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ABSTRACT 
The aim of this work is to develop a new scheme for solving the pure advection 
equation. This scheme formulated within the perturbation finite-difference 
context not only conserves symplecticity but also preserves the numerical 
dispersion relation equation. The employed symplectic integrator of second- 
order accuracy in time enables calculation of a long-time accurate solution in 
the sense that the Hamiltonian is conserved at all times. The generalized high- 
order spatially accurate perturbation difference scheme optimizes numerical 
phase accuracy through the minimization of the difference between the 
numerical and exact dispersion relation equations. Our proposed new class of 
phase error reducing perturbation difference schemes can in addition locally 
capture discontinuities underlying the concept of applying a shope/flux 
limiter. The high-order spatial accuracy can be recovered in a smooth region. 
Besides the Fourier analysis of the discretization errors, anisotropy and 
dispersion analyses are both conducted on the dispersion-relation and 
symplecticity-preserving pure advection scheme to shed light on the 
distinguished nature of the proposed scheme. Numerical tests are carried 
out and the results compare well with the exact solutions, demonstrating the 
efficiency, accuracy, and the discontinuity-resolving ability using the 
proposed class of high-resolution perturbation finite-difference schemes. 
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1. Introduction 

In science and engineering areas, many transport processes involve various length scales. 
Development of a scheme of high-order spatial and temporal accuracy is essential to resolve high- 
wave-number (or high-frequency) and small-amplitude wave components. The need for developing 
a high-order scheme is particularly necessary, for example, while performing a direct simulation of 
flow turbulence, in investigating transition in wall-bounded shear flow, and in modeling global 
weather. In addition to yielding a high order of truncation, it is also desirable to apply a high resol-
ution numerical scheme, which is characterized by employing a large number of grid points per wave-
length, to resolve the shortest-wave component. Good-quality solution can be therefore obtained at 
low computational cost by using this class of high-order numerical schemes for small length scales. 

In the past three decades, a tremendous effort has been devoted to develop high-order schemes 
with high resolution. In these numerical schemes, the spectral and compact schemes are often 
referred to. In contrast to the finite-difference and finite-element methods developed normally under 
the comparative low-order representation of the functions in a small subdomain, spectral methods 
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make use of global expansion of higher-order orthogonal polynomials or Fourier series in the whole 
domain. Because of this global nature in the spectral methods, excellent error reduction with expo-
nential convergence is expectated. For many applications in fluid dynamics and aeroacoustics, the 
spectral methods have been proven to be another proper alternative to the traditional finite-differ-
ence/element method. While spectral methods are computationally less expensive, they are affected 
far more than the other numerical methods by complex geometries, and the predicted solutions 
can be less accurate. Moreover, application of spectral methods is normally subject to a comparatively 
stringent stability condition compared to the finite-difference method due to the implementation of 
boundary conditions. This drawback is probable the primary reason why spectral methods have not 
largely replaced their low-order-accuracy competitors. 

The compact finite-difference method is an alternative to the spectral method. It has been pro-
posed with an aim at getting high-order accuracy in a compact stencil at no additional computational 
cost. This class of methods developed on the basis of Padé approximation originally given in [1] is 
often refered to as the compact schemes. Compact schemes offer high-order approximation to the 
gradient and Laplacian differential operators. All the compact schemes require, however, calculating 
the solutions from matrix equations. In each row of the matrix equation, the derivatives are implicitly 
related to the values to be simultaneously solved. Similar to spectral discretization, compact discreti-
zaion (or Padé dsicretization) leads to a full difference stencil and in turn has good accuracy and spec-
tral-like resolution property. This implicit class of methods, which is characterized by relating various 
derivatives with the dependent variable, has been successfully applied to solve the time-domain 
Maxwell’s equations [2] and to simulate acoustics problems [3–5]. Subsequent to the compact differ-
ence schemes developed in [6–10], the spatial resolution has been increased by Tam and Webb [3] in 
their dispersion-relation-preserving (DRP) scheme by minimizing the integrated dispersive (phase) 
error in the wavenumber domain and by Ma and Fu [11] to control numerical group velocity. These 
DRP schemes improve dispersion characteristics [12,13] and make them more suitable for performing 
a high-resolution numerical simulation of gas/fluid dynamics and for computational acoustics. 

In addition to the necessity of performing a computationally more expensive matrix calculation of 
solutions, like the spectral methods the compact schemes in general suffer stability problems while 
solving problems subject to boundary conditions. Similar to other high-order schemes, compact 
schemes need a special approximation treatment near and at boundary nodes, in particular, for the 
simulation of thin boundary-layer flows [14]. 

Besides the presence of multiscale lengths, many engineering applications encounter shock/ 
discontinuity solutions. Development of a high-order scheme in a stencil of a small number of mesh 
points per one wave for some cases where discontinuities (e.g., shocks) appear and the effect of small 
length scales (e.g., sound waves, turbulence) is important. Such a high-resolution scheme, which often 
uses a flux/slope limiter of some kind to bound the solution gradient around shocks or discontinuities, 
can capture discontinuous solutions and recover the high-order schemes in a smooth region for ren-
dering not only high accuracy but also high resolution. Some representative schemes belonging to this 
class of methods include the essentially nonoscillatory (ENO) scheme [15,16] and its weighted variants 
known as the weighted ENO (WENO) [17,18] and discontinuous Galerkin (DG) methods [19,20]. 

Nomenclature 

Cr Courant number 
E error function 
H Hamiltonian functional 
k wavenumber 
p pressure defined in Eq. (25) 
Re Reynolds number 
u velocity component in x direction 
v velocity component in y direction 
Ve excat phase velocity 

Vp numerical phase velocity 
Δt increment time 
Δx grid spacing 
θ phase angle 
λ wavelength 
φ field variable 
ψ streamfunction 
ω angular frequency 
ωnum numerical angular frequency   
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A numerically less explored high-order perturbation finite-difference (PFD) method was proposed 
by Gao in 2000 [21]. His underlying idea of developing this novel method [22,23] has been extended 
to the finite-volume method [24–26] in flow simulations. This class of flux resolution schemes modi-
fies the classical convective and diffusive numerical fluxes by introducing a series of perturbation 
terms, which are functions of the power of grid spacing. The convection-diffusion differential equa-
tion under approximation is solved using the proposed numerical perturbation algorithm aiming at 
eliminating nonphysical oscillations resulting from the numerical convective instability and develop-
ing a high-order scheme without increasing the number of stencil points. The objective of this work is 
to refine the original PFD scheme to reconstruct a new set of coefficients which not only yields higher 
solution accuracy but also get improved dispersion characteristics. High resolution of the scheme is 
also addressed so that the number of grid points per wavelength required to resolve the shortest error 
component in the practical computation can be reduced as much as possible. 

The rest of this article is organized as follows. In Section 2, the mathematical nature of the working 
equation is reviewed. The symplectic PFD scheme characterized by having the optimized dispersion 
relation equation (DRE) in a given grid stencil is developed in Section 3. Theoretical analysis of this 
optimized difference scheme is detailed in Section 4. The discontinuity-capturing perturbation finite- 
difference scheme accommodating the optimized numerical dispersion relation equation (DC-PFD2- 
DRE) is presented in Section 5. The efficiency, accuracy, and convergence characteristics of the pro-
posed pure advection scheme are demonstrated in Section 6. Finally, concluding remarks are given in 
Section 7 based on the simulated results. 

2. Working equation and solution algorithm 

The linear pure advection equation considered as the modal equation to develop the proposed 
numerical scheme is given as 

/t þ u/x þ v/y ¼ 0 ð1Þ

In the above hyperbolic equation for /(x, y, t), the velocity components u, v in the x and y direc-
tions are assumed to be constant for the sake of simplicity to describe the proposed scheme. Given an 
initial condition /(x, y, t ¼ 0), the solution will be sought subject to its preserved symplectic property. 
This strong demand on the predicted solution is essential to get a long-term accurate solution since 
Eq. (1) has been well known to be one of the important members of the Hamiltonian equations. 

While solving a multidimensional differential equation, we can adopt a class of time-spiltting 
methods to attain a good-quality solution at low computational cost. The motivation for the use of 
time-splitting methods in the numerical calculation of Eq. (1), for example, can avoid a less restrictive 
stability condition while using an explicit scheme. Provided that an implicit scheme is employed, it is 
our objective to retain the tridiagonal nature of the matrices so as to reduce the computational cost in 
solving the algebraic system of equations. The time-splitting method given below will be adopted 
in this study to solve the time marching solution iteratively from the following two fractional steps: 

/t þ 2u/x ¼ 0 ð2Þ

/t þ 2v/y ¼ 0 ð3Þ

3. Numerical method 

In light of Eqs. (2)–(3), the overall performance of applying the proposed time splitting method 
depends very much on the numerical method applied to solve the following model equation: 

/t þ u /x ¼ 0 ð4Þ

138 C. H. YU ET AL. 



3.1. Symplectic temporal discretization 

The hyperbolic equation (4) is endowed with the conserved Hamiltonians. This fundamental property 
embedded in the equation leads naturally to the adoption of a symplectic temporal scheme. Given the 
need for designing a scheme that can preserve symplecicity, in this study the following second-order- 
accurate symplectic scheme for the model equation (4) is employed, leading to 

/nþ1 � /n

Dt
þ

u
2
ð/n

x þ /nþ1
x Þ ¼ 0 ð5Þ

3.2. Third-order-accurate perturbation finite-difference scheme (PFD3) 

The main idea behind developing the perturbation finite-difference scheme is to eliminate the leading 
discretization error terms from the modified equation and therefore get high-order accuracy. If the 
first-order upwinding scheme is used to discretize the advection term in (5), the resulting discretized 
equation is written as follows for u > 0: 

/nþ1
i � /n

i
Dt

þ
u
2

/n
i � /n

i� 1
Dx

þ
/nþ1

i � /nþ1
i� 1

Dx

� �

¼ 0 ð6Þ

When constructing the corresponding perturbation difference scheme, the convective velocity u in 
(6) is replaced with up, thereby leading to 

/nþ1
i � /n

i
Dt

þ
up

2
/n

i � /n
i� 1

Dx
þ

/nþ1
i � /nþ1

i� 1
Dx

� �

¼ 0 ð7Þ

In the above, up (¼u þA1Δx þA2Δx2) is approximated as the power series of the grid spacing Δx. 
The coefficients A1 and A2 will be determined below. 

The terms /nþ1
i , /nþ1

i� 1 , and /n
i� 1 are expanded first in Taylor series with respect to /n

i , respectively, 
at node i. These expansion terms are then substituted into the discrete equation (7) to get the follow-
ing modified equation after a lengthy derivation: 

/t þ u /x ¼
u
4

/xtt þ
1
6
/ttt

� �

Dt2 þ ð:::ÞDt3 þ ð:::ÞDt4 þ :::

� �
u
2

/xx þ A1/x

� �

Dx �
u
6

/xxx �
1
2

A1/xx þ A2/x

� �

Dx2 � ð:::ÞDx3 þ :::

ð8Þ

Two leading discretization error terms (Δxn terms, n ¼ 1, 2) shown in the above modified equation 
are eliminated to get A1 ¼ (u/2)/xx//x and A2 ¼ � (u/6)/xxx � (1/2)A1/xx//x. By virtue of the 
approximation of derivative terms as  

/x ¼
1
2
ð
/n

i � /n
i� 1

Dx
þ

/nþ1
i � /nþ1

i� 1
Dx

Þ
2

/xx ¼
/i � 2/i� 1 þ /i� 2

Dx2

/xxx ¼
/iþ2 � 2/iþ1 þ 2/i� 1 � /i� 2

2Dx3 

the perturbation finite-difference scheme yielding third-order accuracy can then be derived according 
to the resulting modified equation. 
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3.3. Second-order-accurate perturbation finite-difference scheme with the numerical 
dispersion relation equation (PFD2-DRE) 

While approximating the propagation equation it is essential to reduce the cumulative type of 
numerical dispersion error. In this study we aim to minimize the difference between the exact and 
numerical dispersion relation equations for the linear equation /t þ u /x ¼ 0. Note that the dispersion 
relation is used to rigorously link the angular frequency ω of a wave with the wavenumber k. 
To derive the numerical dispersion relation equation, the plane wave solution cast in the form of 
ei(ωt� kx)\ for /t þ u /x ¼ 0 is used to get the difference between the exact and numerical dispersion 
relation equations. To this end, derivation of the last algebraic equation for the linear equation /t þ u 
/x ¼ 0 involves using the harmonic ansatz /(x, t) ¼/0 ei(ωt� kx). The differential operator in (x, t) 
can be transformed to its corresponding algebraic expression in (ω, k), where ω and k denote the 
angular frequency and wavenumber, respectively. Through the transformation between the (x, t) 
and (ω, k) planes, the exact dispersion relation (or Von Neumann stability relation) equation is 
derived as ω � uk ¼ 0. 

To improve dispersive accuracy for the adopted PFD scheme (7), we refine the scheme derived in 
Section 3.2 by rewriting /xxx as ðc1=2Dx3Þ (/iþ2 � 2/iþ1 þ 2/i� 1 � /i� 2). By substituting the discrete 
solutions /0 e� i[ωt� kx], /0 e� i[ωt� k(x� Δx)] and /0 e� i[ω(tþΔt)� k(x� Δx)], /x ¼

1
2 ð

/n
i � /n

i� 1
Dx þ

/nþ1
i � /nþ1

i� 1
Dx Þ

2, 
/xx ¼

/iþ1� 2/iþ/i� 1
Dx2 , and /xxx ¼

c1/iþ2� 2c1/iþ1þ2c1/i� 1� c1/i� 2
2Dx3 into Eq. (7), the numerical dispersion relation 

equation for the equation /t þ u /x ¼ 0 can be derived as 

xnum ¼ f ðk; c1Þ ð9Þ

In the above derived numerical dispersion relation equation, the numerical angular frequency 
ωnum is no longer linearly proportional to the wavenumber k. This derivation clearly enlightens that 
numerical dispersion error has been introduced, and it can definitely affect the predicted solution. 

One can directly reduce the dispersion error by decreasing the difference between the exact and 
numerical dispersion relation equations or indirectly by minimizing the difference between the 
numerical and exact phase velocities or group velocities. In this study the chosen error function 
(ωnum� ωexact)2 is minimized in an integrated sense as follows within the proper interval of the scaled 
wavenumber: 

E ¼
Z p

2

0
ðxnum � xexactÞ

2dðkDxÞ ð10Þ

By applying the limiting condition ð@E=@c1Þ ¼ 0, the free parameter c1 introduced into the 
approximation of /xxx can then be derived from the above error minimization procedure. The result-
ing derived coefficient c1 will not be shown explicitly in the article because of the derived complex 
functions of Cr ð� uDt=DxÞ. As an example, the values of c1 are 1.25, 1.45, and 1.95 are used for 
the cases of Cr ¼ 0.02, Cr ¼ 0.1, and Cr ¼ 0.5, respectively. 

It is worth nothing here that the value of c1 is not fixed throughout the computational domain but 
is rather varied locally according to the magnitude of the flow velocity. Given the users’ prescribed Δt 
and Δx, the local Courant number Cr is determined from the local convective velocity u. Use of the 
resulting locally varying weighting coefficients enables us to obtain a solution that can theoretically 
optimize the numerical dispersion relation equation at every grid point. The numerical angular fre-
quency ωnum is plotted with respect to the wavenumber k in Figure 1 at different Courant numbers 
using the currently proposed PFD method. One can see from the figure that the PFD2-DRE scheme 
has a much better numerical dispersion relation than that of the PFD3 scheme at all the scaled 
Courant numbers. 
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3.4. Fourth-order-accurate perturbation finite-difference scheme with the numerical 
dispersion relation equation (PFD4-DRE) 

To increase the prediction accuracy, the fourth-order-accurate perturbation finite-difference scheme 
with numerical dispersion relation equation is developed below. By performing Taylor series expan-
sion on the terms /nþ1

i , /nþ1
i� 1 , and /n

i� 1 with respect to /n
i , and then substituting these expansion 

terms into the discrete equation (7), the modified equation then can be derived as 

/t þ u /x ¼
u
4

/xtt þ
1
6
/ttt

� �

Dt2 þ ð� � �ÞDt3 þ ð� � �ÞDt4 þ � � �

� �
u
2

/xx þ A1/x

� �
Dx �

u
6

/xxx �
1
2

A1/xx þ A2/x

� �

Dx2

� �
u
24

/xxxx þ
1
6

A1/xxx �
1
2

A2/xx þ A3/x

� �

Dx3

�
u

120
/xxxxx �

1
24

A1/xxxx þ
1
6

A2/xxx �
1
2

A3/xx þ A4/x

� �

Dx4 þ � � �

ð11Þ

Figure 1. Comparison of the numerical angular frequencies ω, which are plotted with respect to the wavenumber k, at three dif-
ferent values of Cr (≡ u Δ t/Δ x). (a) 0.02; (b) 0.1; (c) 0.5.  
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The leading three discretization error terms are then eliminated from the above modified equation, 
thereby leading to  

A1 ¼
u
2 /xx

/x
A2 ¼

� ðu6 /xxx �
1
2 A1/xxÞ

/x
A3 ¼

� ð� u
24 /xxxx þ

1
6 A1/xxx �

1
2 A2/xxÞ

/x 

Derivation of scheme PFD4-DRE is followed by introducing the free parameter c2 for the approxi-
mated term /xxxxx = c2/i� 4� 9c2/i� 3 þ 26c2/i� 2� 29c2/i� 1 þ 29c2/i þ 1 � 26c2/i þ 2 þ 9c2/i þ 3 þ c2/i þ 4/ 
6Δx5. We then minimize the resulting error function E shown in Eq. (10). Following the same procedure 
described in Section 3.3, the values of c2 are 1.1, 1.3, 1.5, and 1.7 derivaed for the cases of Cr ¼ 0.02, Cr 
¼ 0.1, Cr ¼ 0.3, and Cr ¼ 0.5, respectively. The resulting modified equation analysis enables us to know 
that the scheme has formal accuracy order of four. 

3.5. A class of high-order perturbation finite-difference schemes 

Following the same idea described in Sections 3.2–3.4, a generalized PFD scheme can be derived by 
perturbing u as follows: 

up ¼ uþ
XN

i¼1
AiðDxÞi ð12Þ

The resulting derived Ai for the proposed upwinding PFD schemes with/without the optimization 
of the numerical dispersion relation equation can be derived below: 

XN

i¼1
ð� 1Þi� 1 1

½ðN þ 1Þ � i�!
Ai
@ðNþ1� iÞ /

@x
¼ � ð� 1ÞN

u
ðN þ 1Þ!

@ðNþ1Þ/

@x

i ¼ 1:::N

ð13Þ

The coefficients Ai shown above are summarized in Table 1 for N ¼ 1� 4. 

4. Fundamental studies of the perturbation scheme 

4.1. Anisotropy analysis 

While simulating a multidimensional transport equation, it is essential to know whether or not the 
derived numerical group/phase velocity depends on the angular frequency. It is customary to express 
the numerical/exact phase/group velocity vectors and the wavenumber vector in polar coordinates. In 
the present study of the developed scheme, the angle θ is used to express the wavenumber vector 
denoted as k ¼ ðkx; kyÞ ¼ jkjðcosh; sinhÞ. The derived numerical dispersion relation equation can 
be then rewritten in terms of the polar coordinates as follows: 

xnum ¼ � 5 tan� 1A

B
ð14Þ

where A ¼ [(3sin(kx) � 2cos(kx)sin(kx) þ3sin(ky) � 2cos(ky)sin(ky))/((� 12 þ cos(kx) þcos(ky))2 þ

(� sin(kx) � sin(ky))2) þ (6 þ 3cos(kx) � cos(kx)2 þ sin(kx)2 þ 3cos(ky) � cos(ky)2 þ sin(ky)2)(� sin(kx) 

Table 1. Coefficients Ai derived under different values of N.  
N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4  

A1 
u
2/xx
/x 

u
2/xx
/x 

u
2/xx
/x 

u
2/xx
/x 

A2 0 � ðu6/xxx �
1
2A1/xxÞ

/x 

� ðu6/xxx �
1
2A1/xxÞ

/x 

� ðu6/xxx �
1
2A1/xxÞ

/x 
A3 0 0 � ð� u

24/xxxxþ
1
6A1/xxx �

1
2A2/xxÞ

/x 

� ð� u
24/xxxxþ

1
6A1/xxx �

1
2A2/xxÞ

/x 
A4 0 0 0 � ð u

120/xxxxx �
5

120A1/xxxxþ
20

120A2/xxx �
60

120A3/xxÞ

/x  
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� sin(ky))/((� 12 þ cos(kx) þcos(ky))2 þ (� sin(kx) � sin(ky))2] and ℬ ¼ (� 6 � 3cos(kx) þ cos(kx)2 �

sin(kx)2 � cos(ky) þ cos(ky)2 � sin(ky)2)(� 12 þ cos(kx) þcos(ky))/((� 12 þ cos(kx) þ cos(ky))2 þ

(� sin(kx) � sin(ky))2) þ (3sin(kx) � 2cos(kx)sin(kx) þ3sin(ky) � 2cos(ky) sin(ky))(� sin(kx) � sin 
(ky))/((� 12 þ cos(kx) þ cos(ky))2 þ (� sin(kx) � sin(ky))2)). It is now clearly shown that the 
numerical angular frequency ωnum is deemed the function of angle of the wavenumber vector, 
which is θ, and the Courant numbers Crx(≡ u Δ t/Δ x) and Cry(≡ v Δ t/Δ y). In Eq. (14), we choose 
Crx ¼Cry ¼ 0.2, for example, to analyze the scheme anisotropy. In addition, the derived numerical 
dispersion relation for the PFD3 scheme can be also rewritten in terms of polar coordinates as 

xnum1 ¼ � 5 tan� 1 C

D
ð15Þ

where C ¼ (sin(kx) þ sin(ky))(� 12 þ cos(kx) þ cos(ky))/((� 12 þ cos(kx) þ cos(ky))2 þ (� sin(kx) � sin 
(ky))2) þ (8 þ cos(kx) þ cos(ky))(� sin(kx) � sin(ky))/((� 12 þ cos(kx) þ cos(ky))2 þ (� sin(kx) � sin(ky))2 

and D¼ (� 8 � cos(kx) � cos(ky))(� 12 þ cos(kx) þ cos(ky))/((� 12 þ cos(kx) þ cos(ky))2 þ (� sin(kx) �
sin(ky))2) þ (sin(kx) þ sin(ky))(� sin(kx) � sin(ky))/((� 12 þ cos(kx) þ cos(ky))2 þ (� sin(kx) � sin(ky))2)). 

The numerical and exact angular frequencies are plotted with respect to kx and ky within the two- 
dimensional context. The two-dimensional numerical dispersion surface ωnum plotted in Figure 2 is 
qualitatively similar to that of the exact dispersion for k ¼ ðkx; kyÞ near the origin. The observed dif-
ference between the numerical and exact angular frequencies indicates the presence of nonphysical 
waves in the numerical solutions. The contours of Enum1 ¼ |ωnum1 � ωexact| and Enum ¼ |ωnum �

ωexact| are also plotted with respect to kx and ky in Figure 3. 

4.2. Dispersion analysis 

Given that k2 ¼ k2
x þ k2

y , both wavenumber components can be expressed as kx ¼ k cos θ and ky ¼ k 
sin θ. For the sake of comparison and discussion of the computed results, three extra parameters need 
to be defined. The first one is Nλ ¼ λ/h, which denotes the number of points per wavelength λ ( ¼ 2 π/ 
k). The other two are the CFL numbers Crx ¼ u Δ t/h ¼ 0. 2 and Cry ¼

vDt
h ¼ 0:2. Based on these 

Figure 2. (a) Derived numerical angular frequency ωnum plotted with respect to the wavenumbers kx and ky at Crx ¼ Cry ¼ 0.2. 
(b) Exact solution.  
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definitions, the numerical phase velocity Vp, which is defined as the ratio of the numerical 
angular frequency and the wavenumber k, can be derived. The ratio of the numerical phase velocity 
Vp ¼ωnum/k versus the exact phase velocity Ve is 

Vp

Ve
¼

xnum

Vek
¼

xnumNkh
Ve2p

ð16Þ

The numerical phase velocity Vp1 for the PFD3 scheme can be also rewritten in terms of θ. Two ratios, 
Vp/Ve and Vp 1/Ve are plotted with respect to the angle θ in Figure 4 for Nλ ¼ 4. One can clearly 

Figure 3. Predicted errors of the derived numerical angular frequency plotted with respect to the wavenumbers kx and ky at 
Crx ¼ Cry ¼ 0.2; (a) Enum1; (b) Enum.  

Figure 4. (a) Ratio of Vp/Ve, where the numerical phase velocity is Vp and the exact phase velocity is Ve. (b) Ratio of the numerical 
phase velocity Vp1 with respect to the exact phase velocity Ve.  
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observe from Figure 4 that the PFD2-DRE scheme has better agreement between the numerical and 
exact dispersion relation equations. 

5. Discontinuity-capturing perturbation finite-difference scheme (DC-PFD2-DRE) 

When solving the convection-dominated flow equations, in order to obtain a high-order accuracy and 
at the same time to resolve discontinuity, the resulting discretized equation is written as follows for 
the case of u > 0: 

/nþ1
i � /n

i
Dt

þ
uc

2
/n

i � /n
i� 1

Dx
þ

/nþ1
i � /nþ1

i� 1
Dx

� �

¼ 0 ð17Þ

where 

uc ¼
uþ A1Dx þ A2Dx2 if /̂ < 0 or /̂ > 1

u otherwise

(

ð18Þ

The value of /̂ ½/iþ1 � /i� 1=/i � /i� 1� shown above will be determined according to the mono-
tonicity-maintenance criteria. The consequence is that the resulting nonlinear scheme can eliminate 
the nonphysical oscillatory solutions using the PFD2-DRE scheme in the region across discontinuities 
and retain high-order accuracy in smooth region. For u < 0, the proposed discontinuity-capturing 
PFD scheme can be similarly derived. 

6. Numerical results 

6.1. One-dimensional verification studies 

The solution of the linear equation ut þ ux ¼ 0 is sought subject to the following initial condition: 

uðx; 0Þ ¼ sinð2pxÞ ð19Þ

In this one-dimensional verification study, the periodic boundary condition is imposed for u. The 
time step is chosen to be Δt ¼ 0.02Δx. Figure 5 shows the exact waveform and the waveform obtained 

Figure 5. Comparison of the predicted and exact solutions u(x, t ¼ 20) at Δ x ¼ 1/50.  
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by the developed PFD scheme at t ¼ 20. The L2 error norms and their corresponding spatial rates of 
convergence are tabulated in Tables 2 and 3. Good agreement with the theoretical rates of conver-
gence in space and time are both demonstrated. 

To validate that the proposed symplectic and dispersion error reducing perturbation finite-difference 
scheme is applicable to solve problems with nonsmooth solution, the solution of the same linear advec-
tion equation is sought subject to the initial waveform of the discontinuous type given below: 

uðx; 0Þ ¼
1 if 1:5 � x � 2:5
1
2 otherwise

�

ð20Þ

The above equation is solved subject to the specified periodic boundary condition u(0, t) ¼ u(4, t). 
Figure 6 shows the predicted waveforms at t ¼ 1 for the case investigated at the constant grid and 
time spacings Δx ¼ 1/50 and Δt ¼ 0.02Δx, respectively. Since the proposed PFD2-DRE scheme is 
not classified to be monotone, the predicted oscillations near the root of the investigated square wave 
is under our expectation. Provided that the discontinuity-capturing slope limiter is used, one can see 
from Figure 6b that the proposed DC-PFD2-DRE scheme can capture the sharply varying solution 
quite well. One can also clearly see from Figure 6b that the predicted wave shape remains almost 
unchanged. 

Table 2. Predicted L2 error norms at Δt ¼ 10� 4 and the corresponding spatial rates of convergence for the solutions of the PFD3 
scheme predicted at t ¼ 1 in three uniform meshes. 

Grid L2 error norm Rate of convergence  

5 � 5  0.106786508683058  
10 � 10  4.160047141757394 �10� 3  4.11602 
20 � 20  4.349535670835217 �10� 4  3.77702  

Table 3. Predicted L2 error norms at Δt ¼ 10� 4 and the corresponding spatial rates of convergence for the solutions of the PFD2- 
DRE scheme predicted at t ¼ 1 in three uniform meshes. 

Grid L2 error norm Rate of convergence  

10 � 10  1.092944289350630 �10� 2  

20 � 20  3.432336247547577 �10� 3  1.93735 
40 � 40  6.688422282408070 �10� 4  2.35945  

Figure 6. Comparison of the predicted results using the two proposed schemes with the exact solutions: (a) PFD3-DRE scheme; 
(b) DC-PFD2-DRE scheme.  
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The linear advection equation ut þ ux ¼ 0 is also solved under the following initial condition [27–30]: 

uðx; 0Þ ¼

1
6 ½Gðx; z � dÞ þ Gðx; z þ dÞ þ 4Gðx; zÞ� if � 0:8 � x � � 0:6

1 if � 0:4 � x � � 0:2
1 � j10ðx � 0:1Þj if 0 � x � 0:2

1
6 ½Fðx; a � dÞ þ Fðx; aþ dÞ þ 4Fðx; aÞ� if 0:4 � x � 0:6

0 otherwise

8
>>>><

>>>>:

ð21Þ

In Eq. (21), G(x, z) ¼ e � β(x � z)2 and Fðx; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Maxð1 � a2ðx � aÞ
2
; 0Þ

q

. The constants are taken 
as a ¼ 0.5, z ¼ � 0.7, δ ¼ 0.005, α ¼ 10, and β ¼ log(2)/36Δ2. This investigated initial condition con-
sists of a discontinuous square pulse and several continuous profiles. Figure 7 plots the solutions pre-
dicted from the PFD2-DRE and DC-PFD2-DRE schemes at time t ¼ 2 in 400 uniformly distributed 
grids. Under our expectation, the DC-PFD2-DRE scheme can completely resolve oscillations near the 
jumps. 

6.2. Two-dimensional verification studies 

We then consider the two-dimensional advection equation /t þ u /x þ v /y ¼ 0 in a flow of constant 
fluid velocity vector u ¼ (u, v). The Hamiltonian for this advection equation is H ¼ 1

2

R
w/ dxdy, 

where ψ denotes the streamfunction (i.e., u ¼ψy, v ¼ � ψx) [31]. 
The solution of the above two-dimensional pure advection equation is sought in a square of unit 

length, where the vortex flowfield is generated by the prescribed velocity vector (u, v) given by [32] 

u ¼ sin2ðpxÞsinð2pyÞcos
pt
T

� �

ð22Þ

v ¼ sin2ðpyÞsinð2pxÞcos
pt
T

� �

ð23Þ

In the above, T is the time required for the solution to return back to its initial solution. A circle of 
radius 0.15 centered at (0.5, 0.75) is prescribed initially. This problem, known as the vortex flow in a 
box, has been known to be computationally challenging in the sense that the solution profile will be 
stretched and torn by the prescribed vortex flow. A very thin filament with the width of a mesh size 

Figure 7. Comparison of the predicted results using the two proposed schemes with the exact solutions. (a) PFD2-DRE scheme; 
(b) DC-PFD2-DRE scheme.  

NUMERICAL HEAT TRANSFER, PART B 147 



can be generated with time. This test problem is solved in 150 � 150 grids at t ¼ 0.5, 1.0, 1.5, and 3. 
The computed results match very well with the exact solutions and are plotted in Figure 8. Note that 
the maximal stretching occurs at t ¼T ¼ 3. 

The Zalesak’s problem [33] is another well-known benchmark case for testing the ability of the 
developed multidimensional advection scheme. A slotted disk of radius 15.0 and width of 5.0 is 
initially located at the (50, 75) in a square domain [100,100]. The prescribed velocity field is given as 

u ¼
pð50 � yÞ

314
; v ¼

pðx � 50Þ
314

� �

ð24Þ

The slotted disk under investigation rotates clockwise. The results predicted in a domain of 
250 � 250 and 400 � 400 mesh points are plotted in Figure 9a and Figure 9b, respectively, at a time 
after completing one revolution. Our computed solution is seen to be in good agreement with the 
exact (or initial) solution, as shown in Figure 9b. Figure 10a shows the solution profile /(x, 70) along 
the x axis for 0 � x � 100 using the DC-PDF2-DRE scheme in 400 � 400 grids. Figure 1b shows again 
that the proposed scheme has excellent Hamiltonian preservation property. 

Figure 8. Predicted results in 150 � 150 grids for the vortex flow problem at different times: (a) t ¼ 0.5; (b) t ¼ 1.0; (c) t ¼ 1.5; 
(d) t ¼ 3.0.  
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6.3. Two-dimensional incompressible flow problem 

The Taylor vortex flow problem regarding the transport of decaying Taylor vortices is frequently used 
as the benchmark test for the verification of numerical schemes developed to solve the convection- 
dominated incompressible viscous flow equations [34]. The initially periodic vortex flow is convected 
and decayed exponentially with time due to the nonzero fluid viscosity in the flow. The exact solution 
of this problem is varied with the Reynolds number Re as follows: 

uðx; y; tÞ ¼ � cosðxÞ sinðyÞ expð� 2 t
Re Þ

vðx; y; tÞ ¼ cosðyÞ sinðxÞ expð� 2 t
Re Þ;

pðx; y; tÞ ¼ � 0:25½cosð2xÞ þ cosð2yÞÞ expð� 4 t
Re �

8
<

:
ð25Þ

The results computed in a mesh of 250 � 250 uniform grids are presented at Re ¼ 100. Figures 11a 
and 11b show good comparison between the computed and exact u- and v-velocity components along 
the y- and x-axis lines at different times. 

Figure 9. Predicted results in different grids after one revolution by solving the pure advection equation in different meshes: (a) 
250 � 250 mesh points; (b) 400 � 400 mesh points.  

Figure 10. (a) Predicted solution profile /(x, 70) after one revolution in a mesh of 400 � 400 nodal points. (b) Predicted 
Hamiltonian plotted with respect to time at the time after one revolution.  
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7. Concluding remarks 

In this study a generalized perturbation finite-difference scheme has been developed for solving the 
pure advection equation in a single dimension. This scheme of considerable novelty has been easily 
extended to predict the two-dimensional pure advection equation with greater success. Besides the 
ability of predicting a very high spatial accuracy using the generalized pure advection PFD scheme 
of varying accuracy orders, we also aimed to compute the long-time accurate solution in a flow con-
taining discontinuities. To this end, the second-order-accurate symplectic temporal scheme has been 
applied to conserve Hamiltanians in the pure advection scheme. To capture discontinuous solution, a 
slope limiter has been included within the framework of the perturbation finite-difference method. 
More important, the developed scheme theoretically minimizes the difference between the numerical 
and exact dispersion relation equations in a grid of fewer number of stencil points. The generalized 
scheme of varying high-order spatial accuracy has been demonstrated numerically and theoretically to 
be suitable to predict wave and Navier-Stokes equations. 
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