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1 INTRODUCTION

The connectivity evaluation of reservoirs is a very
important issue in many engineering practices. For
example, during the geological sequestration of cap�
tured CO2, the connectivity of reservoir determines
the effects of injection of CO2 and the connectivity of
the cap rock determines whether the injected CO2 can
be stored safely for an enough time. During oil and gas
production, the connectivity of reservoir determines
whether oil and gas can be exploited [1–3]. However,
practical reservoirs are fractured porous media, in
which the flow can pass through the pores and frac�
tures.

Fractured reservoirs are complex, containing geo�
logical heterogeneities (i.e., fractures) on length scale
from microns to kilometers. These heterogeneities
have significant impact on the flow behavior and have
to be modeled to make reliable prediction of reservoir
performance. However, very few direct measurements
are available of the flow properties, and there is a great
deal of uncertainty about the spatial distribution of the
fractures. The major issue in fracture hydrology is to
determine the permeability and its behavior of the
fracture networks [4, 5].

1 The article is published in the original.

The conventional approach to study the impact of
geological uncertainty on reservoir recovery is to build
a detailed reservoir model using geophysical and geo�
logical data, and then perform flow simulation. If frac�
tures are poorly interconnected and the matrix rock is
relatively impermeable, the flow may be blocked in the
network of fractures. Otherwise, if the matrix is per�
meable and the fractures are regular and highly inter�
connected, fractures and matrix can be treated as sep�
arate continuums occupying the entire domain. In
order to estimate the reservoir performance parame�
ters, it is necessary to construct reservoir models (with
associated probability) and run flow simulations. This
method is time consuming and computationally
expensive [6]. Therefore, there is a great incentive to
produce much simpler physically�based models to
quickly predict uncertainty in performance.

Percolation theory is an effective method to inves�
tigate the connectivity of reservoir [7–9]. Imaging a
typical reservoir model constructed with an object�
based technique, in which geometric objects repre�
senting geological entities (e.g., fractures, pores) are
placed randomly in space. Then the connectivity and
conductivity (i.e., effective permeability) can be esti�
mated directly using percolation theory. This method
can easily estimate the effects of complex geometry in
a fraction of a second on a spreadsheet, but it ignores
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much of the flow physics and subtleties of the hetero�
geneity distribution, including the effects of fracture’s
thickness.

A new porous and fractured percolation model is
presented in this paper. This model mainly based on
the characteristics of rich fractures and channels can
be used to investigate the connectivity of porous and
fractured dual media, and the effects of fracture length
and direction can be also considered.

INTRODUCTION OF PERCOLATION THEORY

Porous Percolation

Percolation theory is a classical model of the con�
nectivity in geometrically complex systems first devel�
oped in the late 1950s [10]. The global static and
dynamic properties of such systems are linked to the
density of objects (e.g., the fractures and pores in this
study) placed randomly in space. The full description
of this theory and its applications can be found else�
where [11].

Some general references can be given on this topic
which summarize the knowledge accumulated over
the years from different points of view [12–16]. In all
these studies and to the best of our knowledge, the
fracture properties are assumed to be uniform and
generally constant for the whole network. There are
several numerical simulation studies in the literature
suggesting an anomalous displacement behavior
related to the fractal nature of the clusters [17–19].
However, there is little experimental evidence for the
reality and practical detectability of anomalous diffu�
sion so far [20–22].

In percolation theory a medium is defined as an
infinite set of sites. A fluid flows between these sites
along paths which connect certain pairs of sites (these
paths are called bonds). Thus two types of percolation
model are introduced here [8]: site percolation and
bond percolation (Fig. 1). Normally sites lie on a reg�
ular lattice and only bonds between the nearest neigh�
bors are considered. Site percolation involves a proba�
bility p that any site is open independently of the other
sites. In bond percolation the probability is for any
bond to be open. A path is a sequence of sites con�
nected by open bonds. In either case a cluster is a set
of sites in which any two are connected by a path. It is
found that a pc exists so that for p < pc only finite�size
clusters exist, but for p > pc infinite ones appear
(Figs. 2a–c). As for bond percolation formed by quad�
rangle type structure, this critical probability pc is near
0.5 (Fig. 3).

Dual Percolation Model

Dual percolation model is constituted of fracture
network and matrix percolation network. Each frac�
ture’s center is mapped as a “site” of matrix porous
network, and the “bond” is mapped as the connection
between porosity. Fracture network is used to model
the flow in fractures while matrix network is used to
model the flow in porosity and defects. The coupling
of these two types of models can simulate the forma�
tion of inter�porous flow channel.

In this paper the quadrangle network is used, with
each fracture having four “bonds” to connect neigh�
boring fractures (Fig. 4). The connectivity of these
bonds is determined by a probability p: if the probabil�
ity of connection between any two bonds is larger than
a critical value, these two bonds are taken as con�
nected. Furthermore, if any two fractures are inter�
sected, they are considered to be connected. The main
point is to find the conditions required to form a con�
nective cluster. The following assumptions are adopted
in the analysis in the next section: 1—The fracture
center formed by Poisson’s distribution is taken as the
locating point; 2—The fracture length obeys normal
distribution; 3—Fracture angles are uniformly dis�
tributed in the range of [+αm, –αm], αm is a given max�
imum angle; 4—Fracture numbers in a unit area is
noted as fracture density. Figure 5a�d show the con�
nective status when the average fracture length
changes under different parameters.

Model scale varies widely, with a large range of
fracture density. Besides, fracture length is also a key
factor affecting penetration. Thus a parameter is
required to incorporate the effects of these two factors.
Robinson [5] once presented such a parameter Nc =
(density) × (length scale)2. But its value is unstable. In

Site

Open bond

Closed bond

Fig. 1. Sketch of bond percolation mode in local zone.
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Fig. 2. The large percolation cluster expands with p. There is no large percolation cluster when (a) p = 0.2, (b) the large percola�
tion cluster initially appear at p = 0.5 (light gray color), (c) the large percolation cluster expands at p = 0.6.
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Fig. 4. Sketch of the network of percolation in porous and fractured dual�medium.
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Fig. 5. Penetrated fractured cluster expands with μ. (a) Average value μ = 0.01, mean square error σ = 0.01, there is no penetrated
fracture cluster; (b) penetrated fractured cluster occurs (μ = 0.013, σ = 0.01); (c) penetrated fractured cluster increase (μ = 0.015,
σ = 0.01); (d) penetrated fractured cluster covers the whole zone (μ = 0.02, σ = 0.01).

Average CPU time in each computation under different fracture density

Fracture Density 100 400 900 1600 2500 4900 10000 12100

CPU Time, s 0.016 0.078 0.31 0.83 2.05 7.31 28.5 40.7

* Computation is processed in a personal computer with a CPU of Intel having duo Cores (E8400) and a RAM with 3.0 GHz and
a DDRII (800) with 3 GB
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this paper, we modify the parameter as N = density ×
μx, here x is a constant.

NUMERICAL SIMULATIONS

Effects of Repeated Computation Times 
on the Random Error

For a given fracture number, computation is often
repeated to decrease the error. Generally, the more the
repetition times and the fracture number, the smaller
the random error. But this is time costing (table).

The effects of repetition on the random error are
first analyzed at fracture number of 100, 400, 900, and
1600, respectively. The L�axis indicates the total
length of all fractures within the computational zone
(L = μ × density) and the vertical axis (Penetration)
indicates the ratio of times of penetrating fractures to
the times of computation. The curves fluctuate at
10 repetitions and the fluctuation decreases as fracture

number increases. But the differences are so small that
the curves almost coincide when repetition varies from
100 to 10000. Then the curves can be taken as refer�
ence. The fluctuation is found to decay with the rise of
fracture number. For samples, the fluctuation falls into
one wavelength when the fracture number is bigger
than 900 and the curves coincide when the fracture
number is bigger than 1600, as shown in Figs. 6a⎯d.

Controlling Parameter N

Besides the fracture number, the total fracture
length L = μ × density is also influential. However, its
value is unstable when others change. Instead, we
modify the Robinson parameter as N = μα × density,
which incorporates the effects of the average fracture
length and the fracture number (density) and thus
more adoptable to describe the initial condition of
penetrated fracture cluster.

In the Figs. 7a–f, x�coordinate α denotes the
allowable maximum angle of fractures deviated from
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horizontal direction. Y�coordinate denotes the
parameter N corresponding to the maximum devia�
tion angle of fracture α and a designed fracture density.
Each point in the figures is corresponding to the “final
results” obtained by repeated computation under dif�
ferent fracture lengthes at given fracture density and
maximum deviation angle. The “final results” are the
value of N corresponding to the threshold.

When parameter N = μ1.9 × density is adopted, the
curves tend to coincide. So N can be taken as the con�
trol parameter, as shown in Figs. 7a–f. The curves with
different fracture densities are close with each other
(Fig. 7c); and they are almost coincident when α >
20°. When α < 55°, the required N increases fast cor�
responding to the occurrence of penetrated cluster.
That means the required average fracture length
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Fig. 7. The relationship of N to the deviation angle of fracture α and a designed fracture density. (a) N = μ1.5 × density, (b) N =
μ1.8 × density, (c) N = μ1.9 × density, (d) N = μ2.0 × density, (e) N = μ2.1 × density, (f) N = μ2.5 × density.
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increases fast. However, when α > 55°, the required N
decreases. If the data in Fig. 7c are shown in three�
dimensional surface, we can find that N decreases with
the increase of fracture density (Fig. 8). When α is
about 10°, N varies much at different fracture densi�
ties; and it varies little when α is about 80°. When α >
55°, N is very close for different α. The results with
large fracture density can be obtained from those with
small density. To investigate the characteristics of N
further, α is adopted as 67°, 78.5° and 90° in computa�
tion, respectively. We can find that N is close to 2.0
with the changes of fracture density and α (Fig. 9).
Therefore, the value 2.0 can be taken as the threshold
that penetrating fracture cluster occurs in fractured
porous dual media system.

Fractal Characteristics of Dual Percolation Model 

Fractured porous media has obvious fractal char�
acteristics. Kang et al. [23] found that natural frac�
tured media obeyed power law: Np(λ) = A0λ

–D, in
which Np(λ) is the number of the fractures with a
length of λ, A0 is a coefficient, D is the fractal dimen�
sion. For fractured network model, Robinson [5]

introduced the parameter Nc = FPD ×  with FPD
the fracture density and Lc the character length, to
estimate the connectivity. The exponent 2 can be
taken as the character fractal dimension correspond�
ing to the fracture network. We find that the fractal
dimension is 1.9 when the connectivity is 0.2 and the
direction of fractures are highly disordered (α = 90°)
Dealing with the numerical results according to the
equation A0 = FPD × μD (Fig. 10).

Physical Meaning of Parameters A0 and D

Previous studies on connectivity focus on variation
of parameter A0 at D = 2. A0 denotes either the average
fracture length of the fracture network [5] or the
impact range of the connected bonds in the porous
percolation network [24–26]. There are no discus�
sions on why D is 2 and its meaning. This paper dis�
cusses the physical meaning of the fractal dimension D
in the formula A0 = FPD × μD describing the dual per�
colation model (FPD is the fracture density in unit
area).
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In the dual percolation model, the real size of the
concerned zone corresponds to the character length λ.
The average length of the fractures is μ = δ/λ. There�
fore, the computational zone is abstracted as 1 × 1
while the average length of the fractures is in the range
of 0 < μ ≤ 1. The fractal dimension D has only statisti�
cal meaning. Given a fractured porous media, the dis�
tribution and parameters such as μ and σ of fracture
and pore are determinate. The fracture density doesn’t
change obviously at the same character scale; the
change of fracture density in a zone (1 × 1) reflects
only the change of character length λ. The following
relation holds for FPD and λi:

FPD = 

where the coefficient  is a constant,  is the char�
acter length of the computational zone when FPD
equals i (Fig. 11). When the whole fracture network is
fixed, the following relations are satisfied:

4λ100 = 2λ400 = λ1600, μi = δi/λi.

1—If D = 2, then A0 = FPD × μD = (C1λi)
2. Since

A0 is a constant, δi is also a constant. Thus this equa�
tion is always correct if only it is correct for any FPD.
For an example, the connectivity at FPD = 100 is the
same with that at FPD = 1600. In other words, the
connectivity in a zone with area (10 m)2 is the same as

C1
2
λi

2
,

C1
2

λi
2

that with area (40 m)2 if the real sizes of the computing
zone are 10 × 10 and 40 × 40 m, respectively Thus the
connectivity of small zone can reflect that of large
zone. The fractured porous media satisfied this type of
characteristics is called “critical” fractured porous
media.

2—If D < 2, then A0 = FPD μD = (M1λi)
2 – D ×

(M1δi)
D. Since A0 is a constant, and 2 – D > 0, δi is

inversely proportional to λi. For the sample in (1),
because of λ1600 > λ400 > λ100, the percolation threshold
value δ1600 > δ400 > δ100, meaning that the connectivity
in the zones with areas (40 m)2, (20 m)2 and (10 m)2

decreases in order. For such a case, the connectivity is
more likely to occur when more fractures are involved
in the concerned zone. And the computing connectiv�
ity for small zone does not reflect that in large zone.
Such a rock is unfavorable for the closure of strata; and
the media with fractures in such a distribution may be
called the “dispersion” fractured porous media.

3—If D > 2, then A0 = FPD μD = (M1δi)
D/(M1λi)

D – 2.
Since A0 is a constant and D – 2 > 0, δi is inversely pro�
portional to λi. Adopting the example in (1), because
of λ1600 > λ400 > λ100, the corresponding percolation
threshold values satisfy δ1600 > δ400 > δ100. That
means, the connectivity satisfy in zone (40 m)2 < in
zone (20 m)2 < in zone (10 m)2. For such a case, the

FPD = 400

FPD = 1600

FPD = 100

FPD = 400

FPD = 1600

FPD = 100

Fig. 11. Sketch of computation zone considering the corresponding scales.
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connectivity is more unlikely to occur when more
fractures are involved in the concerned zone. On the
contrary, for a small zone with fewer fractures, it tends
to connectivity. For this kind of rock, connectivity cal�
culation in small zone, if satisfying the condition, can
ensure the connectivity in large scale. Such a rock is
favorable for the closure of strata; and the media with
fractures in such a distribution may be called the
“directional type” fractured porous media.

RESULTS AND DISCUSSION

During computing, the dual percolation network is
considered as connected (The corresponding parame�
ters in this case is called the combinational percolation
ones) if there exists any fracture satisfying that it forms
a path to and joins the other end.

The Monte�Carlo method is used in computation.
In each computation, 50~100 samples are adopted to
compute the probability of connectivity under differ�
ent combination of parameters (FPD, p, α, μ, σ). The
combination of parameters are taken as the threshold
when the probability of connectivity arrives at 50%,
then fc (FPD, p, α, μ, σ) = 0.

The percolation threshold fc (FPD, p, α, μ, σ) can
be written in the form of fc(([A0, D], p, α, μ, σ)c) by
using the expression A0 = FPD × μD. The results in the
next sections are obtained according to different com�
bination of ([A0, D], p, α, μ, σ)c.

Effects of Connective Probability p of the Network 
on the Percolation

The L–p relationship is considered for different
fracture densities under four cases of α, as shown in
Figs. 12a−d, where p indicates the connectivity proba�
bility of “bond” in dual percolation model, which

reflects the developing degree of macro pores and
defects with strong connection potential surrounding
small fractures; and L (L = μ × density) is the total
length of fractures in the computation zone when con�
nective cluster reaches 50% of the total computation
times at given p, α, and fracture density.

With the increase of connectivity of “bond” in the
percolation network, the total length L for the require�
ment of penetrating cluster’s formation decreases lin�
early till the probability is close to 45%, afterwards, the
decrease of L becomes fast. The required total fracture
length increases with the increase of fracture density
for all possible p, α.

When α changes, L ~ p can be divided into linear
and nonlinear parts. When α > 55°, the curves coin�
cide, corresponding to the relation N ~ α. It indicates
that the characteristics of the sample with 10000 frac�
tures can be simulated by a sample with 2500 fractures,
as shown in Fig. 13a, b.

Figures 14a, b show the relation of L ~ p under dif�
ferent variance of fracture length when α = 90° and the
fracture density is fixed. The data adopted in compu�
tation are as follows: the fracture densities are 10000
and 2500, respectively, the variance of fracture length
changes from 0.1 to 3.0μ (μ is the average fracture
length). The linear and nonlinear parts of the curve
L ~ p are obvious. The inflexion is at 45%. When the
variance of fracture is below 0.4μ, the curves are
almost coincided. However, when the variance of frac�
ture is larger than 0.7μ, the curves are deviated obvi�
ously.

Results under Equal�Length Fractures

To investigate the effects of α and p on D and A0,
numerical simulations are carried out under different
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values of α, p with fractures of equal�length (i.e., C
v
 =

σ/μ = 0) and uniform distribution, and the angles
between [–α, α].

From the numerical results it follows that:

1—The fractal dimension D decreases linearly
with the increase of connective probability. That
means the sediment tends to be “dispersion type”
fractured porous media with the increase of p.

2—The fractal dimensions start to fluctuate obvi�
ously when the value is larger than 0.3, which indicates
that the porous percolation in the dual percolation
network approaches the percolation threshold and so
the threshold fluctuates by the effects of the equal�
length fractures when the porous connectivity is large.

3—The fractal dimension D increases with the
decrease of fracture angle α. For example, the whole
curve is above the line D = 2 under α = 0.37, which
shows that the dual percolation network has no char�
acteristics of “dispersion type” porous fracture media
and so this type of sediment is difficult to be con�
nected.

4—The parameter A0 decreases linearly with the
increase of the connective probability p under different

fracture angle α, which indicates that the required
total length of fractures (i.e., the connectivity among
fractures) to approach the threshold decreases with the
increase of the porous connectivity.

5—The parameter A0 decreases a little with the
increase of the fracture angle α under the condition of
p < 0.4, which indicates that when the fractures’ angles
tends to be in the same direction, the corresponding
sediment is difficult to be connected. The same values
of A0 under the condition of p = 0.4 show that the
porous connectivity controls the percolation of frac�
tured porous media, as shown in Figs. 15a–d.

Results under Non�Equal�Length Fractures

In the computation of this section, the fractures
satisfy the normal distribution Nn(μ, σ). The fractures’
angles range from –90° to 90°. The value of C

v
 ranges

from 0.0 to 3.0. The mean square error σ is denoted by
C
v
 = σ/μ considering that the value of μ changes obvi�

ously under different FPD.

The fractal dimension D decreases linearly with
increase of p. All values of D fall between D = –5.0p +
2.01 and D = –5.0p + 1.92 with the fluctuation ampli�
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tudes between ±2.5%. And the fluctuation of D
increases with the increase of C

v
 under the condition

of α = 1.57(±90°). D is always less than 2.0 for any p,
indicating the “dispersion type” fractured porous
media, as shown in Fig. 16a, b.

The position of A0 lowers fast with the increase of
C
v
 (Fig. 16c). A0 increases with the decrease of p and

this tendency is nearly linear at C
v
 = 0. At C

v
 > 0 and

p < 0.1, A0 changes little, and at C
v
 > 0 and p > 0.1, A0

decreases linearly with the decrease of p.

A0 decreases fast with the increase of C
v
 under the

same p (Fig. 16d). The reason is the occurrence of long
fractures. The long fractures play an important role in
percolation even if the sum of them is small. The larger
the value of C

v
, the more the long fractures, the stron�

ger the controlling of long fractures to the connectiv�
ity. At this condition, even if only a few fractures are
connected, the whole zone can be connected. That
means the required average length may be decreased.
On the other hand, the position of the curve A0

becomes lower with the increase of p because the
increase of p leads to the dominance of connectivity of
pores.

The computing results considering the boundary
effects when the fracture is distributed uniformly and
the angles ranges randomly from –73° to 73° and C

v

ranges from 0.0 to 3.0 show that the results are similar
to that at α = ±90°, except that the curves of A0 is a lit�
tle higher. The values of D range between the lines D =
–5.0p + 2.12 and D = –5.0p + 2.12. The differences of
the average and the two lines are ±3.0%, as shown in
Fig. 17a–d.

The characteristics of D shown in Fig. 18a, b are
very similar to that in Fig. 15a, b. Although the media
is “directional type” at α = ±21.1°, the distances
between the D ~ p curves are larger in Fig. 18a because
of the uncertainty of fracture length. In Fig. 18c, the
curves of A0 ~ p tend to be coincided under different α,
which is different with that in Fig. 15c. Figure 18d
shows that A0 ~ α curves keep stable under different
connective probability p while A0 tends to decrease
with α in Fig. 15d.

CONCLUSIONS

Fractured porous dual percolation is investigated in
this paper. The threshold corresponding to initiation
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of penetrating fracture cluster is found. The main con�
clusions are as follows:

1—The precise of results depend mainly on the
scale of model and repetition times of calculation. The
results are stable after 10 repetition of calculation
when more than 1600 fractures are present. But this is
limited by the cost of CPU, which increases exponen�
tially with fracture density and linearly with repeti�
tions. A more practical method is to increase the rep�
etitions and decrease the fracture density.

2—It is important to determine the parameter N
for the dual percolation analysis. Since N is nearly
constant at different fracture densities and the maxi�
mum deviation angle α, the characteristics of model
with big fracture density can be obtained from that
with small fracture density (usually of 1600~2500). In
this way, the cost of CPU time can be decrease consid�
erably.

3—At the condition of D = 2, the connectivity of
small zone can reflect that of large zone. The fractured
porous media satisfied this type of characteristics is
called “critical” fractured porous media. At the condi�

tion of D < 2, the connectivity in a small zone doesn’t
reflect that in large zone. The rock with fractures in
such a distribution may be called the “dispersion”
fractured porous rock. At the condition of D > 2, con�
nectivity in a small zone can ensure the connectivity
on large scale. The rock with fractures in such a distri�
bution may be called the “directional type” fractured
porous media.

4—When the connectivity of “bond” in the matrix
percolation network arrives at 45%, the percolation of
the model becomes unstable and the threshold of the
fracture for penetrating fracture cluster becomes
small. That means, once the condition occurs, large
channel of inter�porosity flow emerges.

5—Relationship of L ~ p under different variances
of fracture length shows that when the variance σ is
bigger than 0.5μ, the L ~ p curve decreases obviously
after inflection point. That means, the connective
fracture system will occur under small fracture param�
eters at this condition.
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