52 1.03e—6 0.364

proportional limit strain is 4.10e—5. The average strain at peak stress is 1.03e—4.

The theoretical

complete stress-strain curve agrees with the experimental data very well in each stage.

The tensile fracture factor of this concrete material is shown in Fig.14. The fracture factor at the
peak stress is 26.5%. But it increases rapidly after the peak stress is reached.

The distribution density function of tensile strength for the concrete material is shown in Fig.15.
The shape of the curve is similar to the distribution density function of rocks.

VI. Conclusions
The three-stage model for tensile failure process of rock and concrete materials based on strain
strength distribution is introduced in this paper. Considering the fracture mode in the tensile failure
process, the relationship between mesoscopic damage and macroscopic property are established with
the three-stage model. The distributive properties and parameters of rock and concrete materials can
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T'he fracture factor at peak stress is 26.5%. The damage Fig. 15. The distribution density functions of the strain
and fracture grow rapidly near the peak stress strength for the concrete material

be obtained through the experimental stress-strain curves. According to the model, the complete stress-
strain curve is divided into three parts, i.e. the linear part, nonlinear part and strain softening part, which
represent the linear elastic stage, body damage stage and localization band damage stage, respectively.
There is no damage generated in the specimen during the first stage. The damage occurs and microcracks
grow randomly all over the specimen in the second stage. The peak stress is the beginning of the third
stage and a localization band is formed. In the localization stage, the global strain of RVE should not
be used to describe the localization damage. Alternatively, the strain of the localization band must be
used to express the behavior of strain softening because the failure mode changes from body damage
to localization damage. The fracture state in different failure stages and damage modes is described by
the fracture factor. The fracture factor is the function of the global strain of RVE in the body damage
stage, and the strain of localization band in the localization damage stage.

The method to determine distributive parameters of the model according to the experimental stress-
strain curve is introduced. Examples of some practical applications of this model show that distributive
parameters and distribution density function in each stage of the model can be effectively obtained
with experimental curve. And the theoretical results of the model agree with the test data very well,
which has verified the practicability and validity of the model.

In the three-stage model, the fracture state in each stage of the failure process is expressed by
the fracture factor. In the applications, the fracture factors of Honkomatsu andesite, Inada granite,
Sanjome andesite and the concrete material mentioned above grow rapidly near the peak stress. The
strain strength distribution density is in a low level in the nonlinear part but in a high level near the
peak stress. It is a piecewise function and there is an obvious jump at the peak stress. The jump at the
peak stress point is a signal for the change in damage mode, from body damage to localization band
damage.

The internal fracture evolution process and different damage modes in the failure process of material
are described with the three stage model. The heterogeneity of rock and concrete materials is described
with distributive parameters, which can be obtained through experimental data. Strength distribution
is seen as a basic property of rock and concrete materials in this model, and the distributive parameters
can be easily determined. This model is applicable to the brittle materials without large plastic strain
or plastic slipping. It may not be suitable to describe soft rock or deep-bedded rock with the feature
of plastic flow, according to the basic assumptions of the model. Further work may consider size effect,
characteristic scale of the fracture and energy dissipation of the failure process.
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