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Abstract Aiming at shortening the design period and improve the design effi-

ciency of the nose shape of high speed trains, a parametric shape optimization

method is developed for the design of the nose shape has been proposed in the

present paper based on the VMF parametric approach, NURBS curves and discrete

control point method. 33 design variables have been utilized to control the nose

shape, and totally different shapes could be obtained by varying the values of design

variables. Based on the above parametric method, multi-objective particle swarm

algorithm, CFD numerical simulation and supported vector machine regression

model, multi-objective aerodynamic shape optimization has been performed.

Results reveal that the parametric shape design method proposed here could pre-

cisely describe the three-dimensional nose shape of high speed trains and could be

applied to the concept design and optimization of the nose shape. Besides, the SVM

regression model based the multi-points criterion could accurately describe the non-

linear relationship between the design variables and objectives, and could be gen-

erally utilized in other fields. No matter the simplified model or the real model, the

aerodynamic performance of the model after optimization has been greatly

improved. Based on the SVR model, the nonlinear relation between the aerody-

namic drag and the design variables is obtained, which could provide guidance for

the engineering design and optimization.
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1 Introduction

In recent years, the high speed trains worldwide have been rapidly developed and

the running speed is getting higher and higher. Consequently, those aerodynamic

effects which could be neglected in low speed conditions start to be significant, such

as the aerodynamic drag, the pressure waves generated when two trains pass by each

other in the tunnel or in the open air, the crosswind effects, and micro pressure

waves. The bad effect could be greatly suppressed by the reasonable design of the

nose shape. The high speed trains with their design speed higher than 300 km/h

include the Shinkansen series in Japan, ICE3 high speed train in German, the TGV

series in France and CRH380 series in China, as shown in Fig. 1. Although different

series correspond to totally different nose shapes, each series mainly focus on

improving the aerodynamic performance in certain aspect and taking the national

culture into consideration. Big slenderness ratio can be observed for the Shinkansen

series, which could greatly decrease the tunnel pressure waves and micro pressure

waves. While the slenderness ratios for ICE3 and TGV series are slightly smaller,

which mainly take the aerodynamic lift and drag into consideration. CRH380A

develops from the Shinkansen E2 series, takes the aerodynamic performance,

national culture and manufacturing disciplines into consideration, and becomes one

of the representatives for the new generation of high speed trains in China.

Currently, the traditional design of the nose shape belongs to optimal selection,

which needs detailed comparisons of a series of nose models by wind tunnel

experiments, numerical simulations, or real vehicle tests. Consequently, a relatively

long design period would be taken.

In order to improve the design efficiency of the nose shape and reduce the design

cost, a lot of studies have been performed by researchers (Ku et al. 2010a; Jongsoo

Lee 2008; Krajnovic 2009; Krajnovic et al. 2012; Cui et al. 2012; Yao et al. 2012a;

Ku et al. 2010b; Vytla et al. 2010; Yao et al. 2012b). Restricted by the computer

technologies and computational methods, early research on the nose shape usually

focuses on single-objective optimization approaches for two-dimensional profiles

(Ku et al. 2010; Jongsoo Lee 2008), which are hard applied to engineering

application. In recent years, new progress has been made on three-dimensional nose

shape optimization (Krajnovic 2009; Krajnovic et al. 2012; Cui et al. 2012; Yao

et al. 2012; Ku et al. 2010; Vytla et al. 2010; Yao et al. 2012, 2014). Researches

delivered by Krajnovic (Krajnovic 2009; Krajnovic et al. 2012), Ku et al. (2010),

Vytla et al. (2010) and Yao (Yao et al. 2012, 2014) concentrate on multi-objective

optimization of three-dimensional nose, which provide guidance on the real

Fig. 1 Kinds of nose of high speed trains
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application for the method with DOE and surrogate based modeling. However, most

researches are limited in the already existing shape (Yao et al. 2012a, 2014) or very

simplified shape (Krajnovic 2009; Krajnovic et al. 2012; Ku et al. 2010a; Vytla et al.

2010), and seldom relate to automatic design (Krajnovic et al. 2012) and

optimization of the nose shape, which is the key problem when designing a new

nose shape of high speed trains. In order to solve this problem, by combining the

VMF parametric method, NURBS curves and discrete control point method, a

parametric method to the nose shape has been proposed, which can deform the nose

shape automatically. Based on this method, the multi-objective optimization of the

nose shape has been performed by the combination of MOPSO, CFD and SVR.

2 Parametric design approach

As the development of computer technologies, computer aided design (CAD) plays

a more and more important role in the design of high speed train nose, which may

efficiently improve the design efficiency and design quality. Considering that the

design of nose shape experiences several processes such as concept design, sketch

design and detailed design, the introduction of parametric design into CAD could

greatly reduce the cost caused by repeatedly shape revisions. Parametric shape

design means that by revising the size of a part or a few parts, the corresponding

shape could be revised automatically, so that the shape can be revised directly by the

size of parts, in which the geometric information and topology information could be

obtained automatically by the computer. This is one of the key technologies in shape

optimization, and also is the key problem encountered when intelligently designing

and optimizing the nose of high speed trains.

Although many parametric shape design software exist, and could design

complex shapes parametrically, tedious operations are needed for these software and

secondary developments are usually required for special problems. For aerodynamic

shape optimization, Krajnovic et al. (2012) present a fully automatic multi-objective

shape optimization method for improving the aerodynamic properties of trains,

which shows a good idea for nose shape optimization. While the nose shape used in

their studies is very simple and may not be used for engineering problems directly.

Thus, a more practical parametrical method should be studied.

Due to the large slenderness ratio, the nose shape of high speed trains usually

consist of complex free surfaces. When deformation is performed, the topologically

Fig. 2 Key control profiles of the nose shape
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different surfaces may be obtained, which will bring great difficulty to the shape

deformation of high speed trains. Consequently, it is very necessary to develop

parametric design method specifically for high speed trains. Figure 2 shows the key

control profiles for the nose shape, in which the longitudinal profile is controlled by

L1, the longitudinal profile of the cowcatcher is controlled by L2, the horizontal

profile and bottom profile are controlled by L3 and L4, and the maximum cross-

sectional profile is controlled by L5. In general, the maximum cross-section is

determined so as to match the existing train bodies. As a result, L5 will not be

optimized and is given according to the maximum cross-section of CRH380A high

speed trains. The profiles of L3 and L4 are similar and could be described with the

same formula. L1 and L2 have the most influence on the nose shape. Totally

different noses can be obtained via varying L1 and L2, especially the latter, which

affects not only the aesthetic effect, but also the aerodynamic performance (Yao

et al. 2012a, b). In the following sections the parametric method for each profile and

surface will be described in detail.

2.1 Vehicle modeling function

The VMF parametric method is derived by J.H. Rho etc. (Rho et al. 2009) through

further improvement on Bernstein polynomial. This method can greatly reduce the

design variables and better describe the profiles with little curvature in the shape

design of automobiles. Compared to NURBS method, this method can efficiently

improve the design and optimization efficiencies of automobiles. Ku et al. (2010)

introduced VMF method into the nose shape design of high speed trains and

extracted four design variables to control the shape deformation. Although it is

difficult to take the maximum cross-section and the volume of the nose into

consideration through these variables and can hardly obtain any nose shape that

could be applied into engineering application, it sheds light on the way to optimize

the nose shape of high speed trains. In order to sufficiently utilize the advantage of

the VMF method, proper improvement on this method has been performed and then

be applied to the parametric design of L1, L3 and L4.

The basic form of two-dimensional profiles given by J.H. Rho is taken as:

F
x

c

� �
¼ x

c

� �A1

1� x

c

� �A2

S
x

c

� �
þ 1� x

c

� �
Y1 þ

x

c

� �
Y2: ð1Þ

In which x ranges from 0 to c. Y1 and Y2 are the vertical coordinates of the

starting point and ending point, respectively. Different kinds of profiles can be

obtained by changing the form of S x
c

� �
. A1 and A2 are the curvatures of the front and

rear part of the profile. When A1 ranges from 0 to 1 and A2 is greater than 1, the

curvature at x = 0 for F x
c

� �
tends to infinity, and at x = c for F x

c

� �
equals to 0;

When A2 ranges from 0 to 1, the curvature at x = c for F x
c

� �
tends to infinity.

Consequently, in order to avoid the infinite curvature at end points, cubic

polynomial is adopted at the endpoints. The coefficients of the polynomial are

determined by the coordinates and curvatures at the endpoints. When the curvature
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of the endpoints is finite values, in order to control the curvatures, proper revision is

performed for formula (1) and takes the form as:

F
x

c

� �
¼ x

c

� �A1

1� x

c

� �A2

S
x

c

� �
þ G

x

c

� �
: ð2Þ

G x
c

� �
is used to control the change of curvatures at endpoints and typically takes

the form of a polynomial, of which the coefficients are determined by the curvatures

and coordinates at the end points.

Figure 3 shows the exact curves for different forms of G x
c

� �
when

S x
c

� �
¼ Y2 � Y1. It can be seen that after the revision of formula (1), the curvatures

of the start point can be effectively controlled by varying the value of A1. When A2

is greater than 1, the curvature of the endpoints keeps zero and don’t vary with A2.

The parametric formulas of L1, L3 and L4 take the form of formula (2), and are

described in detail as follows:

The profile of L1 takes the form as:

zðxÞ ¼ x� x11

x12 � x11

� �A11

1� x� x11

x12 � x11

� �A12

ak1 1� x� x11

x12 � x11

� �ab1

þ gðxÞ: ð3Þ

In which gðxÞ ¼ 2 z12 � z11ð Þ x�x11
x12�x11

� z12 � z11ð Þ x�x11
x12�x11

� �2

. It is used to control

the heights and curvatures at endpoints. x11 and x12 are the x-coordinates of the start

point and end point. z11 and z12 are the z-coordinates of the start point and end point.

Fig. 3 Curves of different forms and curvatures. a G x
c

� �
¼ 1� x

c

� �
Y1 þ x

c

� �
Y2; b G x

c

� �
¼ 2ðY2 � Y1Þ x

c

� �
�

ðY2 � Y1Þ x
c

� �2
; c Different curvatures for different values of A2
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The profile of L3 takes the form as:

yðxÞ ¼ x� x21

x22 � x21

� �A21

1� x� x21

x22 � x21

� �A22

ak2
x� x21

x22 � x21
� 1

� �ab2

þ gðxÞ: ð4Þ

In which gðxÞ ¼ 2 y22 � y21ð Þ x�x21
x22�x21

� y22 � y21ð Þ x�x21
x22�x21

� �2

. It is used to control

the heights and curvatures at endpoints. x21 and x22 are the x-coordinates of the start

point and end point. y21 and y22 are the y-coordinates of the start point and end

point;

The profile of L4 takes the form as:

yðxÞ ¼ x� x31

x32 � x31

� �A31

1� x� x31

x32 � x31

� �A32

ak3
x� x31

x32 � x31
� 1

� �ab3

þgðxÞ: ð5Þ

In which gðxÞ ¼ 2 y32 � y31ð Þ x�x31
x32�x31

� y32 � y31ð Þ x�x31
x32�x31

� �2

. It is used to control

the heights and curvatures at endpoints. x31 and x32 are the x-coordinates of the start

point and end point. y31 and y32 are the y-coordinates of the start point and end

point.

2.2 NURBS

Although only a few design variables could be utilized to obtain different kinds of

profiles for VMF method, the profiles are limited for VMF and it seems very

difficult to parametrically design complex profiles. For the parametric design of the

profile of the cowcatcher, a new kind of profiles with sufficient variations is needed.

The use of non-uniform rational B-spline curves is one of the frequently used

methods in parametric shape design. Any arbitrary profile could be obtained by

reasonably setting the number, coordinates and weights of control points.

Consequently, this approach is adopted for the parametric design of L2.

Three-order NURBS curve is adopted for L2 and consists of 5 control points, just

as Fig. 4 shows. In order to control the length of the streamline, a quadratic

polynomial is added for the x-coordinate in the NURBS curve, which takes the form

as:

Fig. 4 Modified NURBS curves

610 S. B. Yao et al.

123



xðzÞ ¼ pxðuÞ þ gðzÞ ð6Þ

where gðzÞ ¼ Aðz� HÞ2 þ B. The minimum value of pxðuÞ is no less than 0. H is

the value of z when px(u) = pmin. The coefficient A controls the width of the

polynomial and is determined by the x-coordinate of CP5. B is controlled by the

x-coordinate of CP1. In order to reduce the number of design variables, the weight

in the formula is constant for simplicity.

2.3 Approximation for free surfaces

2.3.1 Surface fitting

The nose shape of high speed trains is controlled by key two-dimensional profiles. A

simple method is adopted in the present paper to fit the surface. Considering the

two-dimensional profiles as the borders, the surface of the nose could be divided

into four regions. Since the nose is symmetric for the y = 0 plane, only half of the

nose needs to be considered for surface deformation. The surface deformation is

driven by the two-dimensional profiles. Each surface could be considered as a

spatial quadrilateral composed by four borders. The coordinates of the surface could

be obtained by linear fitting with the formula (7) and (8):

yðxÞ ¼ yminðxÞ þ
x

lðxÞ ymaxðxÞ ð7Þ

zðxÞ ¼ zminðxÞ þ
x

lðxÞ zmaxðxÞ ð8Þ

The coordinates obtained by (7) and (8) may be different with the coordinates at

the borders. As a result, further revision should be performed so as to obtain the final

smooth surface.

2.3.2 The shape of the cab window

The design of the cab window determines the view of the drivers. The inclination

angle, the space, and the transition between the cab window and the streamline

Fig. 5 Schematic of parametric design of the cab window

Parametric design and optimization of high speed train nose 611

123



should be all considered during the design. Since all the surfaces are approximated

by discrete points, the borders of the cab window are also obtained by discrete

points, just as shown in Fig. 5.

The coordinates of the borders are determined by formula (9), where gc controls

the shape of the borders. The shape of the cab window is determined by formula

(10), where gh controls the height of the window, gn1 the smooth transition between

the window and side of the nose, gn2 the smooth transition between the window and

upper and lower parts of the nose.

yid ¼ ðyhmax � yhminÞ 1� x� xhmin

xhmax � xhmin

� �gc� 	1=gc
ð9Þ

zðx; yÞ ¼ ghðsinðpðyi � yÞ=ð2yÞÞÞgn1ðsinðpðx� xminÞ=ðxmax � xminÞÞÞgn2 ð10Þ

In the above formula, xmin and xhmin are the maximum value and minimum value

of the cab window in x direction respectively. Similarly, yhmin and yhmin are the

maximum value and minimum value in y direction respectively. Since the cab

window is symmetric in y = 0 plane, yhmin equals 0.

2.3.3 The design of the drainage

The shape design of the drainage on the nose not only affects the aesthetic effect,

but also affects the fluid characteristics around the nose. Consequently, parametric

design of the drainage is also introduced in the present paper. The shape of the

drainage could be obtained by superposing the increments of y-coordinate on the

original surfaces, which could be calculated by formula (11) and (12).

hnoseðxÞ ¼ hnm sin
x� xnmin

xnmax � xnmin
p

� �
ð11Þ

deltynoseðx; zÞ ¼ hnoseðxÞ sin
z� znmin

znmax � znmin
p

� �� �nns

ð12Þ

The variation of x coordinate of the drainage could be described by the formula

(11), while the variation of z coordinate could be described by the formula (12). hnm
controls the maximum variation of the drainage, and nns controls the transition

between the drainage and the basic surface. xnmin, xnmax, znmin and xnmax control the

position of the drainage.

2.3.4 Laplace smoothing

All obtained surfaces belong to quadrilateral surfaces, which may cause unsmooth

connections at adjacent boundaries. Consequently, it is very necessary to introduce

the mesh smoothing technique. The Laplace smoothing method is based on

umbrella principle, and can smooth the surface by defining an umbrella operator on

the smoothing vertex. Standard Laplace smoothing method is a widely used
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technique, which determines the direction of adjustment by defining a Laplace

operator on each vertex, and moves the vertex with a certain speed in this direction.

The formula of this approach takes the form as:

Pnew ¼ Pold þ kLðPoldÞ ð13Þ

where Pnew is the vertex after smoothing, Pold the vertex before smoothing, k the

speed adjustment factor, taking a value between 0 and 1.

The Formula of Laplace operator L(Pold) takes the form as:

LðPÞ ¼ 1P
j2DðpÞ wj

X
j2DðpÞ

wjðQj � PÞ ð14Þ

where wj is the weight of vertex Qj which is a first-order neighborhood of vertex P,

and usually takes the value of wj ¼ jjQj � Pjj�1
.

Figure 6 shows the flow chart of parametric designing the nose shape of high

speed trains. Firstly the formulas of two-dimensional profiles are determined. Then

the basic original shape could be approximated by key control profiles. By the use of

the Laplace smoothing method, a smooth surface could be obtained. Thirdly the

basic shape of the cab window and the drainage could be superposed on the original

shape, resulting in the final nose shape.

2.4 The extraction of design parameters

The extraction of key parameters can finally determine the aerodynamic

performance of parametric nose. In order to obtain the nose with excellent

aerodynamic performance and vision effects, proper number of parameters is

extracted according to the above two criteria. Some parameters may have little

effect on the aerodynamic performance of high speed trains, but may have an

important influence on the geometry of the nose, so the sensitivity analysis of

parameters is not provided in this paper. The design variables that control the nose

shape are listed in Table 1. There are 33 variables in total, 20 variables of which

control the key two-dimensional profiles while the rest 13 variables control the

shape of the auxiliary surfaces.

For different nose shapes, the connection part to the train body usually keeps the

same. As a result, the variables A12, A22 and A33, which control the wake shape, are

kept constant. Only 30 variables are needed to be optimized for the parametric design.

Fig. 6 Flow chart of parametric designing the nose shape of high speed trains

Parametric design and optimization of high speed train nose 613

123



Taking these 30 variables as the design variables, the multi-objective optimization is

performed to optimize the aerodynamic drag and the volume of the nose.

2.5 Nose shape approximation test

Figure 7 shows different noses of high speed trains. It can be seen that totally

different streamlines can be obtained by adjusting the design variables. The basic

outline of the nose could be sketched by three profiles which controls the nose

shape. The profile of the cowcatcher zone greatly enriches the nose shape that could

be further adjusted by the shape of the cab window and the drainage. In general, the

parametric design approach proposed in the present paper could describe the three-

dimensional nose shape in detail, and could be used for the concept design and

optimization design of the nose.

3 Numerical method

3.1 CFD

The influence on aerodynamic drag and the volume of the nose by the change of the

shape is mainly concerned in the present paper. A simplified model is considered by

Table 1 Design variables that

control the nose shape
Deformation

Longitudinal profile of the nose A11 A12 ak1 ab1

Horizontal profile of the nose A21 A22 ak2 ab2

Profile of the bottom A31 A32 ak3 ab3

Profile of the cowcatcher

CP1 xp1 – – –

CP2 xp2 – zp2 –

CP3 xp3 – zp3 –

CP4 xp4 – zp4 –

CP5 xp5 – – –

Shape of the cab window gh gc gn1 gn2

Position of the cab window xhmin xhmax yhmax –

The drainage hnm nns – –

Position of the drainage xnmin xnmax znmin znmax

Fig. 7 Different streamlines of high speed trains
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portioning the geometry in three groups, and only the trailing bogies are considered,

while other auxiliary components are neglected, just as shown in Fig. 8. The

aerodynamic drag is obtained by CFD analysis, while the volume of the nose is

obtained by self-developing codes. In this paper, the speed of high-speed train is

300 km/h, so the Mach number is 0.245. Under this condition, the air compression

characteristic has an obvious effect on the aerodynamic drag of the train. Therefore,

the steady compressible Reynolds-averaged Navier–Stokes equations based on the

finite volume method are used to predict the aerodynamic drag. Roe’s FDS

scheme is used to calculate convective fluxes, and Lower–Upper Symmetric Gauss–

Seidel (LU-SGS) is chosen for temporal discretization. The k-x SST model is

selected as the turbulence model. The standard wall functions are used near the wall

so that the accuracy of the CFD results could be ensured with a limited amount of

mesh.

Computational domains and boundary conditions: taking the length of the

simplified train as the characteristic length L, then the length of inflow direction is

1L, the length of outflow direction is 2L, the width is 1L, the distance between the

bottom of the train and the ground is 0.00235L and the height is 0.5L, as shown in

Fig. 9. The flow velocity is 83.33 m/s; the far-field pressure is 1 atm, the

temperature is 288 K and the reference area is the maximum cross-sectional area of

the train. As a result of the compressibility calculation model, the one-dimensional

inviscid flow of the Riemann invariants is introduced as the far-field boundary

conditions, which are also known as non-reflective boundary conditions. Inflow,

outflow and the top boundaries are all set as far-field boundary conditions and the

train body is a non-slip wall. The ground is treated as the moving wall so as to

simulate the ground effect, and the moving speed is equal to the train speed.

3.2 Mesh independence validation

Hexahedral grids are adopted for mesh generation. Prism grids are distributed along

the wall, of which y? of the first layer should range from 30 to 100 to ensure the use

of wall functions. Since mesh distribution greatly affects the numerical results, four

suits of mesh distributions are comparatively analyzed to obtain the reasonable

mesh distribution, as shown in Fig. 10.

The results are shown in Table 2. It can be seen that the drag coefficients

obtained by the four kinds of mesh distributions get no big difference. However, as

the mesh size grows bigger, the lift coefficient of the trailing car gets relatively

smaller. Consequently, the mesh distribution with an amount of 12.12 million grids

is adopted for analysis, which could not only ensure the accuracy of numerical

results, but also is endurable for calculations of multiple cases.

Fig. 8 Geometry of the simplified train model
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4 Multi-objective aerodynamic optimization of the nose shape

4.1 Selection of sample points

The running environment of high speed trains is very complex, and the nose shape

has a serious effect on a series of design objectives, such as the aerodynamic drag,

the volume of the driver’s cab, the aerodynamic lift of the trailing car, the micro-

pressure wave generated when the train passes a tunnel and the aerodynamic noise.

It is unbearable to take all of these objectives into consideration because of the

expensive CFD cost. For a new shape of high speed trains, the aerodynamic drag

and the volume of the nose are two basic design objectives to be considered firstly,

since the less the aerodynamic drag becomes, the less energy is consumed for the

train operation; the bigger the volume of the nose is, the more comfort the driver

obtains. Thus, only the aerodynamic drag and the nose volume are taken to be

optimal objectives in this paper, and the methodological allegations will be

discussed one by one in next sections.

Fig. 9 Computational domain

Fig. 10 Meshes for CFD
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A quasi CRH380A model (Nose 1 in Fig. 7) is chosen as the prototype to

facilitate the comparative analysis. The design variables range 50 % of the original

values. Since the shape variation around the cowcatcher is relatively larger, the

eight corresponding design variables range 200 % of the original values. In order to

obtain a more reasonable distribution of training samples in the design space, the

Latin hypercube sampling method based on Max-minimum criterion is adopted in

the present paper. 70 sampling points is obtained, 66 of which are chosen as initial

training points and the rest four are set as testing points. Since the multi-points

method is utilized to build the final response surface, the number of final training

points is greater than 66, which will be described in the following section.

4.2 e-TSVR

The support vector machines (SVM) model is based on the structural risk

minimization principle, and could be widely used in high dimensional problems and

non-linear problems. In order to control the generalization capability, SVM needs to

control the values of experience risks and confidence range during the learning

process. Taking the training error as the constraints and the minimal value of

confidence range as the objective, SVM finally turns into solving a convex quadratic

programming problem with linear constraints. Non-linear mapping is firstly used by

the SVM model to map the data into a higher-dimensional space, then linear

regression is performed in the higher-dimensional space. Consequently, non-linear

regression in the original space could be ensured. Sometimes the optimal

hyperplane is difficult to calculate directly in the characteristic space during the

mapping process, since the dimension of the space is growing dramatically. In order

to solve this problem, the kernel function is introduced in the SVM model, so that

the calculation could be performed in the input space.

Several regression methods (Shao et al. 2013; Peng 2010) could be found for

SVM model. The e-TSVR (e-twin support vector regression,e-TSVR) algorithm

proposed by Shao et al. (2013) is utilized in the present paper. Compared to the

standard SVR algorithm (Vapnik 1998) and TSVR algorithm (Peng 2010), e-TSVR
gets more accurate prediction ability and needs less training time. For the non-linear

regression problem, the basic problems for e-TSVR algorithm can be found in (Shao

2013).

Table 2 Mesh distributions and corresponding CFD results

Mesh number/

million

Thickness/

mm

Layer

number

Minimum size/

mm

Stretching

ratio

Total

Cd

Tail-

Cl

9.03 0.8 10 12 1.2 0.201 0.059

12.12 0.8 10 6 1.2 0.202 0.064

16.26 0.8 10 3 1.2 0.204 0.065

30.52 0.8 10 3 1.2 0.205 0.066
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The dual problems of e-TSVR algorithm are (15) and (16). The details could be

referred to in the literature (Shao et al. 2013).

max
a

� 1

2
aTHðHTH þ c3IÞ�1HTaT � ðeTe1 þ YTÞaþ YTHðHTH þ c3IÞ�1HTa

s:t: 0� a� c1e: ð15Þ

max
c

� 1

2
cTHðHTH þ c4IÞ�1HTcT � ðYT � eTe2Þc� YTHðHTH þ c4IÞ�1HTc

s:t: 0� c� c2e: ð16Þ

where

H ¼ ½KðA;ATÞ e� ð17Þ

v1 ¼ ðHTH þ c3IÞ�1HTðY � aÞ ð18Þ

v2 ¼ ðHTH þ c4IÞ�1HTðY þ cÞ ð19Þ

and v1 ¼ ½uT1 b1�T , v2 ¼ ½uT2 b2�T . By solving (15) and (16), u1, u2, b1 and b2 could

be obtained, the predicting values of the SVM model could be obtained by (20).

f ðxÞ ¼ 1

2
ðf1ðxÞ þ f2ðxÞÞ ¼

1

2
ðuT1 þ uT2 ÞKðA; xÞ þ

1

2
ðb1 þ b2Þ: ð20Þ

Given the specific training samples, the free coefficients of the SVR model are c1,

c2, c3, c4, e1, e2 and r, which are crucial to the generalization capability of the SVR

model. However, no theoretical basis could be found to rigorously calculate these

variables till now. The cross validation method and PSO method are combined to

determine these variables in the present paper. To simplify the problem, we assume

c1 = c2 and c3 = c4. As a result, only 5 free coefficients are needed to determine.

For a given set of free coefficients, the convex quadratic programming problems

(15) and (16) are needed to be resolved twice. In order to improve the training

efficiency, the over relaxation iteration technique is introduced by Shao YH in

literature (Shao et al. 2013), which is also adopted in the present paper.

Figure 11 shows the optimization process for the free coefficients of SVR model,

which are described in detail as follows:

(1) For the given training sample set, random division of l groups is firstly

performed depending on the exact circumstance. Make sure that the number

of training samples in each group is same.

(2) Initial coefficients (such as the population and the number of iterations)

should be given. These coefficients greatly affect the optimization efficiency,

and should not be too big or too small. The population is 35 and the number

of iterations is 200 in the present paper.
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(3) Each group is chosen sequentially as the test samples while the rest groups are

utilized to construct the SVR model. Then the prediction error % RMSEi

could be obtained. The fitness function of PSO algorithm could be obtained

by (21):

fit ¼ 1

l

Xl

i¼1

%RMSEi ð21Þ

where l is the number of groups and % RMSEi is the prediction error when

the i-th group acts as the test samples, which takes the form as:

%RMSE ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ns

Xns
i¼1

ðyi � y
ðpÞ
i Þ2

s ,
1

ns

Xns
i¼1

yi ð22Þ

In which yi is the real value, y
ðpÞ
i the prediction value by SVR and ns the

number of test samples.

(4) The optimal values of the free coefficients can be obtained after iterations.

When using the SVR model to predict the objective values, the average value

of the values predicted by each sub-SVR model is considered as the final

prediction result. Since two objectives exist in the present paper, two SVR

models are needed.

4.3 Multi-objective PSO algorithm

As we know, there are many optimization approaches for us to solve optimization

problems, but it is difficult for us to select the best one to solve the nose shape

optimization problems. The SVR is adopted in this paper, so the main propose of

adopting the optimization approach is to find the non-dominated solutions but the

efficiency of the approach is not highly required. Multi-objective PSO is one of the

popular optimization approaches to get the non-dominated solutions of complex

optimization problems, and combined with Genetic Algorithm, it has been used for

shape optimization of high speed train nose (Vytla et al. 2010).

The particle swarm optimization (PSO) algorithm is proposed by Kennedy, etc.

(Kennedy et al. 1995) in 1995. This algorithm is easy to achieve and get an excellent

Fig. 11 Flow chart of the construction of SVR model
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capability in global optimization. Moore (Moore and Chapman 1999) firstly used

this approach to solve multi-objective problem in 1999. Then kinds of multi-

objective PSO algorithms are developed, such as Parsopoulos et al. (2002), Hu et al.

(2002), Konstantinos et al. (2004). Every algorithm has its own features, and should

be chose carefully for different optimal problems. Based on the non-inferiority

classification, Li (2003) introduced the niche technique and crowding distance into

the PSO method, and constructed a new algorithm NSPSO, which gets stronger

optimization capability than NSGA-II. The exterior file is introduced into NSPSO in

the present paper. The niche particle number and crowding distance are also adopted

to judge the quality of the particles in the exterior file. The particle with the least

niche particle number and the largest crowding distance in the exterior file is chosen

as the optimal particle of the population. Consequently, a modified particle swarm

optimization method (MPSO) is constructed in this paper. Figure 12 shows the

construction process of MPSO. In the present paper, the population of particles is

200, the number of iterations is 2000, the accelerating factor is 2, the inertia factor

generally changes from 1.2 to 0.4 with the iteration and the maximum speed of the

particles is 0.05.

5 Results and discussions

5.1 The construction of SVR model

The analysis of each sample by CFD is extremely cost. Till now the reasonable

number of initial training samples is hard to determine by theoretical derivation. The

number of design variables is 30 and the number of initial training samples is 66.

However, it cannot be ensured the SVR model constructed from the initial training

samples meet the accuracy requirement. If the number of initial training samples is

large enough to ensure the accuracy requirement, the calculation cost from CFD

analysis would become considerably large and would reduce the optimization

efficiency. With regards to this, a multi-point approach is adopted in this paper. If

the accuracy of the SVR is not satisfied, 6 samples from the non-dominated set are

chosen for CFD analysis. After obtaining the values of the objectives of these 6

samples, these samples are added to the initial training set and the SVR model is

reconstructed, until the prediction accuracy of the model is achieved. Figure 13

shows the distribution of non-dominated sets during the iteration. It can be seen that

Fig. 12 Flow chart of the MPSO algorithm
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the volume values of non-dominated set-1 obtained from the initial training set are

bigger than the non-dominated sets obtained by adding points, indicating that the

added points have an important influence on the predicting error of SVR model.

Five point additions have been performed. As a result, 30 additional points have

been added to the initial training sample set and the final SVR model is constructed

by 96 points. When the cross validation approach is performed, every group is

composed of two points. As the number of training points becomes larger, the

number of groups also becomes larger. Consequently, the training time becomes

longer. However, compared to the cost of CFD analysis, the time cost of training the

SVR model could be neglected.

The prediction accuracy of the SVR model is determined by the following three

factors: the fitness value when the iteration of PSO stops, which can describe the

prediction accuracy of the whole design space; the prediction error of the test

samples, which can represent the generalization capability of the SVR model; the

prediction error of the non-dominated set, which can describe the prediction

accuracy around the optimal points. When the values of above three are all below

5 %, the SVR model can be seen as an accurate model. Figure 14a shows the

average fitness and prediction error of test points for the two objectives during the

iteration. It can be seen that the average fitness and the prediction error are both less

than 5 %, and the prediction accuracy of the volume is obviously higher than that on

the drag. Within the whole design space, the fluctuation of the drag is considerably

stronger than that of the nose volume, and the nonlinear relationship between the

design variables and the aerodynamic drag is more complex than that between the

design variables and the nose volume. It can be seen from Fig. 14b that during the

beginning of the iteration the prediction error around the non-dominated set is

slightly larger. However, after adding points for the third time, the prediction error

reaches a value within 5 %, while the prediction error of the drag is still a little

large. After adding points for the fifth time, the prediction accuracy of SVR model

reaches the design requirement.

Fig. 13 Non-dominated sets during each iteration
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5.2 Aerodynamic analysis

Figure 15 shows the final non-dominated set, which contains 126 design points. If

all the points are validated by CFD analysis, the computational cost could be

unbearable. As a result, six design points are chosen to perform the comparative

analysis. It can be seen that these six points are evenly distributed in the non-

dominated set. The aerodynamic drag and volume are both increasing with the

design point number.

It can be seen from Fig. 16 that the topologies of the six points are the same. The

nose is the region with largest variation. When the volume of the nose is relatively

small, a sharp nose could be detected and the width of the nose is a little smaller,

just as Case 1 shows; if the volume of the nose is a little larger, the curvature of the

profile in front of the nose is very small, resulting in larger bluntness. The width of

the nose gets increased, even exceeds the maximum width of the train body. The

original cowcatcher is curved forward. However, it is curved backward for all the

cases after optimization. It can be deduced that the backward cowcatcher will aid in

reducing the aerodynamic drag.

Table 3 shows the aerodynamic drag and the volume of the original shape and 6

typical design points. Compared to the original design, the volume of Case 1

reduces by 1.85 %, while the volumes of the others all increases; the aerodynamic

drags of the whole train for optimal cases are all reduced, in which Case 1 reduces

the most, and reaches 19.31 %; Case 6 reduces the least, and only reduces by

1.49 %. The lifts of the trailing car for all optimal cases are reduced greatly, in

which the lift in Case 1 becomes negative, the lifts of Case 2 and Case 3 are close to

zero, and the lift in Case 6 reduces the least, but still reaches a value of 37.5 %. The

aerodynamic drag of the leading car for all optimal cases is reduced. The drag of the

trailing car in Case 1 and Case 5 reduces a little, while the drag in Case 6 increases

by 4.17 %. Case 2 is chosen as the final optimal shape in the present paper, so that

the volume performance and the aerodynamic performance for each car are all

improved.

Figure 17 shows the pressure contour around the nose of the optimal shape and

original shape. It can be observed that an apparent high pressure zone exists around

Fig. 14 a Average fitness and prediction error of the test samples for each iteration; b prediction error of
the non-dominated set [six design points are chosen, and the prediction error is calculated by formula
(22)]
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the nose. As the bluntness of the nose is increased, the high pressure zone grows

bigger. However, the curvature of zone 1 becomes greater, which makes the

intensity of negative pressure much stronger. The cowcatcher becomes backward

after optimization, and the slope becomes smaller, resulting in a smaller high

Fig. 15 Non-dominated set and typical samples

Fig. 16 Nose shape for each case

Table 3 The aerodynamic drag and the volume of the original shape and 6 typical design points

Volume(m^3) Total-Cd Tail-Cl Head-Cd Tail-Cd

Original 87.64 0.202 0.064 0.062 0.096

Case 1 86.02 0.163 -0.010 0.051 0.068

Reduction 1.85 % 19.31 % 115.63 % 17.74 % 29.17 %

Case 2 90.79 0.170 0.004 0.052 0.074

Reduction -3.59 % 15.84 % 93.75 % 16.13 % 22.92 %

Case 3 94.45 0.173 0.006 0.053 0.076

Reduction -7.77 % 14.36 % 90.63 % 14.52 % 20.83 %

Case 4 98.32 0.182 0.023 0.054 0.085

Reduction -12.17 % 9.90 % 64.06 % 12.90 % 11.46 %

Case 5 103.82 0.192 0.035 0.055 0.093

Reduction -18.46 % 4.95 % 45.31 % 11.29 % 3.13 %

Case 6 107.14 0.199 0.040 0.056 0.100

Reduction -22.25 % 1.49 % 37.50 % 9.68 % -4.17 %
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pressure zone. Consequently, the nose after optimization attributes to reduce the

intensity of the high pressure, and further reduce the aerodynamic drag of the

leading car.

Figure 18 shows the pressure coefficient (Cp) on the longitudinal profile of the

leading nose for the original shape and optimal shape. Since the bluntness of the

nose after optimization grows obviously larger, apparently negative zone exists in

zone 1. Then the coefficient keeps the same for the original shape and optimal

shape. The pressure coefficient on the wake for the original shape and the optimal

shape keeps almost the same, except that the positive pressure after optimization is a

little larger, which could be neutralized with the negative pressure on the surface of

the nose, so that the inviscid drag of the trailing car could be reduced.

Figure 19 shows the distribution of vertex cores in the wake zone for the original

shape and optimal shape. It can be seen that the size of vortex cores gets obviously

smaller for the optimal shape, especially V3 and V6. V6 disappears after

optimization, while the intensity of V3 gets apparently weaker. The high pressure

zone enlarges, so that the inviscid drag of the train could be greatly reduced. The big

vertex structures V1 and V2 are also reduced after optimization. Meanwhile, the

distance between V1 and V2 gets shortened, which could weaken the influence on

the surroundings.

5.3 Comparison of the real train model

The above optimization of the nose shape is based on a simplified train, so that the

cost of mesh generation and CFD analysis can be greatly reduced. A proper

simplification had been performed. Only the bogies beneath the nose had been

reserved while other ancillary components are all neglected. However, these

components impose an intense effect on the aerodynamic performance of the whole

train. As a result, comparative study on the real train model has been performed to

determine whether the optimal shape could be used in engineering application. The

authors have already performed a study on the windshield and found that it has a

strong influence on the distribution of aerodynamic drag for each carriage while gets

Fig. 17 The pressure contour around the nose of the optimal shape and original shape
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no big influence on the drag of the whole train. Since the drag of the whole train is

mainly concerned in the present paper, the fully enclosed outside windshields are

adopted. The shape of the train is shown in Fig. 20.

The distribution of aerodynamic forces of the original train and the optimal train

has been shown in Table 4. It could be obviously seen that the drag of the real

model is greatly larger than the simplified one and the aerodynamic lift of the

optimal real train also gets increased. Compared to the original train, the total drag

of the optimal train has been reduced by 13.62 %, in which the drag of the leading

car has been reduced by 25.41 %, the drag of the middle car has been increased by

1.47 %, and the drag of the trailing car has been reduced by 8.99 %. The lift of the

trailing car has been reduced by 9.84 %. The reduction of aerodynamic drag for

each car gets big difference with that of the simplified train. The biggest reduction

of drag could be observed on the leading train, while the reduction of drag for the

whole train is almost the same.

5.4 Nonlinear relationship between the aerodynamic forces and the design
variables

The parametric approach proposed in the present paper is very suitable for the

module design of the nose shape. The influence on the objectives by each design

variable could shed light on the engineering design of the components of the nose.

After constructing the SVR model, it is very convenient to obtain the relationship

Fig. 18 The pressure coefficient (Cp) on the longitudinal profile of the nose for the original shape and
optimal shape

Fig. 19 Distribution of vertex cores in the wake zone for the original shape and optimal shape
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between the aerodynamic drag and design variables. Figure 21 shows the

relationship between the drag and three design variables that control the main

profiles. The x-coordinate is normalized for comparison. When the design variable

concerned varies, the other variables keep the same with the original shape. Same

handling of Figs. 22 and 23 is performed. It can be seen that the relationships

between the drag and the three design variables are similar and certain nonlinear

characteristics could be observed. A11 and ak1 control the curvature at the tip of the

nose together. Taking A11 as an example, as A11 increases, the curvature tends to be

small, the nose tends to be blunt, and the aerodynamic drag begins to decrease. As

A11 reaches a certain value, the drag tends to increase. ab1 controls the curvature of

the profile that connects the nose and the cab window. As ab1 increases, the

concavity there tends to be stronger, the negative zone begins to enlarge, which

could reduce the inviscid drag of the leading car. If ab1 is large enough, flow

separation may arise and increase the inviscid drag of the leading car. A21 and A31

control the curvatures of horizontal profile and bottom profile respectively. As both

variables increase, the curvature of the corresponding profile decreases at the tip of

the nose, resulting in smaller bluntness of the nose. As a result, the aerodynamic

drag is monotonically decreasing with A21 and A31. It can be seen that the

aerodynamic drag of the train is positively correlated with the bluntness of the nose

in a fairly large extent. The drag of the train is quasi linear with ak2, which mainly

influences the curvature of the horizontal profile at the tip and middle of the nose.

As ak2 increases, these zones expand outward, resulting in larger width and blunter

of the nose. Consequently, the frontal area of the nose enlarges, so that the drag of

the nose increases. ab2 controls the width of the nose. As ab2 increases, the width of

the nose decreases, so that the drag of the train decreases. ak3 mainly affects the

curvature of the bottom profile at the tip and middle of the nose. As ak3 increases,

these zones expand outward, resulting in larger volume at the bottom, which could

retard the flow around the cowcatcher and result in a bigger drag of the nose.

Different from ak3, ab3 mainly affects the curvature of the bottom profile in the

middle of the nose. As ab3 decreases, the width of the bottom increases. Since the

shape of the front and back of the nose keeps unchanged, the flow around the

Fig. 20 Geometry of the real train model

Table 4 The distribution of aerodynamic forces of the original train and the optimal train

Total-Cd Tail-Cl Head-Cd Middle-Cd Tail-Cd

Original 0.279 0.061 0.122 0.068 0.089

Case 2 0.241 0.055 0.091 0.069 0.081

Reduction 13.62 % 9.84 % 25.41 % -1.47 % 8.99 %
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cowcatcher could better attach on the surface and flow separation could be

weakened.

As shown in Fig. 22, nonlinear relationships could be observed between

aerodynamic drag and the design variables that control the shape of the cowcatcher,

of which xp3 and xp5 get stronger influence. It can be seen from Fig. 4 that xp3
controls the concavity of the cowcatcher and xp5 controls the position of the bottom

end of the cowcatcher. When xp3 and xp5 vary, strong influence could be detected on

the high pressure zone in front of the cowcatcher. xp3 is linearly increasing with

Fig. 21 Relationship between the drag and three design variables that control the main profiles

Fig. 22 Relationships between aerodynamic drag and the design variables that control the shape of the
cowcatcher
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aerodynamic drag. As xp3 increases, the concavity of the cowcatcher strengthens,

resulting in higher pressure at the stagnation point. As a result, for the design of

cowcatchers, the concavity of the cowcatcher should be weakened as much as

possible as long as the basic function of the cowcatcher is ensured. xp5 linearly

decreases with aerodynamic drag. As xp5 increases, the bottom of the cowcatcher

tends to be backward, so that the intensity of the high pressure zone tends to be

weakened. Considering the influences by xp3 and xp5, a smooth cowcatcher with no

disturbance to the flow could be greatly helpful to reduce the drag.

As shown in Fig. 23, little influence could be observed between aerodynamic

drag and the design variables that control the cab window and the drainage.

However, nonlinear relationship could still be found. gh is monotonically

decreasing with the drag. Since gh controls the view sight of the driver, the view

of the driver should be firstly ensured and then the height of the cab window could

be lowered. gc controls the shape of the borders of the cab window. As gc is big

enough, the shape of the cab window tends to be square. As gc is small enough, the

shape of the cab window tends to be fusiform. A value between two extremes for gc

could result in smaller aerodynamic drag. gn1 and gn2 control the transition between

the cab window and the nose in the width direction and length direction

respectively. Big values of gn1 and gn2 will result in smooth transitions between

the cab window and the nose. However, the surface area of the cab window will be

reduced. It can be derived from Fig. 23 that smooth transition between the cab

Fig. 23 Relationships between aerodynamic drag and the design variables that control the cab window
and the drainage
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window and the nose could result in smaller drag. The position of the cab window is

mainly controlled by xhmin, xhmax and yhmax. Tiny adjustment of the three variables

could reduce the drag, but no big effect exists. Therefore, the location of the cab

window should mainly consider the view of the driver and the placement of inner

equipment. Among the 6 variables that control the drainage, xnmax and znmin are the

most important variables, which control the length and width of the drainage,

respectively. As xnmax increases, the drainage extends backward, so that the drag

decreases. As the increase of znmax and decrease of znmin, the entrance and exit of the

drainage enlarges (bigger size could be observed at the exit), also leading to a

smaller drag. In order to reduce the drag, the drainage should be designed gradually

widened from the entrance to the exit. Meanwhile, smooth transition between the

drainage and the nose should be ensured.

6 Conclusions

In order to promote the application of parametric design approaches for the design of

the nose shape of high speed trains, and improve the design efficiency of nose shape, a

parametric method for nose shape has been proposed in the present paper by

combining the VMF parametric method, NURBS curve method and discrete control

point method. Based on this approach, a multi-objective aerodynamic optimization

has been performed. The volume of the nose and aerodynamic drag of the whole train

have been chosen as the constraints. Several conclusions have been obtained.

(1) The parametric design approach proposed in the present paper could describe

the three-dimensional shape of the nose in detail. Totally different shape could be

obtained by adjusting the design variables. It will aid in the concept design of nose

shape and improving the optimization efficiency.

(2) For high dimensional optimization problems, the SVM regression model

based on the multi-points criterion could accurately describe the nonlinear

relationship between the design variables and objectives, and could be generally

utilized in other fields. The PSO algorithm adopted in the present paper gets

excellent capability in global optimization, especially in high dimensional multi-

objective problems.

(3) Aerodynamic performance has been greatly improved for both the simplified

model and the real model. For the real train model, the total drag of the optimal train

has been reduced by 13.62 %, in which the drag of the leading car has been reduced

by 25.41 % and the drag of the trailing car has been reduced by 8.99 %. The lift of

the trailing car has been reduced by 9.84 %.

(4) With the help of SVR model, nonlinear relationships could be obtained

between aerodynamic drag and the design variables, which could shed light on the

engineering design and optimization.
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