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This paper presents a dissipative particle dynamics (DPDs) method for investigating the
movement and deformation of biconcave shape red blood cells (RBCs) with the worm-like
chain (WLC) bead spring. First, the stretching of a RBC is modeled and the obtained
shape evolution of the cell agrees well with experimental results. Second, the movement
and deformation of a RBC in shear flows are investigated and three typical modes (tum-
bling, intermittent and tank-treading) are observed. Lastly, an illustrating example of
multi-RBCs in Poiseuille flow in a tube is simulated. We conclude that the presented
DPD method with WLC spring can effectively model the movement and deformation of
bioconcave cells.
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1. Introduction

The study of the movement and deformation of single cells in blood vessels is impor-
tant for understanding mechanical properties of cells. The changes in mechanical
properties of cells may be closely related to severe cell diseases. In cancer, the
changes may be due to internal factors such as genetic mutation. For example, in
malaria, the changes are probably due to external factors such as parasites and
bioactive lipids [Hosseini et al. (2008)]. These changes are often promoted by the
altering in the mechanical behaviors of living cells. Modern physiology and medicine
have established the relationship of mechanical changes between healthy and patho-
logical cells. For instance, diseased cells such as cancer cells are known to have
different stiffness and elasticity compared to their healthy counterparts [Lee and
Lim (2007)]. Such differences could be used to distinguish normal cells from dis-
eased cells [Hou et al. (2009); Bathe et al. (2002)]. Recently, increased micro-fluidic
devices were designed to diagnose and treat cells disease such as cancer as differ-
ent cells can have different mechanical properties [Suresh (2007)]. It is therefore an
important step to uderstand how cells move and deform respond to specific physical
loads, and further infer mechanical properties of cells.

Continuum cell models are earlier and most commonly used approaches to model
the mechanical dynamics of cells. Continuum models treat the cell as continuum
material. Generally, continuum models can be classified into solid models and liquid
drop models. The solid models usually assume the whole cell to be homogeneous
without considering the distinct cortical layer. Practices show that solid models can
usually achieve equilibrium with certain amount of load. For instance, even when the
suction pressure greatly exceeds the critical suction pressure, endothelial cells and
chondrocytes are unable to flow into the pipette [Jones et al. (1999)]. Another kind
of continuum cell models is liquid drop models. By treating the cell as a liquid drop,
liquid drop models can be used to model large cell deformations. The Newtonian
liquid drop model was developed by Yeung and Evans [1989], and it can model large
cell deformations well only when the progress is slow. In order to consider the effects
of the nucleus on cell deformation, the compound drop model was developed, which
assumed the nucleus to be an encapsulated liquid drop [Hochmuth et al. (1993)].
Compare with above-mentioned Newtonian liquid drop, the compound drop model
can effectively explain the rapid initial response in micro-pipette aspiration and
fast recoil on recovery [Tran-Son-Tay et al. (1998)]. Recently, Leong et al. [2011]
presented a modified compound drop model, which can take account of stiffness,
elasticity, and viscosity of both the cortex and the nucleus to model breast cancer
cell entry into a constricted micro-channel. The modeled cell entry behavior agrees
with experimental observations.

The continuum cell models are easy to implement and straightforward to use in
computing the mechanical properties of the cells if the biomechanical response at
the cell level is needed. However, they provide less insight into the detailed molecular
mechanical events. For this reason, more accurate micro- and nanostructural models
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were developed. The red blood cell (RBC) membrane is composed of a lipid bilayer
and an attached cytoskeleton. The cytoskeleton consists primarily of spectrin pro-
teins, which form the network by linking short actin filaments. Discher et al. [1998]
and Li et al. [2005] developed the spectrin-level RBC model. The spectrin-level
model corresponds to an effective spectrin network where each spring represents a
single spectrin tetramer. The RBC is represented by a network of springs in combi-
nation with bending rigidity and constraints for surface-area and volume conserva-
tion. The spectrin-level RBC model was successfully validated against experimental
data of the mechanical response of an individual cell. However, it involves limited
degrees of freedom and application of the model in flow simulations requires pro-
hibitively expensive computations. For this reason, Pivkin and Karniadakis [2008]
developed a coarse-grained model based on the spectrin-level RBC model using
mean-field theory and then applied it to dissipative particle dynamic (DPD) sim-
ulations in capillaries of 10µm in diameter while the blood velocity is typically
about 1 mm/s. The RBC was found to deform under certain flow conditions and,
after some transition period, assumed the parachute-type shape, which is commonly
observed in experiments [Tomaiuolo et al. (2007)]. A more rigorous and systematic
procedure to derive coarse-grained RBC models was present by Fedosov et al. [2010].
The RBC is modeled by DPD particles and captures the elastic response at both
small and large deformations. In addition, they also developed a stress-free model
which avoids a number of pitfalls of existing RBC models, such as non-smooth or
poorly controlled equilibrium shape and dependence of the mechanical properties
on the initial triangulation quality. Fedosov et al. [2011] also extended this model
to model adhesive dynamics of RBCs in Malaria.

In this work, the DPD are used to model movement and deformations of bicon-
cave shape RBCs. Methodology of DPD and cell model are respectively described
in Secs. 2 and 3. After then, the simulations and results of biconcave cells are pre-
sented and analyzed in Sec. 4, including RBC stretching, RBC in shear flow and
multi-RBCs in Poiseuille flow in a tube. The paper concludes in Sec. 5 with some
remarks.

2. Dissipative Particle Dynamics Methodology

In the present work, we construct cell model using DPD method. DPD is a relatively
new mesoscale technique that can be used to simulate the behavior of fluids [Hooger-
brugge and Koelman (1992)]. In our DPD system, there are four types of particles,
namely, wall particles, external fluid particles, membrane particles and internal fluid
particles. The forces between particles are assumed to be pair-wise additive. The
motion of DPD particles is governed by Newton’s equations of motion. For a simple
DPD particle i, we have the following governing equations:

dri

dt
= vi,

dvi

dt
= f ext

i +
N∑

j �=i

fij , (1)
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where ri and vi denote the position and velocity of particle i. The masses of DPD
particles mi are usually taken to be the same as unity and fij denotes the total force
between particles i and j. fext

i is the external force, such as the gravity. The inter-
particle force fij consists of three parts, namely conservative force FC

ij , dissipative
force FD

ij and random force FR
ij ,

fij = FC
ij + FD

ij + FR
ij . (2)

The conservative force describes the thermodynamic behavior of the DPD sys-
tem, and can be derived form a pair potential that acts between particles i and j as

FC
ij =

{
aij(1 − rij/rc)r̂ij rij < rc,

0 rij ≥ rc,
(3)

where aij is the repulsion parameter between particles i and j, and it represents
the strength of the collision; rij = ri − rj represents the relative position between
particle i and particle j; rij = |rij |, r̂ij = rij/rij is the unit vector directed from
the mass center of particle j to i; and rc is the cut-off radius. Equation (3) indicates
that the conservative force is repulsive over a limited radius rc only and acts in
the direction of the r̂ij vector. The dissipative force describes the viscous effects
of the DPD system and it acts like a viscous damper by reducing the relative
velocity between DPD particles. The random force represents the thermal motion
of unresolved scales, such as the molecules inside each particle. The dissipative force
and random force are written as

FD
ij = −γwD(rij)(r̂ij · vij)r̂ij , FR

ij = σwR(rij)ξij r̂ij , (4)

where γ and σ are two coefficients which represent the amplitude of the dissipative
and random force. wD(rij) and wR(rij) are two weight functions which describe the
variation of the friction coefficient and the noise amplitude with distance. vij(=
vi − vj) represents the relative velocities between particle i and particle j. ξij is
a random variable with Gaussian statistics. For correct isothermal balance, the
coefficients (γ and σ) and the weight functions (wD and wR) must satisfy two
requirements [Espaol and Warren (1995)]

γ =
σ2

2kBT
, wD(r) = [wR(r)]2, (5)

where kB is the Boltzmann constant and T is the absolute temperature. There are
different forms of wD(r) and wR(r), one simple, straightforward and commonly used
choice is

wD(r) = [wR(r)]2 =

{
(1 − r/rd)s r < rd,

0 r ≥ rd,
(6)

where rd is the cut-off distance for the dissipative and random forces and it may
not be different from rc, which is the cut-off distance for conservative force. The
choice of rd affects the number of pairs of interacting particles and the computation

1641003-4

In
t. 

J.
 C

om
pu

t. 
M

et
ho

ds
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 F

L
IN

D
E

R
S 

U
N

IV
E

R
SI

T
Y

 L
IB

R
A

R
Y

 o
n 

01
/1

2/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

January 7, 2016 16:44 WSPC/0219-8762 196-IJCM 1641003

DPD Simulation of the Movement and Deformation of Bioconcave Cells

cost. The choice of s can affects the strength of dissipative force between particles
to influence viscosity and Schmidt number. In conventional DPD formulation, the
choices are s = 2 and rc = rd = 1.

3. Cell Model

3.1. Cell membrane model

A biological cell may be regarded as a capsule enclosed by a semipermeable mem-
brane and containing an internal fluid. The membrane of the cell may strongly con-
serve area and volume of the cell, and exhibits viscoelastic characteristics [Pozrikidis
(2003)]. In this section, we employ the DPD particles and worm-like chain (WLC)
spring model to construct the cell membrane. Figure 1 illustrates the sketch of cell
membrane. The cell membrane is represented by a network of particles (beads)
connected by WLC springs in DPD system, and surrounded by separate fluids.
Similar to fluid particles that can be thought of as small regions of fluid; the mem-
brane beads can be thought of as a patch of cell membrane consisting of number
of monomeric units. The membrane beads exchange momentum with each other
according to the spring force and DPD interactions. Hydrodynamic and thermody-
namic interactions between the cell membrane and solvent then emerge naturally
in these simulations.

Specifically, the cell membrane structure is defined by a two-dimensional tri-
angular network on the surface. Each link of triangular network is modeled by
nonlinear WLC spring model. The force between membrane particles includes the
elastic and viscous parts. The elastic part is characterized by an energy potential,
given by

f elastic
i = −∂U({ri})

∂ri
, U({ri}) = Uin-plane + Ubending + Uarea + Uvolume. (7)

Fig. 1. Cell membrane represented by a network of springs linked DPD particles.
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The in-plane energy term Uin-plane indicates the elastic energy stored in the mem-
brane, and it is assumed to have the form as follows [Marko and Siggia (1995)]

Uin-plane =
∑

i∈1···Ns

(
kBT lmax

i

4pi

3x2
i − 2x3

i

1 − xi
+

ki

xi

)
, (8)

where Ns is the number of chains; xi = li/lmax
i ∈ (0, 1), li and lmax

i are the current
and maximum length of spring i; pi is the persistence length; and kk is the power
force coefficient. The first term in parentheses of Eq. (8) is derived from nonlinear
WLC spring model. Taking into account dissipative forces of DPD, the first term in
parentheses of Eq. (8) defines the contribution of viscoelastic springs. It should be
note that WLC springs exert purely attractive forces, thus they produce a triangular
area compression. While the second term in parentheses of Eq. (8), which provides
triangular area expansion, contains a hydrostatic elastic energy of the triangular
membrane patches. The minimum energy state of a single triangle corresponds to
an equilibrium spring length l0, which depends on the spring parameters and ki. The
relationship between the equilibrium length and these parameters can be determined
by minimizing potential energy, or by setting the Cauchy stress obtained from the
virial theorem to zero.

The bending energy term Ubending in Eq. (7), represents the bending resistance
of the lipid bilayer, and is assumed as follows [Fedosov et al. (2010)]:

Ubending =
∑

i∈1···Ns

kb[1 − cos(θi − θ0
i )], (9)

where kb is the bending constant; θi is the instantaneous angle between two adjacent
triangles having a common edge, and θ0

i is the spontaneous angle.
The area and volume restraint energy term Uarea and Uvolume are to constraint

membrane surface area and cell volume conservation, respectively. The area and
volume conservation restraint are given by [Fedosov et al. (2010)]:

Uarea =
kglobal

a (Atot − A0
tot)

2

2A0
tot

+
∑

i∈1···Nt

klocal
a (Ai − A0

i )
2

2A0
i

, (10)

Uvolume =
kv(Vtot − V 0

tot)2

2V 0
tot

, (11)

where kglobal
a and klocal

a are the global and local area restraint constant; Atot and
A0

tot are the current and desired areas of the cell membrane; Ai and A0
i are the

current and desired areas of the ith triangle; kv is the volume restraint constant;
Vtot and V 0

tot are the current and desired global volume of the cell. The conservations
of area and volume are achieved by increasing the global and local area restraint
constant and volume restraint constant.

A biological cell membrane is known to be viscoelastic. Although the dissipative
part in DPD model contributes to the membrane viscosity, its contribution is insuf-
ficient for a regular dissipative coefficient γij . To incorporate viscous dissipation of
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the lipid bilayer into the cell membrane properly, we follow the general framework of
the fluid particle model [Fedosov et al. (2010); Espaol (1998)] to define an additional
dissipative force FD,vis

ij for each spring as

FD,vis
ij = −γTvij − γC(vij · r̂ij)r̂ij , (12)

where γT and γC are dissipative parameters, vij is the relative velocity of two beads
of one spring. To balance the temperature of the cell membrane via a fluctuation-
dissipation theorem, an additional random force FR,vis

ij must added to each spring

FR,vis
ij =

√
2kBT (

√
2γTdWS

ij +
1
3

√
3γC − γTtr[dWij ]I)r̂ij , (13)

where I is the unit second-order tensor, tr[dWij ] is the trace of a random matrix
of independent Wiener increments dWij , and dWS

ij = WS
ij − tr[dWS

ij ]I/3 is the
traceless symmetric part. The general fluid particle model not only provides the
enough membrane viscosity but also ensures the momentum conservation.

3.2. Parameters determination

Before simulation, we must determinate several parameters in the membrane net-
work model. In order to connect the above-described cell model to the macroscopic
properties of cell, a relationship between macroscopic elastic properties (shear, area-
compression and Young’s moduli) of the network and model parameters has to be
derived. Linear analysis [Dao et al. (2006)] for a regular hexagonal network on
the cell membrane was applied to obtain its linear macroscopic properties with
respect to the selected network parameters. The membrane shear modulus is given
by [Fedosov et al. (2010)]

µ0 =
√

3kBT

4pili,0

(
x0

2(1 − x0)3
− 1

4(1 − x0)2
+

1
4

)
+

2
√

3kp

4l3i,0
, x0 = lj,0/lmax

j , (14)

where the subscript “0” refers to the stress-free state. The corresponding linear-
elastic area-compression moduli K and Young’s moduli Y are given as

K = 2µ0 + kglobal
a + klocal

a , Y =
4Kµ0

K + µ0
. (15)

Equating the macroscopic bending energy of the Helfrich model [Helfrich (1973)]
and the bending energy of the network model Ubending, yields that the macroscopic
bending rigidity EB of the Helfrich model can be expressed in terms of the bending
coefficient kb of Eq. (9) as [Fedosov et al. (2010)]

EB =
2√
3
kb. (16)

To simplify the general framework of the fluid particle model, γT was setted as 3γC

in Eqs. (12) and (13). The viscosity of cell membrane is therefore dependent on the
dissipative part of DPD model and the additional viscous part

µm =
√

3γT +
√

3γC

4
. (17)
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3.3. Scaling of model and physical units

DPD simulations are conventionally performed in nondimensionalized or reduced
units, based on the characteristic physical dimensions of the system. In present
paper, the characteristic scale for length, energy unit and time [Fedosov et al.
(2010)] is

λ =
DP

DM
, ε =

Y P

Y M

(
λ

[m]

)2

(kBT )P, τ =
(

DP

DM

ηP

ηM

Y M

Y P

)α

, (18)

where the superscript “M” and “P” indicate “model” and “physics”, respectively.
D denote the cell diameter, Y denote Young’s modulus and η is viscosity.

4. Simulations and Results

In this section, single RBC is first studied by DPD simulations. Simulations include
RBC stretching and RBC in shear flow. Then, the simulation of multi-RBCs in
Poiseuille flow in a tube is presented.

4.1. Stretching of a single RBC

An RBC has a biconcave shape. All healthy mammalian RBCs unstressed shapes
are disc-shaped (discocyte) [Diez-Silva et al. (2010)]. The biconcave discocyte RBC
has a flexible membrane with a high surface-to-volume ratio that facilitates large
reversible elastic deformation of the RBC as it repeatedly passes through small
capillaries during microcirculation. RBC deformability is critical for circulation,
which is necessary for RBCs squeezing through capillaries with smaller diameters
than itself to deliver oxygen to various parts of the body. Pathological conditions
affecting RBCs can lead to significant alterations to the discocyte shape due to
the intracellular structural changes. The pathological RBCs are too stiff to deform
sufficiently to traverse narrow capillaries. Instead they may disrupt the blood flow
and block the capillaries, possibly leading to anemia and can even causing death.

Here, we perform RBC stretching simulations and compare the results with the
experiment results. The unstressed RBC is assumed that its diameter D0 = 7.8 µm,
the Young’s modulus Y0 = 18.9 µN/m, the bending rigidity EB = 2.4× 10−19J and
the viscosity of membrane ηm = 0.02 Pa · s. In DPD simulation, parameters of cell

Before Stretch

D0

After Stretch
DA

DT

Fig. 2. Shapes of RBC before and after stretching.
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−8 −4 0 4 8
−4

0

4

force = 0 pN
−8 −4 0 4 8

−4

0

4

force = 40 pN
−8 −4 0 4 8

−4

0

4

force = 80 pN

−8 −4 0 4 8
−4

0

4

force = 120 pN
−8 −4 0 4 8

−4

0

4

force = 160 pN
−8 −4 0 4 8

−4

0

4

force = 200 pN

Fig. 3. RBC shape evolution at different stretch force.

model are taken as follows: DM
0 = 8.06, µM

0 = 100, kglobal
a = 4,900, klocal

a = 100
and kv = 5,000. Figure 2 shows the shapes of RBC before and after stretching. The
total stretching force is in the range of 0 ∼ 200 pN, and is applied to the outermost
20% beads (drawn as small ball in Fig. 2).

Figure 3 shows final shapes after deformation under different stretching force.
RBCs subjected to stretching are rotated in y–z plane as observed in our simula-
tions, and therefore measurements from a single observation angle may result in
under-prediction of the maximum transverse diameter. With the increase of the
stretching force, it is more and more difficult to elongate longer for RBC. There
is no obvious difference between the RBC’s final shapes at the stretching force of
160 pN and 200 pN, while the earliest stretching force of 40 pN caused significant
deformation.

Figure 4 shows the stretching response of RBC at different stretching force.
The experimental results [Suresh et al. (2005)] and the spectrin-level RBC models
results [Dao et al. (2006)] are also included in Fig. 4. We find that we obtained
similar results with those of Fedosov et al. [2010]. Our simulation results make
an excellent agreement of the experimental results. The simulation results remain
within the experimental error bars.

4.2. Movement and deformation of a single RBC in shear flows

Next, we perform RBC in shear flow simulations and compare the results with the
experiment results. In our simulations, a RBC is suspended in a solvent and placed
between two parallel walls moving with constant velocities in opposite direction.
Experimental observations [Abkarian et al. (2007); Fischer (2004, 2007); Tran-Son-
Tay et al. (1984)] of RBC dynamics in shear flow show RBC tumbling at low shear
rates and tank-treading at high shear rates. Figure 5 shows snapshots of RBC in
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10
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DT

DA

force (pN)

di
am

et
er

(µ
m

)

Experiment

Spectrin-level, Dao et al.

DPD & WLC, Nv = 500

Fig. 4. Computational results of RBC stretching compared with the experiments and the specrin-
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Fig. 5. Snapshots of RBC in different shear rate flow.
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different shear rate flow from our simulations. Results of our simulations show RBC
tumbling at shear rate γ̇ = 10 s−1, tank-treading at shear rate γ̇ = 100 s−1, and
tumbling-to-tank-treading transition at shear rate γ̇ = 30 s−1. The results show a
negligible deformation during tumbling behavior, small shape deformations during
tank-treading right after the transition, and significant shape deformations during
tumbling-to-tank-treading transition.

Figure 6 shows RBC tumbling and tank-treading frequencies for different simu-
lation setups versus shear rates in comparison with the experiments [Tran-Son-Tay
et al. (1984)]. Computational results show a good agreement with the experimental
results. From Fig. 6, we can see that according to the slope the profile of DPD sim-
ulation can be further divided into three distinct portions, namely tumbling region
at low shear rate, intermittent region at medium shear rate and tank-treading at
height shear rate. The profile of DPD is linear at each of three regions. It indicates
that the frequencies of RBC increase linearly with the increase of shear rate. The
intermittent region is very narrow and it is not convenient to observe in the exper-
iment. Similar results for the intermittent region were reported in simulations of
viscoelastic vesicles by Kessler et al. [2008].

4.3. Movement and deformation of multiple RBCs in a tube

Based on the properly simulations of a single RBC with accurate mechanics, rhe-
ology and dynamics, more complicated situations can further be simulated. One of
those situations is blood flow. Figure 7 shows a DPD simulation of multi-RBCs in
Poiseuille flow in a tube. The tube is modeling by two stationary parallel solid flat
plates. The computational domain is 120 in length and has a square cross section
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Fig. 6. Computational results of RBC in shear flow compared with the experiments.
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Fig. 7. A snapshot of multi-RBCs in Poiseuille flow in a tube. Fluid particles and wall particles
have been omitted.

area of 15× 15. A total number of 109192 DPD particles are used, including 71344
fluid particles and 60 RBCs placed in the planar slit and 21600 wall particles located
in three layers parallel to the x–y plane in each side. The periodic boundary con-
ditions are applied to fluid boundaries in the x and y directions. On the surface of
solid walls, we applied Maxwellian reflection boundary conditions to yield the no
slip boundary condition [Revenga et al. (1999)]. The flow is driven by a uniform
body force per unit mass applied to both fluid and RBC particles in the x direction.

As an initial condition, RBCs were placed regularly within the tube. After the
flow was turned on, the simulations were achieve steady state by enough time. Then,
many properties of blood flow can be quantitatively calculated.

5. Conclusion

In this work, we use DPD method and WLC bead spring to model the move-
ment and deformation of bioconcave cells and the DPD model can describe Young’s
modulus, bending rigidity, and viscosity of the cell membrane. The cell membrane
is represented by a network of DPD particles connected by WLC springs.

Single biconcave discocyte RBC is simulated, including RBC stretching, RBC
in shear flows. For RBC stretching, Cells’ final shape and maximum transverse
diameter are measured quantitatively. For RBC in shear flows, tumbling and tank-
treading frequencies are obtained from simulations. The simulation results of both
RBC stretching and RBC in shear flows agree with experimental observations. After
then, multi-RBCs in Poiseuille flow in a tube are also simulated. From the testing
examples, it can be concluded that the presented DPD method with WLC spring
can effectively model the movement and deformation of single RBC and multi-RBCs
in different flow situations.
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