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The crystallization process of Hertzian spheres is studied by means of molecular dynamics simulations in an
NPT ensemble where the total number of particles N, the pressure P, and the temperature T are kept constant. It has
been observed that the bond orientational ordering rather than the translational ordering (density) plays a primary
role. The crystal polymorphs are determined by the state points. Under the conditions of small supercooling,
the system is likely to be nucleated into crystals that have a preference for the metastable bcc structure, which
can be regarded as a manifestation of the Alexander-McTague mechanism. In contrast, small nuclei are found to
have a preference for fcc symmetry under conditions of a high degree of supercooling. Prestructured precursors
that act as seeds and wet on the nuclei during nucleation always have a high degree of bcc-like ordering, despite
different state points. The results above may provide a clue to the understanding of the crystallization process in
core-softened particles.
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I. INTRODUCTION

Crystallization, as an important process in which a struc-
tural ordering phase is formed from a disordered state, has
attracted a lot of interest in the field of soft matter physics and
material science. Due to its complexity and subtle details, the
understanding of the crystallization process is not yet complete
and the underlying mechanism is still being debated.

In order to explain the observations and to discover the
mechanism in crystallization, some different criteria have
been provided. Classical nucleation theory (CNT) presents
a simple picture in which the nucleus is formed from a
initial uniform liquid. Assuming a free-energy barrier to cross,
the nucleus can only grow when it exceeds a critical size.
So nucleation is a one-step process in the CNT framework,
where the only key players are an initial disordered liquid
and final ordered solid phase. In 1897, Ostwald formulated
the most credited criterion, which was named Ostwald’s step
rule, stating that the crystal phase nucleated from the liquid
should not be the one that is thermodynamically most stable,
but the one that is closest in free energy to the liquid phase [1].
Alexander and McTague proposed a criterion different from
Ostwald’s step rule. In three dimensions and with a simple fluid
where a weak first-order phase transition occurs, they said the
body-centered-cubic (bcc) phase should be uniquely favored
in the early stages of crystallization [2]. Later experiments on
rapidly cooled metal melts [3], block copolymer solutions [4],
and charged colloidal suspensions [5], which had a stable
face-centered-cubic (fcc) phase, showed the nucleation of a
metastable bcc phase. ten Wolde et al. reported a numerical
simulation study of crystal nucleation in a Lennard-Jones
system at moderate supercooling [6,7]. The precritical nucleus
was found to be predominantly bcc ordered, despite the
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stable structure being a face-centered-cubic (fcc) crystal. As
the nucleus grew to its critical size, the core became fcc
ordered while its interface retained a high degree of bcc-like
ordering. Desgranges and Delhommelle performed a more
detailed study on the polymorphism of the Lennard-Jones
system, showing that the internal structure of the precritical,
critical, or postcritical nucleus could be controlled by tuning
the pressure [8]. In the review article, Delhommelle continued
to show that one might achieve control of polymorphism
in a variety of systems by modifying the thermodynamic
conditions of crystallization [9]. Recently, it was further
suggested that crystal nucleation was a discrete two-step
process, in which the first step involved the formation of
preordered precursors with a relatively dense or relatively
ordered liquid structure [10–15]. Valeriani and co-workers
found that the crystal nucleation of hard spheres from a
metastable suspension could be considered to occur via a
multistep mechanism, with the number of steps depending on
the number of cutoffs monitored [16]. However, Tanaka and
co-workers pointed out that the process of crystal nucleation
was not discrete but continuous at the microscopic level,
and that local breakdown of rotational symmetry (or bond
orientational ordering), rather than the density fluctuations,
played a major role in the nucleation stage [17–19]. As for the
precursors, in some cases, they can sometimes be less dense
than the liquid they form from [20,21].

So far, most studies of crystallization have focused on
systems with hard divergent repulsions at a short distance.
These systems include the simplest and well-known hard
spheres [14,17,18], the Lennard-Jones model [6–8], charge-
stabilized colloids which have repulsive Yukawa interac-
tions [5,22–25], etc. On the contrary, there are some systems
consisting of soft particles whose interactions are even core
softened, e.g., emulsions, soft colloids, microgels, many
macromolecules, and their self-assembled entities. It has
been established that the phase behaviors, especially the
solidification of soft particles, are qualitatively different from
those of hard ones [26–29], as the shape of the repulsive

2470-0045/2016/94(4)/042805(10) 042805-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevE.94.042805


WENZE OUYANG, CUILIU FU, ZHIWEI SUN, AND SHENGHUA XU PHYSICAL REVIEW E 94, 042805 (2016)

potential determines the phase behaviors of a system [30].
Here, one may consider an extreme class of repulsive potentials
that are bounded, i.e., they remain finite for the whole range
of interparticle separations, even with full overlap between
the particles. Many previous works have suggested that
systems with a bounded potential have rich and complex
phase behaviors. For instance, Likos et al. derived a simple
criterion to determine whether a system of bounded potentials
showed reentrant melting or clustering [26]: Reentrant melting
occurred for bounded potentials with a positive definite Fourier
transform. Otherwise, clustering and freezing were expected to
occur at all temperatures. As the solidification phase diagram
of soft particles is so different from that of hard ones, an
open and interesting question arises as to whether the criteria
of crystallization occurring in systems with hard divergent
repulsions are still valid in a system of soft particles.

To the best of our knowledge, there are very few studies
on the crystallization process and corresponding mechanisms
in a system with a bounded potential [31–34]. For instance,
Mithen et al. [34] very recently studied the crystallization
of the Gaussian core model (GCM) to find that the nuclei
formed were typically “mixed” and dependent on the state
point of the GCM phase diagram, which is consistent with
the observations of Russo and Tanaka [32]. Among those
systems with a bounded potential, the Hertz potential is
another model which describes the change in the elastic
energy of two deformable objects when subjected to an axial
compression. Recently, this model has also been used in a
number of experimental studies to represent the interaction
of deformable soft colloids [35–38]. In the present work,
we will take advantage of a previously constructed phase
diagram [28] to investigate the crystallization process so
as to address homogeneous nucleation in Hertzian spheres.
Although the phase diagram of Hertzian spheres exhibits a
complex phase behavior and a succession of Bravais crystals,
especially at very low temperature [28], we only concentrate
on the regions of fcc and bcc phases which have attracted
much interest in computational, theoretical, and experimental
investigations. Via molecular dynamics (MD) simulations in
an NPT ensemble where the total number of particles N, the
pressure P , and the temperature T are kept constant, we
will study the local packing symmetry to observe the crystal
polymorph and the nucleation pathway.

II. MODEL AND SIMULATION METHODOLOGY

Soft spherical particles interact via the Hertz potential,
which is given by

U (rij ) =
{
ε(1 − rij /σ )5/2, rij < σ,

0, rij � σ,
(1)

where rij is the pair distance between the centers of the
ith particle and the j th particle. The parameters ε and σ

govern the strength and maximum distance of the interaction,
respectively. For Hertzian spheres, the maximum distance of
the interaction σ is equal to their diameters.

To investigate the crystallization process of Hertzian
spheres, MD simulations are performed in an NPT ensemble.
For convenience, the reduced units are used in the simulation.
The basic units are chosen as follows: energy unit ε, length unit

σ , and the mass of particle m. Periodic boundary conditions
are applied. The equation of motion is integrated using the
velocity Verlet algorithm [39,40] with a time step δt = 0.05.
The constant temperature and constant pressure are controlled
via a Berendsen thermostat and barostat [41].

During the study of the crystallization process, we need to
identify crystal particles. Here, we use the bond orientational
order parameters that were originally introduced by Steinhardt
et al. [42] and applied by Frenkel and co-workers [6,7] to
distinguish the crystal particles from the liquid particles. First,
we consider a set of nearest neighbors of a particle i as all
particles j that are within a given radius rq from i. The value
of rq is chosen to be close to the first minimum of the radial
distribution function (RDF). Then, the complex vector qlm(i)
of particle i is defined by

qlm(i) = 1

Nnb(i)

Nnb(i)∑
j=1

Ylm(rij ). (2)

The sum runs over all nearest neighbors of particle i. The
functions Ylm(rij ) are the spherical harmonics, l is a free-
integer parameter, and m is an integer that runs from m = −l

to m = l. To identify solid particles, the integer parameter l is
taken as l = 6 and q6m(i) should be normalized,

d6m(i) = q6m(i)[∑6
m=−6 |q6m(i)|2]1/2 . (3)

Using the normalized complex vectors d6m(i), a scalar product
which measures the correlation between neighboring particles
i and j is defined by

Sij =
6∑

m=−6

d6m(i) · d∗
6m(j ), (4)

where the superscript ∗ indicates complex conjugation. Two
neighboring particles i and j are considered to be connected if
Sij exceeds a given value, typically Sij > 0.7. A particle will
be identified as solid if the number of its connected neighbors
ζ is above a certain threshold, typically 8.

For a further structural identification of each crystal particle,
we use the coarse-grained bond order parameters introduced by
Lechner and Dellago [43]. Different from Eq. (2), the averaged
complex vector q̄lm(i) of particle i is defined by

q̄lm(i) = 1

Nnb(i)

Nnb(i)∑
k=0

qlm(k). (5)

The sum above from k = 0 to Nnb(i) runs over all neighbors
of particle i plus the particle i itself. Then, we construct the
quantities of the averaged version,

Ql(i) =
(

4π

2l + 1

l∑
m=−l

|q̄lm(i)|2
)1/2

(6)

and

Wl(i) =
∑

m1+m2+m3=0

(
l l l

m1 m2 m3

)

× q̄lm1 (i)q̄lm2 (i)q̄lm3 (i)( ∑l
m=−l |q̄lm(i)|2)3/2 , (7)
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where the term in parentheses is the Wigner 3 − j symbol.
The integers m1, m2, and m3 run from −l to l, but only
combinations with m1 + m2 + m3 = 0 are allowed. To further
identify the solidlike particles, we take advantage of the
different symmetries that the crystals have on the W6 and
W4 axis [32]. The following criterion for crystal classification
is used: Crystal particles are first identified using the method
presented by Frenkel and co-workers [6,7]. Then, a crystal
particle i will be considered to be (i) fcc as W6(i) < 0 and
W4(i) � 0, (ii) hexagonal-close-packed (hcp) as W6(i) < 0
and W4(i) > 0, and (iii) bcc as W6(i) � 0.

To compare the stability of different solid phases (fcc, hcp,
bcc), we employ the thermodynamic integration technique to
calculate the free energy for the crystal structures [40]. The
basic idea of this method is to connect continuously the solid
state under consideration (system 1 with potential energy U1)
to a reference solid (system 0 with potential energy U0) whose
free energy can be calculated exactly. For the reference solid,
we choose an Einstein crystal in which the noninteracting
particles are coupled to their lattice sites by harmonic springs.
So, a hybrid system is sampled with potential Uλ = U0 +
λ(U1 − U0), where λ is the switching parameter and can vary
between 0 and 1. Then, the Helmholtz free energy of system
1 is obtained through the formula

F = F0 +
∫ 1

0
dλ〈U1 − U0〉λ. (8)

The free energy of the Einstein crystal F0 is given exactly by

F0 = −3N

2β
ln

(
2π

αβ

)
, (9)

where β = 1/kBT . α is the spring constant of the Einstein
crystal, which is chosen to make the mean-squared displace-
ments for λ = 0 and λ = 1 be equal,

α = 3

β〈
R2〉λ=1
. (10)

In order to avoid the problem that the integrand in Eq. (8)
diverges for λ = 1, simulations of Uλ should be performed
under the constraint of a fixed center of mass. In practice, we
usually calculate the excess free energy Fex = F − Fid, where
Fid is the free energy of the ideal gas. Taking into account the
corrections of constraints and finite size effects, we can get

βFex = βF0 + β

∫ 1

0
dλ〈U1 − U0〉CM

λ + (1 − N ) ln ρ

− 3

2
ln

(
βαm

2π

)
− 2 ln N + N − 1

2
ln 2π. (11)

During the thermodynamic integration, we slowly transform
the candidate crystal into an Einstein crystal by changing the
switching parameter from 1 to 0 with an interval of 
λ = 0.01
to ensure that the accuracy of the calculation is satisfactory.
In a simulation with a fixed center of mass, particles can
undergo only limited excursions along the run. Therefore, the
periodic boundary conditions are not used for the motion of
each particle and a particle that happens to move out of the
simulation box does not need to be put back.

III. RESULTS AND DISCUSSION

According to a previously constructed phase diagram [28],
Hertzian spheres can be crystallized below a melting temper-
ature Tm ≈ 8.84 × 10−3. Here, we mainly concentrate on two
typical temperatures which represent different supercooling:
One is at T = 5 × 10−3 and the other is far below the melting
temperature at T = 2.5 × 10−3. To follow the crystallization
process of the system, the number of particles is typically
chosen to be N = 4000. The particles are initially placed on
random positions and their velocities satisfy the Maxwell-
Boltzmann distribution with the temperature above the melting
point. After a relaxation of 105δt , the system is quenched to
the desired temperature and NPT simulations are carried out
long enough until the crystallization is completed. Most of the
simulations run over a total of 2 × 106δt and the last 105δt are
used to calculate the average values of the parameters needed.

In order to examine the validity of Ostwald’s step rule in the
crystallization process of Hertzian spheres, we have calculated
the free energy at each state point studied in this work. The
results of the free-energy calculations are presented in Table I.
If Ostwald’s step rule applies to the crystallization of Hertzian

TABLE I. Excess Helmholtz free energy per particle for fcc, hcp,
and bcc crystals under different thermodynamic conditions (P and
T ) considered in the study. The thermodynamically stable phase for
each state point shown in the table is according to the phase diagram
of Ref. [28]. The free energy of different crystals is calculated with
the Einstein crystal method. The simulations of the Einstein crystal
are performed in the canonical (NV T ) ensemble with N = 4000 for
fcc and hcp crystals, and with N = 4394 for bcc crystals. In each
simulation, the equilibration and the production runs are 105 time
steps. The thermodynamic integration [see Eq. (11)] is done with
an interval of 
λ = 0.01. The last digit in parentheses indicates the
statistical error.

P ρ Stable phase βF ex
fcc βF ex

hcp βF ex
bcc

T = 5.0 × 10−3

0.25 1.872 fcc 9.979(3) 9.986(3) 10.138(3)
0.3 1.954 fcc 11.187(2) 11.184(3) 11.316(3)
0.4 2.111 fcc 13.831(2) 13.830(3) 13.862(3)
0.45 2.114 bcc 13.878(2) 13.883(2) 13.912(3)
0.5 2.25 bcc 16.495(3) 16.505(2) 16.415(2)
0.6 2.373 bcc 19.086(2) 19.105(3) 18.897(2)
0.7 2.493 bcc 21.695(6) 21.64(1) 21.486(2)
0.8 2.604 bcc 24.252(9) 24.16(1) 24.015(3)
0.9 2.712 bcc 26.78(1) 26.73(1) 26.563(2)
1.0 2.816 bcc 29.34(1) 28.92(1) 29.133(2)

T = 2.5 × 10−3

0.1 1.607 fcc 8.664(2) 8.663(2) 8.92(2)
0.2 1.814 fcc 12.541(3) 12.532(2) 12.91(2)
0.3 1.966 fcc 16.709(2) 16.696(2) 17.05(2)
0.4 2.102 fcc 21.292(2) 21.261(2) 21.568(2)
0.45 2.172 fcc 23.922(3) 23.894(2) 24.018(2)
0.5 2.266 bcc 27.648(2) 27.638(2) 27.483(2)
0.6 2.372 bcc 32.194(3) 32.192(3) 31.737(2)
0.7 2.5 bcc 37.83(1) 37.76(2) 37.211(2)
0.8 2.608 bcc 42.84(2) 42.65(2) 42.148(2)
0.9 2.715 bcc 48.00(2) 47.70(2) 47.273(2)
1.0 2.814 bcc 52.89(3) 52.60(2) 52.162(2)

042805-3



WENZE OUYANG, CUILIU FU, ZHIWEI SUN, AND SHENGHUA XU PHYSICAL REVIEW E 94, 042805 (2016)

0.1 0.2 0.3 0.4 0.5
Q

6

0

5

10

15

20
P

(Q
6)

solid
liquid

FIG. 1. Probability distribution of Q6 for liquid and solid particles
in metastable fluid. The state point is T = 5 × 10−3 and P = 0.25.
The black line represents the curve for solid particles and the red line
represents the curve for liquid particles.

spheres, we may expect that the crystal structure nucleated first
should be the one with the highest Fex whose free energy is
closest to the metastable liquid phase. However, this does not
always happen because the system shows different nucleation
behaviors for different state points. In the following, we
will show our observations of the crystallization process at
different state points. Notice here that we have performed
100 independent NPT simulations for each state point to
eliminate the effect of the initial conditions and to get better
statistics.

A. Metastable liquid and precursors

For a higher temperature T = 5 × 10−3, the system will
exhibit a reentrance of the fluid phase according to its phase
diagram [28]: One may see a sequence of fluid, solid, and
again a fluid phase upon increasing the pressure. Here, we
only focus on the region of the fcc and bcc phase. The
thermodynamically stable solid phase is fcc at low pressures,
while the thermodynamically stable solid phase is bcc at high
pressures (see Table I). Based on the phase diagram of Hertzian
spheres [28], it is known that the pressure of the boundary
of a liquid-fcc phase transition is about PLS = 0.12. We first
perform the simulations at the state point T = 5 × 10−3 and
P = 0.25 where fcc is thermodynamically stable. Actually, we
have also used some other pressures lower than P = 0.25 when
T = 5 × 10−3, but do not see the emergence of crystallization,
probably due to the extremely long time of the nucleation event
which exceeds the maximum time steps of simulations. When
P = 0.25 and T = 5 × 10−3, we speculate that the system,
in most of simulations, is not only eventually crystallized, but
also attains a steady-state metastable stage which is in the fluid
phase and exists for a rather long time.

To distinguish crystal particles from liquid particles, we
can use the method proposed by Frenkel and co-workers [6,7].
However, it is also necessary to use some other bond orien-
tational order parameters for a better analysis of both crystal
and liquid particles. A coarse-grained bond orientational order
parameter Q6 [see Eq. (6)] is a good choice to follow the
liquid-solid phase transition. Figure 1 displays the curves of
Q6 probability distribution for liquid and crystal particles

separately in the metastable supercooled fluid when T =
5 × 10−3 and P = 0.25. Obviously, solid particles have a
higher Q6 than liquid particles and the overlap between their
curves of the Q6 probability distribution is small. We also
monitor the liquid particles that transform into crystals and
find those particles always have high Q6. So this means
that the order parameter Q6 plays an important role in
nucleation. The preordered liquid particles with high Q6

can be considered to be mediated precursors, as the two-
step and continuous scenario suggests [19]. Of course, such
precursors not only appear in the metastable stage but also
exist in the crystallization stage. In other words, precursors as
noncrystalline clusters with a pronounced short-range order
are first formed and then the crystal nucleus appears inside
the precursors. In such a picture, crystal nucleation can be
understood as the conversion of precursors into crystals.

We have seen that the development of the coarse-grained
bond order parameter Q6 drives the whole crystallization pro-
cess, as is also found in other systems [17,18,32]. Therefore,
the precursors can be identified by Q6 alone (we typically
define as Q6 � 0.3). Here, some may ask why an original
Steinhardt bond order parameter q6 is not used. Indeed,
the development of q6 can also drive the crystallization,
but the overlap between the q6 probability distribution of
crystal particles and that of liquid particles is significant.
The other disadvantage of using q6 is that high q6 is a
representation of icosahedral particles which has been revealed
in both experiments and simulations to act as an inhibitor
to crystallization [44]. By means of the method presented
in Ref. [45], we identify the particles in an icosahedral
environment so as to find that icosahedral particles always
have high q6.

It is interesting to study the structure of the relatively
ordered precursors, as the precursors act as the seeds of
crystal nucleation. In Sec. II, different crystal particles can
be identified by their different symmetries on the W6-W4

plane. Here, we exploit these symmetries to characterize the
different structures of the precursors. A liquid particle will
be considered to belong to the precursors if its local bond
order parameter Q6 is larger than a threshold Qthr

6 , then it is
(i) fcc-like as W6 < 0 and W4 � 0, (ii) hcp-like as W6 < 0
and W4 > 0, and (iii) bcc-like as W6 � 0. Using different Qthr

6
thresholds, we calculate the probability distribution of W4 for
the liquid particles of a metastable fluid with the character
of W6 < 0 and Q6 � Qthr

6 . As is shown in the top panel of
Fig. 2, W4 � 0 means a particle is in a fcc-like environment
and W4 > 0 means a particle is in a hcp-like environment.
When Qthr

6 is low, the W4 probability distribution is almost
symmetrical, indicating that there is little preference between
the fcc-like and hcp-like environments. As Qthr

6 is increased,
the W4 probability distribution become more and more peaked
towards the region of W4 < 0. Such an observation suggests
that the liquid particles with high enough Q6 have a clear
preference for the fcc-like symmetry over the hcp-like one. The
middle panel of Fig. 2 shows the W6 probability distribution
for precursor particles with different Qthr

6 . When increasing
Qthr

6 , the peak of the curve only moves a little bit towards
a negative value of W6 which characterize both fcc and hcp
symmetries. This suggests that the total number of both fcc-like
and hcp-like precursor particles is slightly larger than that of
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FIG. 2. Structures of liquid particles that have different Q6 thresh-
old Qthr

6 in a metastable fluid. The state point is T = 5 × 10−3 and
P = 0.25. The arrows indicate increasing Qthr

6 . Top: W4 probability
distribution with different threshold values, Qthr

6 = 0.24, 0.26, 0.28,
0.3, 0.31, 0.32. Middle: W6 probability distribution with different
threshold values, Qthr

6 = 0.24, 0.26, 0.28, 0.3, 0.31, 0.32. Bottom:
Dependence of the average number of fcc-like, hcp-like, and bcc-like
particles on Qthr

6 .

bcc-like particles when Qthr
6 is high. However, whether the

number of bcc-like particles is dominant over fcc-like and
hcp-like particles is still not clearly known. Thus, we make a
further evaluation of the average number of fcc-like, hcp-like,
and bcc-like precursor particles, respectively, using different
Qthr

6 . From the bottom panel of Fig. 2, it is clear that the average
number of bcc-like precursor particles is significantly larger
than that of fcc-like and hcp-like precursor particles despite
the different values of Qthr

6 .

B. Polymorphism and degree of supercooling

Figure 3(a) displays the average fractional composition and
the average number of particles for the fcc, hcp, and bcc
polymorphs as a function of the nucleus size n at the state

FIG. 3. Average number (left panels) and fraction (right panels)
of different solid particles in the crystalline as a function of the cluster
size n at T = 5 × 10−3. f̄ = n̄/n, where n̄ is the average number of
solid particles for each polymorph in a crystalline. Red, green, and
blue lines represent the average number or fraction of fcc, hcp, and
bcc particles, respectively. (a) P = 0.25. (b) P = 0.4. (c) P = 0.5.

point T = 5 × 10−3 and P = 0.25. Obviously, fcc particles
are dominant over hcp and bcc particles during the nucleation
and growth event. This is rather different from the previous
observations of other core-softened systems. For instance,
Russo and Tanaka investigated the homogeneous nucleation
of a GCM system and found that the bcc phase was always
favored, despite the underlying phase diagram [32]. As seen
in Table I, the free energy of the bcc crystal is closest to that of
the fluid phase. Therefore, the bcc phase should be dominant
if Ostwald’s step rule holds true, but it is not the case as far as
that is concerned.

In the top panel of Fig. 4, the number of crystal particles
for each polymorph during a typical crystallization process is
presented. After a metastable stage, the nucleation and crystal
growth starts, causing the number of solid particles to increase
until the whole system is almost completely crystallized (see
the final configuration displayed in the bottom panel of Fig. 4).
During the growth of the nucleus, the fcc structure is always
favored, consistent with the observation of Fig. 3(a). Figure 5
shows some snapshots during the crystallization process.
Apparently, the nucleation occurs inside of the liquid particles
with high Q6 (Q6 � 0.3), which are considered as precursors.
In this typical nucleation process, the fcc phase occupies the
core of the nucleus attached with very few hcp and bcc particles
[see Fig. 5(b)]. When the nucleus grows, it is always embedded
in the region of the precursors. In other words, the precursors
are wetting on the crystals during the crystal growth.

For a deeper view of the crystallization process, it is also
necessary to know the local densities of the particles which
are considered to be a good order parameter for translational
ordering. Here, the local density of each particle is calculated
via Voronoi diagrams, i.e., ρi = 1/vi , where vi is the volume of
the polyhedron subdivided for each particle. Figure 6 shows
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FIG. 4. Top: Evolution of the number of crystal particles for
each polymorph during a typical crystallization process. Bottom:
The configuration obtained when the crystallization is completed.
The state point is T = 5 × 10−3 and P = 0.25.

the relation between the number of solid particles and the
average density of each kind of particle (liquid particles
with Q6 < 0.3, crystals, and precursors, respectively). It
can be clearly seen that the density of the precursors is
only a little bit lower than that of the crystals. Such an
extremely small density difference between the precursors
and crystals suggests that the liquid-solid transition happens
microscopically with a very small density change. On the other
hand, the densities of both the liquid and crystal particles are
not dependent on the crystal size, indicating that the growth
of the crystals does not cause any change in the density.
Thus, we can conclude that the translation ordering (density) is
trivial in the crystallization of Hertzian spheres, but the bond
orientational order parameter, here referring to Q6, plays a
primary role because the liquid-solid transition involves an
apparent increase of Q6. This point is further confirmed by the
maps in the (Q6,ρ) plane with different colors representing
different numbers of connected neighbors ζ of each particle
(see Fig. 7, corresponding to the snapshots shown in Fig. 5).
The density change is weakly related to the crystal formation
and growth. On the contrary, the development of Q6 is strongly
correlated with the crystallization process. Before nucleation,
most of the liquid particles lie in the region of small Q6 while
the solid particles lie in the region of large Q6. After nucleation
starts, more and more particles that originally have small Q6

move to the region of large Q6, suggesting an increase of
crystallinity.

Upon increasing the pressure and keeping the temperature
fixed, let us see what will happen. We set the pressure
P = 0.4. The critical pressure of the fcc-bcc phase transition,

FIG. 5. Snapshots of a typical crystallization at the state point
of T = 5 × 10−3 and P = 0.25. The precursors (liquid particles
with Q6 � 0.3) are depicted with gray spheres. Red, green,
and blue spheres represent fcc, hcp, and bcc particles, respec-
tively. (a) t = 2 × 105δt . (b) t = 2.7 × 105δt . (c) t = 2.8 × 105δt .
(d) t = 2.9 × 105δt .

based on the phase diagram of Hertzian spheres, is Pc ≈ 0.44
at T = 5 × 10−3. This means that the pressure P = 0.4 is
close to the boundary of the fcc-bcc phase transition, but the
system still has a thermodynamically stable fcc phase. As
seen from Fig. 3(b), the average fraction of the bcc phase is
dominant over that of the fcc and hcp phases during crystal
nucleation. Among these 100 independent simulations, the
system is mostly crystallized into a predominantly metastable
bcc phase. The tendency for the system to be more likely
nucleated into the crystals with a predominant bcc structure
seems to be a manifestation of Ostwald’s step rule, because

200 400 600 800 1000
N

solid

1.8

1.82

1.84

1.86

1.88

ρ

liquid with Q
6
 < 0.3

precursor
crystal

FIG. 6. Relation between the total number of solid particles and
the average density for liquid particles with Q6 < 0.3, precursors, and
crystals, respectively. The state point is T = 5 × 10−3 and P = 0.25.
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FIG. 7. Temporal evolution of the solid bond number ζ in the
(Q6,ρ) plane at the state point T = 5 × 10−3 and P = 0.25. ζ grows
from 0 to 14, represented by the color of each symbol. Notice that a
particle with ζ � 8 is identified as a crystal.

the free energy of the bcc phase is closest to that of the
liquid (see Table I). Of course, this phenomenon can also
be explained by the mechanism proposed by Alexander and
McTague [2], which states that the formation of the bcc
phase has a higher probability than the fcc phase at high
temperature. When we increase the pressure to the region of a
thermodynamically stable bcc phase, e.g., P = 0.5, the system
tends to be crystallized into the structures in which the bcc
phase is still dominant [see Fig. 3(c)]. Furthermore, we have
also studied the structure of the precursors when the pressure is
increased, to speculate that bcc-like particles in the precursors
are still dominant despite the crystal structure.

The variation of the pressure seems to make the system
change from a hard-sphere-like behavior (low P ) to a soft-
sphere-like behavior (high P ), comparable to the crystalliza-
tion of spheres modeled with an inverse-power-law potential
in which the potential provides a continuous path from hard
spheres to the one-component plasma [46]. On the other hand,
the effect of P seems to be opposite to the findings in the
crystallization of supercooled liquid xenon whose interaction
has an attractive part [47]. The observations above, especially
the metastable bcc phase near the fcc-bcc boundary, is also
reminiscent of recent experimental evidence of a metastable
bcc to stable fcc phase transition in charged colloids by
in situ monitoring structural changes with the reflection
spectrometer during the colloidal crystallization [5], which is
explained by Ostwald’s step rule [1] and the scenario proposed
by Alexander and McTague [2]. The experimental data of
colloidal crystallization [5] demonstrate that the metastable
bcc structure can only be seen in a narrow volume fraction of
colloids close to the boundary of the fcc-bcc phase transition.
For the crystal nucleation of Hertzian spheres, we speculate
that the region of the pressure where the metastable bcc phase
is dominant is exactly in the region of the fcc phase and near
the fcc-bcc boundary, which is comparable to the experiments
of colloidal crystallization [5]. As is suggested in the scenario
of Alexander and McTague [2], nucleation of the bcc phase is
uniquely favored under small supercooling in a fluid exhibiting
a weak first-order phase transition. Therefore, a question arises

FIG. 8. Average number (left panels) and fraction (right panels)
of different solid particles in the crystalline state as a function of the
cluster size n at T = 2.5 × 10−3. The representation of the lines is
the same as that in Fig. 3. (a) P = 0.1. (b) P = 0.45. (c) P = 0.5.

as to whether the criterion can also work for the crystallization
of Hertzian spheres under a high degree of supercooling.

Thereafter, we decrease the temperature to far below the
melting point, here typically T = 2.5 × 10−3, but do not
observe any apparent evidence of Ostwald’s step rule applying
to the crystallization process. Even near the boundary of the
fcc-bcc phase transition where fcc is a stable phase, a bcc
crystal is not seen to be apparently dominant during nucleation.
As far as the pressures are concerned at T = 2.5 × 10−3,
fcc structures seem to be favored in the small nuclei from
P = 0.1 to P = 0.5 (see Fig. 8). Notice here that it is not
the fcc but the bcc phase that is thermodynamically stable at
P = 0.5. Actually, the bcc structure, until pressure is increased
to a high enough amount, becomes dominant in the small
nuclei. Moreover, we should mention that the precursors,
which appear first before the nucleation and exist through the
growth of the nucleus, still have more bcc-like particles than
fcc-like and hcp-like particles (see Fig. 9).

In order to further understand the nucleation mechanism,
the mean first-passage time (MFPT) method [48,49] is used to
extract information about the crystal nucleation. The average
time at which the largest nucleus with size n appears for the
first time is given by

τ (n) = 1

2JV
{1 + erf[c(n − n∗)]}. (12)

By fitting the formula above, we can get the critical size of the
nucleus n∗, the nucleation rate J , and the Zeldovich factor Z =
c/

√
π . Here, we should mention that the curve of τ (n) often

does not have a plateau, indicating that the free-energy barrier
is relatively low in a direct MD simulation of crystallization.
Nonetheless, the fitting parameters in Eq. (12) can still be
obtained accurately. As is shown in Fig. 10, the nucleation
rate of different structures including Jfcc, Jhcp, and Jbcc have
been calculated for each state point. In all cases, Jhcp is the
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FIG. 9. The number of precursor particles with different Q6

threshold Qthr
6 in a metastable fluid. The supercooling temperature

is T = 2.5 × 10−3. Top: P = 0.1. Middle: P = 0.45. Bottom:
P = 0.5.

lowest one. At T = 5 × 10−3, Jbcc becomes more and more
higher than Jfcc, suggesting bcc nucleation is favored with an
increase of pressure. At T = 2.5 × 10−3, first Jfcc is higher
than Jbcc when P � 0.45, and then Jfcc becomes lower than
Jbcc when pressure continues to increase. Those observations
are actually consistent with the results of the polymorph
selection shown in Figs. 3 and 8. According to CNT, the
nucleation rate J is assumed to be J = κ exp (−
G∗/kBT ),
where κ is a kinetic prefactor that is proportional to the
self-diffusion coefficient Ds of the fluid. We have speculated
the self-diffusion coefficient at the fluid state, to find the
Hertzian sphere fluid exhibits a clear nonmonotonic behavior
(Ds reaches a minimum in the vicinity of P = 0.6) when
compressing the system or increasing the pressure. Such
dynamical anomalies have also been seen before in Ref. [28].
At T = 0.005, the nucleation rate increases rapidly to reach a
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FIG. 10. Nucleation rate calculated by the means of mean first-
passage time (MFPT). Red circles, green squares, and blue diamonds
represent the nucleation rate of fcc (Jfcc), hcp (Jhcp), and bcc (Jbcc)
particles, respectively. The inner panel displays the nucleation rate J

of total solid particles. (a) T = 5 × 10−3. (b) T = 2.5 × 10−3.

maximum, and then decreases with compression [see the inner
panel of Fig. 10(a)]. At T = 2.5 × 10−3, the nucleation rate
first reaches a maximum at P = 0.3, subsequently decreasing
to a minimum plateau (from P = 0.5 to P = 0.7), and then
increasing again with increasing pressure [see the inner panel
of Fig. 10(b)]. Such an observation of J is rather different
from or even opposite to the behavior of Ds , indicating that
the role of Ds on nucleation is not that significant compared
to the free-energy barrier. As seen from Table I, the liquid-bcc
interfacial free energy is less than the liquid-fcc interfacial free
energy when P � 0.45, which means that the formation of a
bcc-liquid interface will cost less energy. Here, the role of the
liquid-bcc or liquid-fcc interfacial free energy in the nucleation
free-energy barrier can perhaps explain the behavior of the
nucleation rate with increasing pressure. At T = 5 × 10−3,
due to the formation of bcc becoming more and more favorable
(see Fig. 3), the free-energy barrier reaches a minimum,
resulting in a maximum of J . At T = 2.5 × 10−3, the fcc
structure is always dominant in the nucleus until P = 0.5 (see
Fig. 8), so the free-energy barrier reaches a minimum first
when compressing the system from the melting state, and then
increasing to a maximum due to the competition between fcc
and bcc formation.

C. Discussion

To establish stable and metastable equilibrium structures,
the free energies of the competing fcc, hcp, and bcc structures
have been calculated via a thermodynamic integration method
for two temperatures (T = 5 × 10−3 and T = 2.5 × 10−3).
Compared with the phase diagram published by Pàmies et al.
in Ref. [28], however, our results do not fully agree with it.
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Most importantly, as is shown in Table I, the free energy of the
hcp structure is always lower than that of the fcc structure at
T = 2.5 × 10−3, suggesting that the hcp structure should be
more stable than the fcc structure. Such results are different
from the report of Pàmies et al. in which the fcc phase is the
stable one at all temperatures [28].

We have seen that it is not density but the bond orientational
order parameter Q6 that plays a major role in the crystal-
lization of Hertzian spheres. The nucleation is initiated in
precursors which are spontaneously formed in the supercooled
state and locally have a specific rotational symmetry (but
no translational symmetry). Such a picture is the same as
recent observations in both hard spheres [17,18] and soft
particles [32], except for some subtle details. In hard spheres,
bond orientational order triggers the nucleation process, but
the density of the small nucleus appears to be significantly
smaller than that of bulk crystals. In the crystallization of
soft particles, such as GCM [32] and Hertzian spheres, the
density of crystals is not at all dependent on the crystal
size.

At first glance, the different nucleation behaviors between
high temperatures and low temperatures appear to be related
to Ostwald’s step rule or the mechanism of Alexander and
McTague which is associated with the free-energy barrier of
activation. As for the homogeneous nucleation, the free-energy
barrier decreases as 1/
T 2, where 
T is the degree of
supercooling. Therefore, a low degree of supercooling (a high
temperature that is close to the melting point) results in a
high free-energy barrier which requires the particles to find
an efficient pathway for nucleation. When the temperature is
low (a high degree of supercooling), the free-energy barrier is
decreased low enough so as to make the effect of Ostwald’s
step rule or the Alexander-McTague mechanism completely
insignificant. From the results of the free-energy calculations
(see Table I) and observations of nucleation events in MD
simulations, we should stress that Ostwald’s step rule is
not valid for most of the state points. For a low degree
of supercooling (T = 5 × 10−3), Ostwald’s step rule or the
Alexander-McTague mechanism seem to be valid only in the
vicinity of a fcc-bcc phase boundary.

However, the picture of Ostwald’s step rule or the
Alexander-McTague mechanism is different from that of pre-
cursor mediated crystallization. As recently proposed [17–19],
nucleation in precursors is easier due to symmetry matching
and the resulting reduction of the interfacial energy. The
crystal phase nucleated in the precursors is often the crystal
with the highest free energy, as Ostwald’s step rule predicts.
Thus, the physics behind these two mechanisms (precursor
mediated crystallization and Ostwald’s step rule) is not
equivalent: The former focuses on the interfacial energy,
whereas the latter focuses on the bulk free energy. As the seeds
of crystallization, the precursors can in principle influence
the polymorph crystals. At various state points, we have
studied many configurations during the entire crystallization
process to find that bcc symmetry is always dominant in
the precursors. This indicates that the crystal nucleus is
wetted by the liquid particles that are predominantly bcc-like
ordered. Microscopically, such a preference for bcc symmetry
in precursors, comparable to the scenario of Alexander and
McTague, can possibly explain the appearance of a high degree

of bcc-like order near the fcc-bcc boundary as the mediated
precursors favor the formation of bcc crystals.

The effect where the bcc structure is favored in small
nuclei is relatively weak (see Fig. 3) compared with earlier
observations in other systems with soft-core interactions, such
as Lennard-Jones particles [6,7]. This is probably due to
the fact that the supercooling used (T = 5 × 10−3) in our
direct MD simulation of crystallization is relatively high so
as to make the free-energy barrier relatively low. For a very
high degree of supercooling(T = 2.5 × 10−3), the Alexander-
McTague mechanism no longer works well. Opposite to
the case of high temperature (T = 5 × 10−3) and earlier
observations of Lennard-Jones particles [6,7], it is not the bcc
structure but the fcc structure that is favored in small nuclei
from P = 0.1 to P = 0.5 (see Fig. 8). Especially, the dominant
structure even changes from fcc to bcc at P = 0.5, where bcc is
thermodynamically stable. This interesting phenomenon, we
should stress, is rather unexpected. On the other hand, the small
solid particles that are from precursors with a preference for
bcc symmetry (see Fig. 9) become predominantly fcc, so we
can say that the symmetry of precursors cannot determine the
polymorph selection of small nuclei, at least for low enough
temperatures.

IV. CONCLUSION

Molecular dynamics simulations in an NPT ensemble
are performed to investigate the crystallization process of
a core-softened model system, i.e., Hertzian spheres. Our
simulation results show that the polymorph selections and
nucleation pathways of Hertzian spheres are rather complex.
In NPT simulations, we used two typical temperatures below
the melting point that represent different supercoolings, and
varied the pressures based on a previously constructed phase
diagram. At low pressures, the particles can avoid overlap
easily and there are few particles within their diameters, with
the result that Hertzian spheres share many similarities with
hard spheres. Therefore, the system tends to be crystallized
into crystal structures in which the fcc phase is dominant over
hcp and bcc phases. As the pressure is increased to make the
system compressed, the particles have more and more overlaps
and bear more characteristics of soft particles, making the
crystallization process complex at different temperatures. At
high temperature that represents a low degree of supercooling,
the fraction of bcc structures over fcc structures is slightly
enhanced so that the system is likely to be nucleated into a crys-
talline system with predominant bcc ordering in the region of
the fcc phase near the fcc-bcc boundary, which can be regarded
as validity of the Alexander-McTague mechanism [2]. At low
temperatures that represent a high degree of supercooling,
in contrast, the Alexander-McTague mechanism is not valid
and the small nuclei favor the fcc structure, and the dominant
structure even changes from fcc to bcc at P = 0.5 where bcc
is the most stable phase.

By analyzing many trajectories in both supercooled fluid
and the crystallization stage, we have seen that the difference
in the average density between solid and liquid particles
is extremely small, suggesting that translational ordering
(density) is not the key player. Another finding about the
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density is that the average density of crystals always remains
constant as the crystals grow, which was also observed in
GCM [32]. The bond orientational ordering play a major role
as its development drives the nucleation and the growth of the
nucleus. We also speculate that preordered precursors who act
as the seed have structures where bcc-like particles are always
dominant despite different state points. The crystallization
behaviors mentioned above are probably common to all the

soft particles, which calls for further studies in a variety of
other systems for confirmation.
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