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SUMMARY

An improved high-order accurate WENO finite volume method based on unstructured grids for compressible
multi-fluids flow is proposed in this paper. The third-order accuracy WENO finite volume method based
on triangle cell is used to discretize the governing equations. To have higher order of accuracy, the P1
polynomial is reconstructed firstly. After that, the P2 polynomial is reconstructed from the combination of
the P1. The reconstructed coefficients are calculated by analytical form of inverse matrix rather than the
numerical inversion. This greatly improved the efficiency and the robustness. Four examples are presented to
examine this algorithm. Numerical results show that there is no spurious oscillation of velocity and pressure
across the interface and high-order accurate result can be achieved. Copyright © 2016 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Compressible multi-fluid flows have many applications such as in combustion process and chemical
process engineering. Hence, many methods [1–7] have been developed to model and simulate them.
Among them, the front capturing method is very promising for its efficiency and simplicity when
dealing with different fluids. However, most of these existing methods are of first-order or second-
order accuracy. The main deficiency of these low-order numerical methods is excessive numerical
dissipation. The tiny structures dissipate prematurely, and the interface is smeared because of the
numerical dissipation. One way to improve the resolution is to use high-order numerical methods to
obtain accurate result in relatively coarse grids.

In fact, there are many high-order numerical methods [8, 9] developed in the past decades: the
essentially non-oscillatory method (ENO) [10], the weighted ENO (WENO) method [11, 12], the
discontinuous Galerkin method [13], and the spectral volume method [14]. In this article, the WENO
method is employed. The key idea of WENO scheme is the use of a convex combination of all can-
didate stencils to achieve high-order accuracy in smooth regions and ENO transition for solution
discontinuities. Johnsen [15] presented the work by using the finite difference WENO method to
simulate compressible multi-fluid flows. Recently, Dumbser [16] adopted the Arbitrary high order
schemes using DERivatives (ADER) WENO finite volume schemes to the Baer–Nunziato model
of compressible multi-fluid flows. However, this WENO reconstruction for multi-fluid flows in lit-
erature is performed on the structured grid, and their extension to unstructured grid is not trivial
[17–20]. The main reason is that the expansion of stencil, which is quite straightforward in struc-
tured grid, becomes difficult because of the complicated topology in unstructured grid. Besides, the
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reconstructed coefficients in the unstructured mesh are not constants as those in the structured mesh-
based solver. In fact, they are related to the topology of the mesh. Hence, matrix inversion has to
be employed to obtain the reconstruction coefficients. This troublesome procedure takes too much
computational cost and is easy to blow up when the grid deforms greatly.

In this article, an improved WENO finite volume method based on unstructured grids for com-
pressible multi-fluids flow is presented. The quasi-conservative form [5, 21, 25] is applied to avoid
the appearance of spurious pressure oscillations at material interfaces. To have higher order of accu-
racy, the P1 polynomial is reconstructed firstly. After that, the P2 polynomial is reconstructed from
the combination of the P1. The non-negative reconstructed coefficients are calculated by analytical
form of inverse matrix rather than the numerical inversion. This greatly improved the efficiency and
the robustness. Four two-dimensional examples are presented to examine this method. The outline of
this paper is described as follows. The discretization of space and time for the governing equations
for multi-fluid flows under unstructured grids is given in Section 2. Numerical experiments are
presented in Section 3. And Section 4 is devoted to the conclusions.

2. WENO RECONSTRUCTION

In this section, the governing equations for multi-fluids flows are described. The WENO reconstruc-
tion on unstructured mesh is stated in detail here.

2.1. Governing equations

Neglecting the viscosity, heat transfer, and chemical reaction, the governing equation for compress-
ible flow can be written as

@u
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C
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@x
C
@g
@y
D 0 (1)

where u; f, and g are the state vector of conservative variables, the flux vector in x direction, and the
flux vector in y direction,
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Here, �, u, v, E, and p are the density, velocity in x direction, velocity in y direction, total energy,
and pressure. The equation of state for each fluid component is the stiffened gas equation,
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To model multi-fluid flows, equations for property of material should be included to the original
Euler equations,
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Here, � and � are the property of material. Equation (4) can be rewritten as another form

@…
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Cr �� �…r � Eu D 0 (6)
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with the numerical flux,

� D Eu… (7)

2.2. WENO reconstruction on unstructured mesh

In this sub-section, the discretization of Eqs. (1) and (6) by using unstructured WENO scheme is
presented. Without losing generality, the governing equations are discretized in a triangle cell 0,

d
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u0.t/C
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�0
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with the definition
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where F D fi C gj is the numerical flux, �0 represents the control volume, n is the unit normal
vector outward to the surface, and u0 is the mean state value in the control volume.

The second term in the Eq. (8) is discretized using s-point Gaussian formulation with degree
2s � 1 and order of accuracy 2s. It can be expressed as

I
�0

F � nds � j@�0j
sX

jD1

!jFj � n (10)

where s represents the number of Gauss points in numerical integral and !j is the weights. For
example, for the third-order WENO reconstruction, s is equal to 2.

For the third-order WENO scheme in triangle cells, a quadratic polynomial reconstruction
denoted by p2 is applied. The stencils for reconstruction are shown in Figure 1. A least square
reconstruction is suggested by Hu [22]. For instance, we suppose the reconstruction has the
following form:

p2 .x; y/ D U0 C a� C b	C c�
2 C d�	C e	2

D 
0U0 C 
iUi C : : :C 
9Ukb
(11)

Figure 1. Stencil for weighted essentially non-oscillatory reconstruction.
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where � D x � x0, 	 D y � y0 and U0 is the average value on cell 0. For cell i , we can obtain the
following formulation:
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The same relationship can be obtained on the other eight neighbor cells. A group of Eq. (12) in all
these cells can be rewritten as the following matrix form:
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There are five unknowns and nine equations in Eq. (13). It can be solved using the least square
method

ATAˆ D AT‰ (14)

with the definition
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To make the reconstruction more robust and reliable, we employ the weighted least square recon-
struction in the present algorithm. The coefficient matrix is modified by multiplying a weight on
each row.
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In Eq. (16), the weights are inversely proportional to the distance from centroid of current cell to
the centroid of the neighboring cell and can be written in the form
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˛i D
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(17)

Therefore, the reconstruction equation will be written in another form

OAT OAˆ D OAT O‰ (18)

It should be noted that ‰ on the right side of Eq. (14) must be changed correspondingly. Clearly,
the quadratic polynomial only depends on the geometry of the grid and has nothing to do with the
solution. Hence, we can work out the coefficient and store them in advance.

Another important step in WENO reconstruction is to build the linear polynomials. As shown in
Figure 1, nine different stencils are chosen here: S1 D ¹0; i; j º; S2 D ¹0; i; kº; S3 D ¹0; j; kº; S4 D
¹0; i; i1º; S5 D ¹0; i; i2º; S6 D ¹0; j; j1º; S7 D ¹0; j; j 2º; S8 D ¹0; k; k1º, and S9 D ¹0; k; k2º.
We can obtain a reconstructed polynomial on each stencil. Just as the p2 polynomial in Eq. (11),
the p1 polynomial can be defined as

p1 D a1 C b1� C c1	

D �0U0 C �1Ui C �2Uj
(19)

For each Gauss point, taking the G1 point on side i for example, we can find the linear weights
�j to make the combination of all the nine polynomials satisfy
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9X
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where W .x; y/ is the value of p2 on Gauss point. To make sure the reconstructed value is a convex
combination of all candidate stencils, which is of vital importance to suppress oscillation when the
discontinuity appears, we need to obtain a set of non-negative � . Clearly, the coefficients � should
satisfy the following relationship:

9X
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Besides, for cell 0, the coefficient before U0 in p2 should be equal to all the coefficients before
U0 in p1. Applying this formulation to all the 10 cells and combining Eqs. (11), (19), and (20), 10
equations to solve � can be obtained
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It is further simplified into the following form:

0
BBBBBBBBBBBBBB@

0 a3;3 0 0 a3;6 a3;7 0 0

a4;2 0 0 0 0 0 a4;8 a4;9

0 0 a5;4 0 0 0 0 0

0 0 0 a6;5 0 0 0 0

0 0 0 0 a7;6 0 0 0

0 0 0 0 0 a8;7 0 0

0 0 0 0 0 0 a9;8 0

0 0 0 0 0 0 0 a10;9

1
CCCCCCCCCCCCCCA
.8�8/

0
BBBBBBBBBBBBBB@

�2

�3

�4

�5

�6

�7

�8

�9

1
CCCCCCCCCCCCCCA

D

0
BBBBBBBBBBBBBB@


2 � �1a3;1


3 � �1a4;1


4


5


6


7


8


9

1
CCCCCCCCCCCCCCA

(23)

Usually, it is solved by numerical inversion of the matrix. To improve the efficiency, an analytical
expression of the inverse matrix can be written as
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Thus, Eq. (23) can be reformed as
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In most cases, we can obtain a set of non-negative � following this method. Unfortunately, the
aforementioned procedure cannot guarantee that all � are non-negative. According to Hu [22], a
regrouping process is suggested. For instance, the nine stencils are regrouped into three new stencils
for the first Gauss point on side i : Snew1 D ¹S2; S4; S5º; S

new
2 D ¹S3; S6; S7º, and Snew3 D

¹S1; S8; S9º.
Finally, we come to the point of nonlinear part. If discontinuities are emerged, nonlinear weights

!j will be used to measure the smoothness of stencil
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i oi

; oi D
�i

.� C ISi /
2

(26)

where ISi is the oscillation indicator and can be written into the following form:

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2016; 82:113–129
DOI: 10.1002/fld



AN IMPROVED UNSTRUCTURED WENO METHOD FOR COMPRESSIBLE MULTI-FLUIDS 119

IS D
X

16j˛j6k

Z
�

j�jj˛j�1 .D˛p .x; y//
2
dxdy (27)

In smooth regions, the nonlinear weights are equal to the linear weights. Near the discontinuities,
the nonlinear weights of the sub-stencil that contains the discontinuities are far more less than the
weights of sub-stencils with smooth solution. In this way, numerical oscillation is avoided near the
shock and interfaces. The preservation of the pressure equilibrium has been shown in papers [5,
21]. As shown in these papers, the discretization of the transport equation in non-conservative form
Eq. (6) is the key factor to the preservation of the pressure equilibrium. Hence, the present method
preserves the pressure equilibrium across the interface.

The time integration of the semi-discrete system is accomplished by means of an explicit multi-
stage third-order total variation diminishing (TVD) Runge–Kutta scheme,8̂̂<
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2.3. The approximate Riemann solver

Here, the Harten-Lax-Van Leer with contact discontinuities HLLC flux is adopted. It approximates
the solution with two intermediate states enclosed by the estimated right-going and left-gonging
waves and separated by a contact discontinuity. Hence, it is very suitable for problems with shock
wave and contact wave. The HLLC flux [5] can be written in the following form:
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� (31)

Here, aL, aR, and Qa are the left sound speed, the right sound speed, and the averaged sound speed
respectively. For the fluid with the stiffened gas equation of state (EOS), the sound speed can be
calculated by

a D

s
�
p C �

�
(32)

3. NUMERICAL RESULTS

In order to verify the present method for compressible multi-fluid flows on unstructured mesh, four
different numerical cases are tested.

3.1. Two-dimensional vortex evolution problem

To investigate the order of accuracy of the present method, the two-dimensional vortex evolution
problem is employed here. A similar case can be found in Frahan [23]. In this test, a perturbation is
added to the mean flow .�; u; v; p/ D .1; 1; 1; 1/. The perturbation is
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Figure 2. Uniform grids for vortex evolution problem.
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with

r2 D .x � 5/2 C .y � 5/2 (34)

Here, the vortex strength " D 5. The computational domain is taken to be .0; 10/� .0; 10/ . It can be
easily observed that the ratio of specific heat changes smoothly. The exact solution of this problem
is the perturbation moves with the speed .1; 1/ in the diagonal direction. The simulation was carried
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Figure 3. Unstructured irregular grids for vortex evolution problem.

Figure 4. Unstructured stretched grids for vortex evolution problem.
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out until t D 0:5. Three different kinds of mesh, uniform meshes, irregular grids, and stretched
grids, are employed and shown in Figures 2–4.

The order of accuracy can be calculated by

O D
lg


Lp;c
Lp;f

�
lg2

(35)

where c denotes the coarse mesh and f denotes the fine mesh. L is the norm based on the error
between the numerical and exact solutions. It can be defined as

Table I. Errors and order of accuracy in density (uniform meshes).

h L1 error L1 order L2 error L2 order L1 error L1 order

1 4.22E�3 – 1.53E�2 – 0.14E0 –
1/2 1.24E�3 1.76 5.47E�3 1.48 8.61E�2 0.76
1/4 2.75E�4 2.18 1.57E�3 1.80 3.69E�2 1.22
1/8 2.85E�5 3.27 1.80E�4 3.13 5.50E�3 2.75
1/16 2.69E�6 3.40 1.34E�5 3.74 3.30E�4 4.06
1/32 3.42E�7 2.98 1.45E�6 3.21 2.33E�5 3.82
1/64 6.19E�8 2.47 1.84E�7 2.98 2.43E�6 3.27

Table II. Errors and order of accuracy in 1/(� � 1) (uniform meshes).

h L1 error L1 order L2 error L2 order L1 error L1 order

1 1.51E�2 – 2.81E�2 – 0.17E0 –
1/2 4.48E�3 1.75 8.33E�3 1.75 5.19E�2 1.75
1/4 7.77E�4 2.53 1.52E�3 2.45 1.19E�2 2.12
1/8 8.80E�5 3.14 1.69E�4 3.17 8.41E�4 3.82
1/16 8.93E�6 3.30 1.70E�5 3.31 8.42E�5 3.32
1/32 9.00E�7 3.23 1.80E�6 3.21 8.26E�6 3.35
1/64 1.44E�7 2.64 2.42E�7 2.89 1.03E�6 3.00

Table III. Errors and order of accuracy in density (irregular meshes).

h L1 error L1 order L2 error L2 order L1 error L1 order

1 2.64E�3 -s- 9.91E�3 – 0.11E0 –
1/2 7.91E�4 1.74 3.72E�3 1.41 6.13E�2 0.86
1/4 1.26E�4 2.65 7.44E�4 2.32 1.95E�2 1.65
1/8 1.19E�5 3.40 3.73E�5 2.39 2.10E�3 3.22
1/16 1.25E�6 3.26 6.03E�6 3.56 1.35E�4 3.96

Table IV. Errors and order of accuracy in 1/(� � 1) (irregular meshes).

h L1 error L1 order L2 error L2 order L1 error L1 order

1 1.02E�2 – 1.75E�2 – 7.36E�2 –
1/2 2.26E�3 2.18 4.11E�3 2.09 2.47E�2 1.57
1/4 3.31E�4 2.77 6.18E�4 2.74 2.66E�3 3.21
1/8 3.73E�5 3.15 7.05E�5 3.13 3.19E�4 3.06
1/16 4.21E�6 3.15 7.77E�6 3.18 6.22E�5 2.35
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Table V. Errors and order of accuracy in density (stretched meshes).

h L1 error L1 order L2 error L2 order L1 error L1 order

1 2.87E�3 – 1.08E�2 – 0.13E0 –
1/2 8.32E�4 1.79 3.75E�3 1.52 6.60E�2 0.96
1/4 1.45E�4 2.52 7.10E�4 2.40 1.80E�2 1.87
1/8 1.51E�5 3.27 8.69E�5 3.03 2.63E�3 2.78
1/16 1.69E�6 3.16 9.03E�6 3.27 2.88E�4 3.19

Table VI. Errors and order of accuracy in 1/(� � 1) (stretched meshes).

h L1 error L1 order L2 error L2 order L1 error L1 order

1 1.21E-2 - 1.08E-2 - 9.35E-2 -
1/2 2.72E-3 2.15 5.24E-3 1.98 3.57E-2 1.39
1/4 4.53E-4 2.58 8.73E-4 2.59 6.96E-3 2.39
1/8 5.60E-5 3.02 1.12E-4 2.96 1.15E-3 2.59
1/16 6.70E-6 3.06 1.39E-5 3.01 2.43E-4 2.25

Figure 5. Comparisons of the density plot of interface only problem at t D 0 and t D 0:36 .

Table VII. Errors and order of accuracy in the derivative of density for x (irregular meshes).

h L1 error L1 order L2 error L2 order L1 error L1 order

1 7.93E�3 – 2.94E�2 – 2.37E�1 –
1/2 3.01E�3 1.40 1.22E�2 1.27 1.23E�1 0.94
1/4 7.68E�4 1.97 3.36E�3 1.86 5.39E�2 1.19
1/8 1.69E�4 2.19 7.15E�4 2.23 9.67E�3 2.48
1/16 3.93E�5 2.10 1.66E�4 2.11 1.65E�3 2.55

Lm D

 PNcv
iD1 Ai

ˇ̌
NEmi
ˇ̌

PNcv
iD1 Ai

! 1
m

(36)

NEi D
1

Ai

“
CVi

.U exa � U num .x; y// dAi (37)

In Eq. (37), U exa denotes the exact solution and U num the numerical solution. The integration is
calculated by Gaussian quadrature. The infinity norm is a measure of local accuracy

L1 D max
ˇ̌
NEi
ˇ̌

(38)
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Figure 6. Velocity profile for interface problem at time t D 0:36.

Figure 7. Pressure profile for interface problem at time t D 0:36.

The error analysis and order of convergence using different girds have been given in
Tables I–VI. These results show that the present method can achieve third-order accuracy in uni-
form grids, irregular grids, and stretched grids. However, the convergence rates in coarse meshes
(h D 1; 1=2;) are lower than those in fine meshes. Similar findings are shown in other papers using
the finite difference (FD) method [12] or the finite volume (FV) method [22]. Besides, the conver-
gence of the derivative of density in x direction is also tested in the irregular meshes. The results
in Table VII show that derivative of density can reach second order, which is consistent with the
convergence of the density.

3.2. Advection of a gas–gas interface problem

To verify that the present method can prevent the oscillation of density and pressure across the
interface, the interface-only problem is investigated. Initially, one fluid with a circular shape is sur-
rounded by another fluid. The radius of the circular interface r0 is 0.16. The computational domain
is an annulus where the inner and outer radiuses are 1 and 2, respectively. The circle is located
at .2:9; 2:9/. There are no shocks and other perturbations in the flow field. The initial values are
as follows:
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.�; �; p1/ D

´
.1; 1:4; 0/ r < r0

.0:125; 4; 0/ r 6 r0
(39)

Both fluids move at the same speed .1; 1/. The inner fluid with a circular shape should move
with the constant velocity along the diagonal direction. It can be easily observed that the inner fluid
with a circular shape moves along the diagonal direction and its position agrees well with the exact
solution. The surface plots of density at t D 0 and t D 0:36 are also presented in Figure 5. From it,
it is found that the interface at t D 0:36 is relatively sharp as compared with the initial one. Besides,
the velocity profiles in x direction and in y direction are shown in Figure 6. The pressure profile
along the center line is shown in Figure 7. As shown in Figures 6 and 7, the velocity and pressure
are plotted in extremely fine scale .10�7/. The velocity still keeps exactly the same as the initialized
one, and there is no oscillation at all. It shows that the present method can prevent the oscillation of
density and pressure across the interface.

Figure 8. Computational domain and the grids for bubble explosion under water.

Figure 9. Contours of density and pressure at t D 0:058.
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3.3. Bubble explosion under water

Initially, one circular fluid is surrounded by another fluid and is located at the center of the domain
with radius r0 as 0.2. The computational domain is .0; 1/�.0; 1/; and the unstructured grid is shown
in Figure 8. The primitive variables of two fluids have been given,

.�; u; v; p; �; �/ D

´
.1:241; 0; 0; 2:753; 1:4; 0/�

0:991; 0; 0; 3:059 � 10�4; 5:5; 1:505
� (40)

The two fluids are at rest initially, and there is a jump of the density and pressure across the
interface. The results at t D 0:058 are shown in Figure 9. When the bubble explodes under the
water, there are an outgoing shock wave in the water and an incoming rarefaction wave in the water.
It can be easily observed that the contours of density and pressure by our method are captured

Figure 10. Density profile along vertical centerline for bubble explosion under water.

Figure 11. Pressure profile along vertical centerline for bubble explosion under water.
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symmetrically and better than those in the work of Shyue [4]. Besides, the profiles along y D 0:5 are
also plotted in Figures 10 and 11. They show that the present results agree well with the reference
result and there is no pressure oscillation on the interface.

3.4. Shock–interface interaction inside the cylindrical vessel

The purpose of this case is to demonstrate the ability of the current method in dealing with relatively
complex geometry (e.g., a rigid cylindrical vessel). The vessel is filled with air and helium. Initially,
two gases are separated by a planer interface [24]. Air is on the left side and helium on the other
side. The material interface is located at x D 0. The vessel is then impulsively driven in the x
direction causing a curved shock along the left portion of the boundary and a rarefaction to form
along the right portion of the boundary. For the convenience of computation, the vessel is fixed, and
two gases move with an initial uniform velocity. The reflective boundary condition is employed at
the boundary. The unstructured grid is employed. The reflective boundary condition is employed at
the boundary. The initial conditions are as follows:

.�; u; v; p; �; �/ D

´
.1;�1; 0; 1; 1:4; 0/

.0:138;�1; 0; 1; 1:67; 0/
(41)

Firstly, a semi-circular shock wave is formed at the left side and begins to move to the right.
A rarefaction is formed at the right boundary and moves to the left. Afterwards, the shock wave
continues moving to the right and interacts with the interface. At t D 0:5, a diverging shock is
formed as shown in Figure 12(b). The right-going shock wave also makes the interface move to the
right at the same time. The right-going shock wave will reflect back when it arrives at the boundary
of the vessel. As shown in Figure 12(c), the reflected shock wave interacts with the interface again

Figure 12. Density contour for shock-interface interaction at different time.
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and travels into the air. The Richtmyer–Meshkov instability is finally formed around the interface.
As shown in Figure 12(d), these tiny structures are clearly captured by the present higher-order
WENO method.

4. CONCLUSION

In this article, an improved WENO method based on unstructured grid for the compressible
multi-fluid flows is presented. The third-order accuracy WENO finite volume method based on
unstructured grid is used to discretize compressible Euler equation. Usually, matrix inversion has
to be numerically solved to obtain the linear weights for WENO. This procedure takes too much
computational cost and is easy to blow up when the grid deforms greatly. In our improved method,
the inverse matrix of coefficient is analytically calculated instead of the numerical calculation. It
makes the present method more robust than the original one. But the extension to higher order
(more than three) is not straightforward because the inversion of the matrix cannot be analytically
expressed. Four different cases are used to examine the performance of our method. They are vor-
tex evolution problem, advection of a gas–gas interface problem, bubble explosion under water, and
shock–interface interaction inside the cylindrical vessel. Numerical results show that there is no spu-
rious oscillation of velocity and pressure across the interface and three-order accurate result can be
achieved. The extension to 3D on tetrahedral grids is still in progress and will be reported in another
paper.
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