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Abstract Anewwell test model for a vertical fracturedwell
is developed based on a discrete-fracture model in which the
fractures are discretized as one dimensional (1-D) entities.
The model overcomes the weakness of complex meshing,
a large number of grids, and instability in conventional
stripe-fracture models. Then, the discrete-fracture model is
implemented using a hybrid element finite-element method.
Triangular elements are used for matrix and line elements for
the fractures. The finite element formulation is validated by
comparing with the semi-analytical solution of a single ver-
tical fractured well. The accuracy of the approach is shown
through several examples with different fracture apertures,
fracture conductivity, and fracture amount. Results from the
discrete-fracturemodel agree reasonablywellwith the stripe-
fracture model and the analytic solutions. The advantages
of the discrete-fracture model are presented in mesh gen-
eration, computational improvement, and abilities to handle
complex fractures like wedge-shaped fractures and fractures
with branches. Analytical results show that the number of
grids in the discrete-fracture model is 10% less than stripe-
fracture model, and computational efficiency increases by
about 50%. The more fractures there are, the more the com-
putational efficiency increases.
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1 Introduction

As an important technology in the development of a low
permeability reservoir, artificial fracturing technology has
been widely used in oil fields, especially the development of
unconventional gas like shale gas, coal-bedmethane and tight
gas, etc. There is no natural productivity in unconventional
gas after drilling because of the complex geological struc-
ture, dense reservoir, and low abundance of natural gas. This
kind of low permeability needs artificial fracturing to obtain
industrial oil and gas flow. Fractures generated by fracturing
extend into the formation and provides the flow channel for
oil and gas. Complex fractures around the wellbore have a
significant effect on the fluid flow in formation. The analy-
sis of the flow in porous media can be used to estimate the
fracturing measures, so as to guide development of the shale
gas, coal-bed methane, and tight gas.

Since the 1960s, significant progress has been made
towards understanding and modeling of flow processed in
a fractured well. In 1972, Gringarten et al. [1] established
a model of infinitely conducting fractures and uniform flux
fractures with a hypothetical zero-radius well. Later, Cinco-
Ley et al. [2] extended the Greens functions approach of
Gringarten et al. to consider the more realistic cases of
finite conductivity vertical fractures. The concept of fracture
description developed by Gringarten, Ramey, and Cinco-
Ley was applied in many other models with fractures like
multi-fractured horizontal wells [3], partially penetrating
fractures [4], and so on.

The analytical or semi-analytical approach solutions can
be obtained only if the system under consideration is simple.
Analytical solutions consider: (1) the reservoir is homoge-
neous, (2) the fracture has uniform aperture and conductivity,
and (3) the well is crossed by only one fracture. The aim of
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the numerical method [5–10] is to conveniently overcome
the limitations of the analytic methods. However, current
numerical methods meet another problem, which is the two
different length scales when it overcomes the limitations of
analytic methods. Usually, the fracture is presented by a rec-
tangle and discretized as the same as a matrix [11], which is
called the stripe-fracture model. The large number of grids
is required even if the aperture of the fracture is the smallest
mesh scale. Another problem caused by the scale differ-
ence is the instability and divergence [12]. Although the
equivalent seepage resistance method [13], which enlarges
the aperture and reduces the permeability under the con-
ditions of the same fracture flux and can be used, it is
limited by the formation coefficient, fracture permeability
and many other factors. The equivalent seepage resistance
method can cause errors and not be used in complex fracture
cases.

The discrete-fracture method is a new type of technology
to describe fracture. In this method, fractures are discretized
as one dimensional (1-D) entities, and theflow in the fractures
is only along the direction of fractures, so the number of grids
decreases and the instability and divergence are eliminated.
Furthermore, Noorishad and Mehran [14] were among the
early authors to use 1-D entities to represent fractures. Then,
many authors used this method for the reservoir simulation
from a single phase flow to a two-phase flow [15–19]. No
work can be found in the literature applying the discrete-
fracture model to a well test. Many authors [20,21] validate
the discrete-fracturemodel by comparing the recovery curves
and water saturation contours with the stripe-fracture model.
However, the sensitivity of these variables is low. It has
to be examined whether the discrete-fracture model can be
used in well tests when the pressure derivative is so sensi-
tive.

In this paper, a numerical well test model based on the
discrete-fracture method is developed. The discrete-fracture
model is implemented using a hybrid element finite-element
method. Triangular elements are used for matrix and line
elements for the fractures. The finite element formulation is
validated by comparingwith the semi-analytical solution of a
single vertical fractured well. The accuracy of the approach
is shown through several examples with different fracture
apertures, fracture conductivity, and fracture amount. The
advantages of the discrete-fracture model are presented in
mesh generation, computational improvement, and ability to
handle complex fractures like wedge-shaped fractures and
fractures with branches.

2 Statement of the problem

The transient pressure behavior for a fractured well can be
studied by analyzing the solution of the differential equa-

w

Wellbore

Xf

h

Fig. 1 Finite conductivity vertical fracture model

tions that describe this phenomenon with proper initial and
boundary conditions. To simplify the derivation of mod-
els, the following assumptions are made. (1) An isotropic,
homogeneous, horizontal, slab reservoir is bounded by upper
and lower impermeable strata. The reservoir has uniform
thickness, h, permeability, Km, and porosity, φm, which
are independent of pressure. (2) The formation is produced
through a vertically fractured well. The wellbore is inter-
sected by a fully penetrating vertical fracture of permeability,
Kf, porosity, φf, aperture, w, and half-length, Xf. (3) The
porous medium contains a slightly compressible fluid of vis-
cosity, μ and compressibility Ct. The system above defined
is shown in Fig. 1.

3 Mathematical model

The main idea of the discrete-fracture model is a 1-D rep-
resentation of the fractures. The governing equations are
discretized in two dimensional (2-D) form for the matrix and
in 1-D form for the fractures. The idea is examined in Fig. 2.
The whole domain is represented by Ω , the matrix by Ωm,
and the fracture by Ωf.

Ωm(2-D) Ωm(2-D)

Ωf(2-D) Ωf(1-D)

a b

Fig. 2 Schematic representation of the discrete-fracture approxima-
tion. a Stripe-fracture model. b Discrete-fracture model
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Let FEQ represent the flow equations. According to
Fig. 2, the integral form of these equations for the strip-
fracture model can be written as
∫∫

Ω

FEQ dΩ =
∫∫

Ωm

FEQ dΩm +
∫∫

Ωf

FEQ dΩf. (1)

The same integral for the discrete-fracture model is written
as
∫∫

Ω

FEQ dΩ =
∫∫

Ωm

FEQ dΩm+w

∫
Ω f

FEQ dΩ f, (2)

where Ωf represents the fracture part of the domain as a 1-D
entity and w represents the aperture of fractures.

In the discrete-fracture model, it assumes that inside the
fracture, all variables remain constant in the lateral direction
that is ignoring the pressure gradient of the vertical direction.
The aperture w of fracture appears as an explicit factor in
front of the 1-D integral for the consistency of the integral
form. The control equation of the flow in fractures can be
simplified for the 1-D form.

The governing equations of this problem are obtained by
combining Darcy’s law and mass conservation based on the
discrete-fracture model description. For the matrix, the tran-
sient equation of pressure can be written as

Km

μ

∂2 pm
∂x2

+ Km

μ

∂2 pm
∂y2

= φmCt
∂pm
∂t

, (3)

where Km is the matrix permeability, μ is the fluid viscosity,
pm is matrix pore pressure, φm is the matrix porosity, and Ct

is the total compressibility.
For fractures, the transient equation of pressure based on

the discrete-fracture model can be written as

Kf

μ

∂2 pf
∂l2

= φfCt
∂pf
∂t

, (4)

where Kf is the fracture permeability, pf is the fracture pres-
sure, φf is the fracture porosity, and l is the local coordinate
of fractures, which is shown in Fig. 3.

pm = pi, pf = pi, (5)

x

y
Global axes

Fracture local axis l

Fig. 3 Sketch of fracture local axis. Initial conditions for this problem
are as follows

where pi is the initial formation pressure.
The constant production rate boundary conditions around

the wellbore are as follows

N∑
j=1

L jh
K

μ

∂p j

∂n

∣∣∣∣
Γi

= Bq + C
dpw
dt

, (6)

p j = pi, (7)

where L j is the matrix element edge on the wellbore, B is a
fluid volume factor, q is the production rate, pw is the bottom
hole pressure, and N is the number of edges on the wellbore.

Constant pressure at the reservoir outer boundary is given
by

p|Γo = pi, (8)

or no flow condition

∂p

∂n

∣∣∣∣
Γo

= 0. (9)

4 Numerical method

The geometry is discretized by triangular elements for the
matrix and line elements for the fractures, which is presented
in Fig. 4. Firstly, the node and triangle are numbered just like
normal mesh without fractures. Secondly, line elements for
fractures are marked separately.

We use the Galerkin weighted residual method and
finite-element discretization to solve Eqs. (3) and (4). The
variational form of these equations can be written as

Fig. 4 Discretization of the discrete-fracture media

123



A numerical approach for pressure transient analysis of a vertical well with complex fractures 643

∫∫
A

(
Km

μ

∂2 pem
∂x2

+ Km

μ

∂2 pem
∂y2

− φmCt
∂pem
∂t

)
δpem dA = 0,

(10)

and

∫
l

(
Kf

μ

∂2 pef
∂l2

− φfCt
∂pef
∂t

)
δpef dl = 0. (11)

The weak form of these variational equations can be written
as

∫∫
A

(
Km

μ

∂pem
∂x

∂δpem
∂x

+ Km

μ

∂pem
∂y

∂δpem
∂y

+ φmCt
∂pem
∂t

δpem

)
dA

=
∫
S

δpem
Km

μ

∂pem
∂n

dS,

(12)

and

∫
l

(
Kf

μ

∂pef
∂l

∂δpef
∂l

+ φfCt
∂pef
∂t

δpef

)
dl = δpef

Kf

μ

∂pef
∂l

∣∣∣∣
2

1
.

(13)

Right terms of Eqs. (12) and (13) can be offset between the
nearby elements by continuous conditions. The matrix ele-
ment pressure is approximated as

pem = Nmi p
e
mi + Nm j p

e
m j + Nmk p

e
mk, (14)

where pemi , p
e
m j , p

e
mk are the three node pressure, Nm is the

element interpolating function, which is written as

Nmi = ai + bi x + ci y. (15)

The time derivative terms are discretized by forward differ-
ence as follows

∂pem
∂t

= pe,n+1
m − pe,nm

�t
. (16)

Then, the matrix element equations are as follows

A

(
Km

μ
b2i + Km

μ
c2i + φmCt

6�t

)
pe,n+1
mi +

A

(
Km

μ
bib j + Km

μ
ci c j + φmCt

12�t

)
pe,n+1
m j +

A

(
Km

μ
bibk + Km

μ
ci ck + φmCt

12�t

)
pe,n+1
mk −

L

3

∂pe,n+1
mi

∂n
− L

6

∂pe,n+1
m( j,k)

∂n
=

φmCt

6�t
pe,nmi + φmCt

12�t
pe,nm j + φmCt

12�t
pe,nmk , (17)

where A =
∣∣∣∣∣∣
1 xi yi
1 x j y j
1 xk yk

∣∣∣∣∣∣, bi = − 1
2A

∣∣∣∣1 y j
1 yk

∣∣∣∣, ci =

1
2A

∣∣∣∣1 x j
1 xk

∣∣∣∣ (i, j, k), and xi , yi , x j , y j , xk, yk are the trian-

gle node coordinates.
The same operation is implemented for fracture line ele-

ments. The fracture pressure is approximated as

pef = Nfi p
e
fi + Nf j p

e
f j , (18)

where pefi , p
e
f j are the line element node pressure, Nf is the

interpolating function for linear line element given by

Nfi = l j − l

L
, Nf j = l − li

L
. (19)

Then, the fracture element equations are as follows

(
Kf

μ

1

L
+ φfCt

3�t

)
pe,n+1
fi +

(
−Kf

μ

1

L
+ φfCt

3�t

)
pe,n+1
f j

= φfCt

3�t
pe,nfi + φfCt

3�t
pe,nf j ,

(20)

where L = |li − l j | is the line element length.
The wellbore boundary condition is given by

N∑
j=1

L jh
K

μ

∂pn+1
j

∂n

∣∣∣∣
�i

+ pn+1
w

�t
= Bq + C

pnw
�t

. (21)

The fracture matrix system is superimposed on the matrix
due to the original non-fracture formulation. This concept is
illustrated in Fig. 5. The large-scale sparse linear equations
are solved by the open source library SuperLU [22].
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Fig. 5 Schematic illustrating combining matrix and fracture element
equation

123



644 Y. Wan et al.

5 Results and discussion

5.1 Validation of the model

5.1.1 Single fracture case

Firstly, we compare the solutions of this paper with Cinco-
Ley’s semi-analytical solutions. The results of these sim-
ulations are presented in Fig. 6 in the form of a log–log
plot of the dimensionless bottom hole pressure pwD =
2πKm/(qμB)(pi − pw) versus tDf = Kmt/(φmμCtX2

f )

for different values of dimensionless fracture conductivity
FCD = (Kfw)/(KmXf). In Fig. 6 solutions are presented for
four values of FCD : 0.2π,π, 10π, 100π. The solutions of
the discrete-fracture model are in excellent agreement with
the solutions of Cinco-Ley et al., which means the procedure
for the discrete-fracture model is correct. Although, in the
particular case of FCD = 0.2π, the discrete-fracture results
differ from the semi-analytical solutions for tDf < 0.01, this
departure is due to the effect of the finite value of rw, which
is used in the discrete-fracture model, but not in the semi-
analytical solutions.

The nature of the discrete-fracture model is to ignore
the changes of variables in the lateral direction. Inside the
fractures, the flow is one-dimensional. Therefore, this simpli-
fication would not cause a large error if the fracture aperture
w is small. The applicability in the case of large w needs
evaluation.Comparisonbetween the solutions of thediscrete-
fracture model and the stripe-fracture model is proposed. We
consider a single fracture with aperture of 0.001 and 0.05m
cross thewell. Other reservoir conditions and parameters are:
initial pressure is 50MPa with circle no-flow boundaries, the
matrix permeability is 10×10−3 μm2; porosity is 0.1, viscos-
ity is 1mPa · s, volume factor is 1m3/m3, production rate is
50 m3/d, wellbore storage factor is 0.001m3/MPa, and

CD

Fig. 6 Log–log plot of pwD vs tDf for various of FCD: comparison of
the discrete-fracture model and the semi-analytical results

fracture half-length is 10m. The comparison of the two
numerical methods is summarized in Fig. 7 for different
FCD.

Figure 7a and c is the log–log plot of dimensionless bot-
tom hole pressure pwD and pressure derivative p′

wD vs tDf for
various values of w. Figure 7b and d is the pressure distri-
bution along the fracture. As can be seen from Fig. 7, there
is a very good agreement between the results of the discrete-
fracture model and the stripe-fracture model, even though
the fracture aperture is 0.05m which is much larger than the
value in reality.

Table 1 presents the maximum relative deviation of all
the time points for different values of FCD. The largest rela-
tive deviation is less than 2%. The relative deviation of the
discrete-fracture model gets larger with the increase of frac-
ture aperture and conductivity.

5.1.2 Multi-fracture case

In order to further verify the applicability of the discrete-
fracture model, the cases of two, three, four, and six half
rotational symmetry fractures are simulated by the discrete-
fracture model and the stripe-fracture model. The fracture
aperture is 0.001m and other parameters are the same with
the single fracture case. The meshes of the two models are
presented in Fig. 8.

Results of the stripe-fracture model and the discrete-
fracture model are shown in Fig. 9. There is also a good
agreement between the discrete-fracture model and the
stripe-fracture model in multi-fracture cases.

Comparison of pressure contours is presented in Fig. 10.
As can be seen, the results of the discrete-fracture model are
in excellent agreement with the stripe-fracture model. The
tiny difference is in fractures. Contour lines of the discrete-
fracture model are sharper because fractures in the discrete-
fracture model have no geometry thickness.

From the above analysis, the results of the discrete-
fracture model are in excellent agreement with the analytical
solutions andnumerical solutions of the stripe-fracturemodel
for single and multiple fractures. This shows that the imple-
mentation of discrete-fracture model, the solution method,
and the numerical algorithms employed are fundamentally
sound.

5.2 Evaluation of the model

5.2.1 Preprocessing

Fractures in the discrete-fracture model are discretized as
linear line elements. The fractures have no thickness in geom-
etry, so there is no requirement to draw the rectangle for
fracture just like the stripe-fracture model. Geometry model-
ing and mesh generation are easier especially for intersected
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Fig. 7 (Color online) Comparisons between the results for the discrete-fracture model and the stripe-fracture model. a Log–log plot of�p and�p′
vs t for w = 0.001m. b p along fracture for w = 0.001m. c Log–log plot of �p and �p′ vs t for w = 0.05m. d p along fracture for w = 0.05m

Table 1 Relative deviation between the results from the discrete-fracture model and the stripe-fracture model

w (m) FCD = 0.1 (%) FCD = 1 (%) FCD = 10 (%) FCD = 100 (%)

0.001 0.223 0.694 0.342 1.03

0.05 0.226 1.020 0.712 1.65

Fig. 8 Mesh of multiple-fracture case for the stripe-fracture model
(left) and discrete-fracture (right) model

fractures case, which is presented in Fig. 11. The discrete-
fracture model can also do simulation at various values of
w without regenerating meshes, because the aperture w of

the fracture appears as an input factor in the governing
equations.

5.2.2 Computational performance

Computational efficiency is closely related to the number
of mesh nodes. Compared to the stripe-fracture model, the
number of mesh nodes in the discrete-fracture model is less
because of 1-D discretization for fractures. Table 2 presents
the number of meshes and the computational efficiency for
the stripe-fracture model and the discrete-fracture model. As
canbe seen, the number ofmeshnodes in the discrete-fracture
model can be reduced by 10%–20%, and the computational
efficiency can be increased by 50%. The improvement will
enhance with the increase of fracture number.
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Fig. 9 (Color online) Log–log plot of �p and �p′ vs t for various
numbers of fractures

5.2.3 Complex fractures

(1) Non-uniform aperture

It is customarily assumed that the fractures have uniform
aperture. However, it is conceivable that fracture aperture
changeswith the distance from thewellbore.w is the function
of fracture position, which is written as

w = f (l). (22)

Fig. 10 (Color online) Pressure contours for the stripe-fracture model
(up) and the discrete-fracture model (down) at t = 0.01h, t = 0.1h,
and t = 1h (from left to right)

Fig. 11 Meshes of the stripe-fracture model (left) and the discrete-
fracture model (right) for intersected fractures

A wedge-shaped fracture is the representation of non-
uniform aperture fracture. It is presented in Fig. 12. The
aperture of fracture in the end of the wellbore is w0, and the
half-length is l0. The fracture aperture function is given by

w = w0

l0
(l0 − l). (23)

For this kind of complex fracture, the customary simulation
method is to construct the geometry model according to the
actual shape of fracture and generate meshes. It is complex
and causes grid deformity. In contrast, there is no need to re-
generate meshes for the discrete-fracture model. The simple
way is to input the aperture functions f (l) of the fractures.

We also compare the results of the wedge-shaped frac-
tures from the discrete-fracture model and the stripe-fracture
model. It is presented in Fig. 13. As can be seen from this
figure, there is an excellent agreement between the results
of the two kinds of models. The discrete-fracture model is
more flexible and convenient for wedge-shaped fractures.
For other shape fractures, it is just needed to set the specific
form of Eq. (22). The advantages of the discrete-fracture
model are more prominent for complex fractures. It can be
applied in multi-fractured horizontal wells and many other
situations.

(2) Fractures with branches

The position and angle of the fractures generated by the
complicated process of hydraulic fracturing is randomly scat-
tered. Another case of complex fractures is the one with
branch fractures, which is presented in Fig. 14. Besides the
bi-wing fractures directly connected with the wellbore, there
are branch fractures connected with bi-wing fractures. As
can be seen, branch fractures are mainly horizontal and ver-
tical and some branch fractures are intersecting with each
other. We assume that the conductivity of branch fractures is
smaller than the bi-wing fractures.

The discrete-fracture model is very suitable for the sim-
ulation of this complicated situation due to the advantages
presented in Sect. 5.2. The mesh of this case is presented in
Fig. 15,which is very easy to generate because of the appli-
cation of the discrete-fracture model.

Figure 16 shows the propaganda of pressure from 0.01 to
10h. As can be seen from this figure, pressure firstly spreads
through the bi-wing fractures, which are directly connected
with the wellbore. Then, pressure drop occurs in the branch
fractures. The speed of pressure expansion in the bi-wing
fractures is faster than in the branch fractures, which can be
explained by the fact that the conductivity of bi-wing frac-
tures is larger. When expanded to all the fractures, pressure
propagates homogeneously in the formation.

Discrete-fracture model is a powerful tool to model the
flow problem related to fractures like the multiple fractured
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Table 2 Relative deviation between the results from the discrete-fracture model and the stripe-fracture model

Fracture number Model Node number Node reduce percent (%) computational time (s) Efficiency increasing (%)

3 Stripe-fracture 23596 9.87 231 13.85

Discrete-fracture 21268 199

4 Stripe-fracture 28234 24.41 532 52.26

Discrete-fracture 21341 254

6 Stripe-fracture 29596 10.47 573 47.29

Discrete-fracture 26496 302

w0
l

l0

Fig. 12 Sketch of the wedge-shaped fracture

Fig. 13 (Color online) Log–log plot of �p and �p′ vs t for wedge-
shaped fractures

Wellbore

Bi-wing fracture
Branch fracture

Branch fracture

Fig. 14 The schematic diagram of fractures with branches

horizontal wells, which are the most important development
for shale gas and tight gas. If the information of hydraulic
fractures is obtained from logging or microseismic tech-
nology, an accurate simulation can be performed by the
discrete-fracture model.

Fig. 15 Mesh in the case of fractures with branches

Fig. 16 (Color online) Pressure field of fractures with branches

6 Concluding remarks

Anumerical method for a complex fracture well is developed
based on the discrete-fracture model in which the matrix
is discretized by triangles and fractures are discretized by
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line elements. The model is solved by the hybrid elements
finite-element method. The finite-element method allows for
an explicit and accurate representation of the fractures. This
numerical method provides a powerful tool to study the sin-
gle flow in media with complex fractures. The accuracy of
the approach is demonstrated through several examples with
various values of fracture aperture, fracture conductivity, and
fracture amount. Results of the discrete-fracture model agree
very well with the stripe-fracture model and the analytical
solutions.

The discrete-fracture-fracture approachhas several advan-
tages. The preprocessing is simple and does not require
gridding inside the fractures, which avoids small 2-D ele-
ments inside the fractures. It improves the conditioning of the
discrete operator. The number of meshes in discrete-fracture
model is 10% less than the stripe-fracture model, and com-
putational efficiency increases by about 50% in the multiple
fractures case. It is more powerful for the complex fractures
problems, like the non-uniform aperture fractures and the
fractures with branches.

All these results correspond to 2-D configuration. How-
ever, concepts of the discrete-fracture model can be extended
to three dimensional (3-D), and it is under way.
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