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a b s t r a c t 

The accurate monotonicity-preserving (MP) scheme of Suresh and Huynh (1997) [5] is a high-order and 

high-resolution method for hyperbolic conservation laws. However, the robustness of the MP scheme is 

not very high. In this paper, a detailed analysis on this scheme is performed, and two potential causes 

which may account for the weak robustness are revealed. Furthermore, in order to enhance the robust- 

ness of the MP scheme, an improved version of the MP scheme is presented, in which a strict continuous 

total-variation-diminishing (TVD) numerical flux is used at a disturbed discontinuity so that oscillations 

cannot grow indefinitely without violating the TVD condition. Without destroying the very high resolu- 

tion property, numerical tests show that the improved scheme shares a strong robustness in simulating 

extreme numerical tests. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

As is well known, flows involving multi-scales and disconti-

uities occur widely in many natural phenomena and engineer-

ng applications [1,2] . In terms of simulating the flows, numerical

chemes must be high-order accurate in smooth regions to resolve

he multi-scales, and essentially oscillation-free near discontinu-

ties to capture features such as shock waves. Consequently, the

evelopment of high-order shock-capturing schemes is of impor-

ance. 

Van Leer [3] first showed that it is beneficial to strive for

chemes with a high order of accuracy while capturing shock

aves in an essentially oscillation-free manner. By using piece-

ise linear interpolation, coupled with a limiting strategy to con-

rol oscillations at discontinuities, he designed a second-order

onotonicity-preserving version of the Godunov scheme. Later,

olella and Woodward [4] developed the piecewise parabolic

ethod (PPM), which employs a four-point centered stencil to de-

ne the numerical flux; this numerical flux is then limited to

ontrol oscillations. Following this limiting approach, Suresh and

uynh [5] proposed the accurate monotonicity-preserving (MP)
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cheme. In the MP scheme, starting with a primary numerical flux

alculated by any high-order scheme, the following two procedures

re executed: (1) calculate a local interval, which is designed by

nlarging the first-order monotonicity-preserving interval derived

n [5] , and (2) maintain/replace the primary numerical flux accord-

ng to the relation between the primary numerical flux and this

ocal interval: (i) if the primary numerical flux lies in this local

nterval, it is maintained, and (ii) if the primary numerical flux

s beyond this local interval, it is replaced by the nearest bound

f this local interval. The key feature of the MP scheme is that

his local interval is designed to have the following property—it is

ery large in smooth regions so that it contains the primary nu-

erical flux, and automatically degenerates to the monotonicity-

reserving interval at discontinuities. That is to say, this local in-

erval will enlarge for non-monotonic data in order to achieve the

ccuracy-preserving property, and automatically degenerates to the

onotonicity-preserving interval for monotonic data. Due to this

roperty, the total variation of the numerical solution in the MP

cheme is allowed to increase only for non-monotonic data, and

iminish for monotonic data [6] . 

The recent development of the MP scheme mainly focuses

n the problem of calculating the primary numerical flux. In

he original paper, the fifth-order upwind scheme is adopted [5] .

ater, some other schemes are tested, such as the fifth-order

ompact upwind scheme [7] or center schemes with controllable

http://dx.doi.org/10.1016/j.compfluid.2016.09.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
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artificial dissipation [8,9] . Balsara and Shu [10] even adopt a high-

order weighted essentially non-oscillatory (WENO) scheme to ob-

tain the primary numerical flux, yielding high-order monotonicity-

preserving WENO schemes. Daru and Tenaud [6] reinterpreted the

local interval in MP schemes as TVD-like conditions, and applied

these conditions to a one-step scheme. 

The MP scheme shows high-resolution for multi-scale problems.

Therefore, it is widely adopted in practical applications [11,12] .

However, the robustness of the MP scheme is not very high, com-

pared with the popular WENO methods [13] . In this paper, we per-

form a detailed analysis of the MP scheme, trying to reveal the

potential causes which may account for the weak robustness of

the MP scheme. Furthermore, in order to enhance the robustness

of the MP scheme, a simple modification is proposed to suppress

the numerical oscillations more efficiently and/or to prevent the

appearance of numerical oscillations as possible. Numerical tests

show that the improved MP scheme shows a more strong robust-

ness. 

2. Method 

2.1. Framework 

Consider the following one-dimensional linear advection equa-

tion 

∂u 

∂t 
+ 

∂ f (u ) 

∂x 
= 0 (1)

with constant advection speed, i.e. df 
du 

= a . Without loss of gener-

ality, assume that a ≥ 0. Eq. (1) is discretized in a uniform grid

defined by the points x i = i �x, i = 1 , · · · , N, with cell boundaries

given by x i +1 / 2 = x i + 

�x 
2 , where �x is the uniform grid spacing.

The spatial discretization is obtained by implicitly defining the nu-

merical flux function h ( x ) as 

f (x ) = 

1 

�x 

∫ x + �x 
2 

x − �x 
2 

h (ξ ) d ξ , (2)

such that the spatial derivative in Eq. (1) is exactly approximated

by a conservative finite difference formula at the cell boundaries,

d u i (t) 

d t 
= −h i +1 / 2 − h i −1 / 2 

�x 
, (3)

where h 
i ± 1 

2 
= h (x 

i ± 1 
2 
) , and u i ( t ) is a numerical approximation to

the point value u ( x i , t ). In practice, Eq. (3) is approximated as 

d u i (t) 

d t 
≈ −

̂ f i +1 / 2 − ̂ f i −1 / 2 

�x 
, (4)

where numerical fluxes ̂ f 
i ± 1 

2 
, reconstructed from known cell av-

erage values f i , are approximations of h 
i ± 1 

2 
. Then Eq. (4) can be

marched by one time step or substep of TVD Runge–Kutta schemes

[14] : 

u 

n +1 
i 

≈ u 

n 
i −

�t 

�x 

(̂ f n i +1 / 2 − ̂ f n i −1 / 2 

)
, (5)

where �t is the time step, u n +1 
i 

the numerical approximation to

the point value u ( x i , t ) at time level t n +1 , and 

̂ f n 
i ± 1 

2 

is the numerical

flux at time level t n (the superscript n in 

̂ f n 
i ± 1 

2 

is omitted for brevity

hereafter). 

2.2. The accurate monotonicity-preserving (MP) scheme 

When the MP scheme [5] is used to calculate the numerical flux̂ f i +1 / 2 in Eq. (5) , it is implemented as follows. 
.2.1. Some notations used in the MP scheme 

First of all, we introduce some definitions used in the accurate

onotonicity-preserving (MP) scheme. The first one is the minmod

unction for q arguments [15] : 

inmod (z 1 , z 2 , · · · z q ) := s · min (| z 1 | , | z 2 | , · · · , | z q | ) , (6)

here 

 = 

1 

2 

(sgn (z 1 ) + sgn (z 2 )) 

∣∣∣1 

2 

(sgn (z 1 ) 

+ sgn (z 3 )) · · · 1 

2 

(sgn (z 1 ) + sgn (z q )) 

∣∣∣, 
nd sgn ( z ) is a function that returns the sign of the argument z .

he second one is the definition of an interval [15] : 

[ z 1 , z 2 , · · · , z q ] := [ min (z 1 , z 2 , · · · , z q ) , max (z 1 , z 2 , · · · , z q )] . (7)

he third one is the definition of the local curvature d MM 

i +1 / 2 
[5] : 

 

MM 

i +1 / 2 := minmod (d i , d i +1 ) (8)

here d i = f i +1 + f i −1 − 2 f i . 

.2.2. Review of the MP scheme 

First, obtain the primary numerical flux ̂ f o 
i +1 / 2 

using a high-

rder scheme. In the original paper of the MP scheme [5] , the fol-

owing fifth-order upwind scheme (U5) 

̂ f o i +1 / 2 = 

2 f i −2 − 13 f i −1 + 47 f i + 27 f i +1 − 3 f i +2 

60 

(9)

s used. Then, the primary numerical flux ̂ f o 
i +1 / 2 

is maintained or

eplaced according to the following limiting procedures. 

First, in order to achieve the monotonicity-preserving property:

I) ̂ f o 
i +1 / 2 

should lie between f i and f i +1 . (II) u n +1 
i 

should lie be-

ween u i −1 and u i , which merely ensures that ̂ f o 
i +1 / 2 

lies between

 i and f UL , where 

f UL = f i + κ( f i − f i −1 ) , (10)

nd κ ≥ 2 [5] . Combining the two assumptions, a first-order

onotonicity-preserving interval I [ f i , f MP ], which is just the inter-

ection of I[ f i , f i +1 ] and I [ f i , f 
UL ], is derived, where 

f MP = f i + minmod ( f i +1 − f i , κ( f i − f i −1 )) . (11)

However, to bring ̂ f o 
i +1 / 2 

into the interval I [ f i , f 
MP ] will result in

egeneration to first order near an extremum. In order to avoid

his drawback, Suresh and Huynh [5] proposed the idea of enlarg-

ng the intervals defined above to avoid the loss of accuracy. Based

n the parabolic interpolation, I[ f i , f i +1 ] and I [ f i , f 
UL ] were enlarged

o I[ f i , f i +1 , f 
MD ] and I [ f i , f 

UL , f LC ], respectively, where 

f MD = 

1 

2 

( f i + f i +1 ) −
1 

2 

d MM 

i +1 / 2 , (12)

f LC = f i + 

1 

2 

( f i − f i −1 ) + 

4 

3 

d MM 

i −1 / 2 , (13)

r [6] 

f LC = 

1 

2 

( f i + f UL ) + 

κ

2 

d MM 

i −1 / 2 . 13 

′ 

oreover, it has been proven that I[ f i , f i +1 , f 
MD ] and I [ f i , f UL , f LC ]

ill enlarge only for non-monotonic numerical data, and will au-

omatically degenerate to I[ f i , f i +1 ] and I [ f i , f 
UL ] for monotonic nu-

erical data [5,6] . However, in practice it is recommended to re-

lace d MM 

i +1 / 2 
with a more restrictive but heuristic measure of the

ocal curvature d M4 
i +1 / 2 

[5] 

 

M4 
i +1 / 2 = minmod (d i , d i +1 , 4 d i − d i +1 , 4 d i +1 − d i ) . (14)
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Finally, the local interval I [ f min , f max ], which is just the intersec-

ion of I[ f i , f i +1 , f 
MD ] and I [ f i , f 

UL , f LC ], is obtained, where 

f min = max ( min ( f i , f i +1 , f 
MD ) , min ( f i , f 

UL , f LC )) , (15) 

f max = min ( max ( f i , f i +1 , f 
MD ) , max ( f i , f 

UL , f LC )) . (16) 

f the primary numerical flux is outside this interval, it is re-

laced by the nearest bound of the interval. That is, the accurate

onotonicity-preserving (MP) schemes reads as ̂ f i +1 / 2 = 

̂ f o i +1 / 2 + minmod ( f max − ̂ f o i +1 / 2 , f 
min − ̂ f o i +1 / 2 ) . (17) 

. Comments on the accurate monotonicity-preserving scheme 

In practice, we often use the MP scheme to solve nonlinear

roblems. However, compared with the popular WENO methods

13] , the robustness of the MP scheme is not very high. In this sec-

ion, we try to investigate the potential causes. 

.1. Comment I: suppress numerical oscillations at disturbed 

iscontinuities 

When solving nonlinear problems, we encounter various nu-

erical oscillations, and some of which are unavoidable [16] . At

iscontinuities, there are, say, overshoot/undershoot oscillations

Gibbs phenomenon) and post-shock oscillations [16] . These oscil-

ations (spurious waves) have non-monotonic appearances in phys-

cal space. Therefore, I[ f i , f i +1 , f 
MD ] and I [ f i , f UL , f LC ] will become

arger. 

To illustrate this condition more clearly, consider the following

umerical data u (x ; x 0 ) = u 0 (x ; x 0 ) + u dis (x ; x 0 ) , in which the dis-

urbance u dis ( x ; x 0 ) is defined as 

 dis (x ; x 0 ) = A · sin 

(
2 π(x − x 0 ) 

b 1 �x 

)
· exp 

(
−ln (2) 

(
x − x 0 
b 2 �x 

)2 
)

, 

(18) 

here b 1 �x is the dominant wavelength and b 2 �x the half-width

f the Gaussian function. The parameters A, b 1 and b 2 are directly

onnected to the spectral contents of the disturbance [17] . For this

ase, we set x 0 = 0 , A = 0 . 2 , b 1 = 8 and b 2 = 3 . This disturbance is

haracterized by wavenumbers in the range 0 < k �x < π /2 with

 peak for k �x = π/ 4 , i.e., for eight points per wavelength [17] .

urthermore, in order to model a discontinuity, we set u 0 as 

 0 (x ; x 0 ) = tanh (σ (x − x 0 )) (19) 

ith σ = 50 . Fig. 1 (a) shows the profiles of u ( x ; x 0 ) over the [ −1 , 1]

omain with 101 grid points. From Fig. 1 (a), we can see that the

onotonicity of the discontinuity u 0 is destroyed due to the ap-

earance of the disturbance u dis . 

In order to detect whether I [ f min , f max ] enlarges, we define an

ndicator � at i + 1 / 2 as follows: 

= 

{
1 , if ( f max − f min ) > ( f max 

0 
− f min 

0 ) 
0 , else 

(20) 

here f min 
0 

= min ( f i , f 
MP ) and f max 

0 
= max ( f i , f 

MP ) . If I [ f min , f max ]

ecomes larger, � = 1 ; otherwise, � = 0 . Fig. 1 (b) shows the pro-

les of � at cell boundaries x i +1 / 2 within the domain [ −0 . 4 , 0 . 4] .

rom Fig. 1 (b), we can clearly see that the two intervals

[ f i , f i +1 , f 
MD ] and I [ f i , f 

UL , f LC ] do become larger due to the appear-

nce of the disturbance. 

The final step in the MP scheme ( Eq. (17) ) means that if the

rimary numerical flux ̂ f o 
i +1 / 2 

does not lie in I [ f min , f max ], it will be

eplaced by f min or f max , depending on which is closer to ̂ f o 
i +1 / 2 

.

hat is to say, the MP scheme suppresses these numerical oscilla-

ions by using two sub-scheme: f min or f max . 
Therefore, due to the enlargement of I [ f min , f max ], the MP

cheme will provide much room for the growth of “oscillations”

hen the discontinuity is disturbed. However, this is not a desired

roperty when we solve nonlinear problems; oscillations at dis-

ontinuities are best to be damped for sake of robustness of the

ode. 

.2. Comment II: numerical oscillations introduced by hybridization 

Furthermore, when the primary numerical flux ̂ f o 
i +1 / 2 

is re-

laced by f min (for the f max , the condition is the same), the value

f f min is abruptly chosen according to one of five sub-schemes: f i ,

f i +1 , f 
MD , f UL , and f LC . That is to say, the final numerical flux ̂ f i +1 / 2 

ay become a hybrid scheme between f i , f i +1 , f MD , f UL , and f LC .

owever, it has already been found that, in hybrid schemes, some

purious waves may be generated at interfaces where one sub-

cheme is switched abruptly to another sub-scheme [18] . These

purious waves could eventually propagate into the smooth regions

18] . 

emark 1. In fact, if the high-order method used in the MP

cheme to obtain 

̂ f o 
i +1 / 2 

does not have sufficient dissipation, par-

sitic physical solutions may be obtained. In smooth regions, it is

ell known that any finite difference scheme on a specific grid

as a range of wavenumbers that can be well resolved. Waves

ith higher wavenumbers that are beyond this range will disperse,

ausing dispersive errors [19] . Furthermore, the energy of waves

f higher wavenumbers that cannot be represented on the grid is

liased onto the resolved wavenumbers, resulting in aliasing errors

20] . Because the primary numerical flux is maintained in smooth

egions, these spurious waves will continually parasitize the phys-

cal solutions. 

. An improved accurate monotonicity-preserving scheme 

In the last section, we have tried to investigate the potential

auses for the weak robustness of the MP scheme. In this section,

e will give specific strategies to suppress the numerical oscilla-

ions more efficiently and/or to prevent the appearance of numer-

cal oscillations as possible. 

.1. A simple modification 

Note that oscillations always add to the total variation. There-

ore, oscillations cannot grow indefinitely without violating the

VD condition. That is to say, if we enforce the TVD constraint,

he size of the oscillations must eventually decrease. 

When I [ f min , f max ] becomes larger at a disturbed disconti-

uity, we use the following TVD numerical flux on the stencil

 x i −1 , x i , x i +1 ] , 

̂ f i +1 / 2 = f i + 

1 

φc 
φi +1 / 2 (r i +1 / 2 )( f i +1 − f i ) , (21) 

here r i +1 / 2 = 

f i − f i −1 

f i +1 − f i 
, the flux limiter φi +1 / 2 (r i +1 / 2 ) is a function of

 i +1 / 2 , and φc is a positive constant, typically 2 [21] . Furthermore,

he flux limiter φi +1 / 2 (r i +1 / 2 ) satisfies the classical TVD constraints

22] 

 ≤ φi +1 / 2 ≤ φc , (22) 

 ≤ φi +1 / 2 ≤ φc r i +1 / 2 

1 − ν

ν
. (23) 

here ν = a �t 
�x 

is the CFL number. That is to say, Eq. (21) with any

ux limiter that satisfies the constraints ( Eqs. (22) and (23) ) is a

VD numerical flux. 
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Fig. 1. Profiles of: (a) u ( x ; x 0 ) over the [ −1 , 1] domain with 101 grid points; (b) � at cell boundaries x i +1 / 2 within the domain [ −0 . 4 , 0 . 4] . 
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The logic behind the introduction of Eq. (21) is as follows. First,

it has shown that Eq. (21) with the constraints ( Eqs. (22) and

(23) ) is identical to the monotonicity-preserving interval derived

in MP schemes [6] . Therefore, the use of with any limiter (satisfies

Eq. (22) and Eq. (23) ) meets the monotonicity-preserving interval

derived in the MP scheme. Second, it is well known that the flux

limiter is usually set to zero for negative values of r . Therefore, the

TVD numerical flux ( Eq. (21) ) will reduce to the first-order mono-

tonic scheme. Due to this property, the oscillation (which exhibits

itself as local extrema) at discontinuities will be damped. 

Furthermore, in calculating the TVD numerical flux ( Eq. (21) ),

one needs a specific flux limiter. As discussed in Section 3.2 , some

spurious waves might be generated by the abrupt transition in a

hybrid scheme. A continuous (smooth is better) transition from

one sub-scheme to another is suggested [23] . To be specific, the

hybrid scheme is suggested to be designed as some continuous

weighted average of sub-schemes [23] . Since the aim of this paper

is to suppress numerical oscillations more efficiently and/or to pre-

vent the appearance of numerical oscillations as possible, we fol-

low this suggestion to reduce numerical oscillations by hybridiza-

tion as possible. Therefore, the van Leer limiter [24] : 

φi +1 / 2 (r i +1 / 2 ) = 

r i +1 / 2 + 

∣∣r i +1 / 2 

∣∣
1 + 

∣∣r i +1 / 2 

∣∣ , (24)

is adopted, where r i +1 / 2 = 

� f i −1 / 2 

� f i +1 / 2 
, � f i −1 / 2 = f i − f i −1 and

� f i +1 / 2 = f i +1 − f i . 

4.2. The improved version of the MP scheme 

The advantage of the interval I [ f min , f max ] is that, it becomes

larger near local extrema in a smooth region. Therefore, it provides

room so that the primary numerical flux ̂ f o 
i +1 / 2 

will lie in the in-

terval and will be maintained. Thus the accuracy is preserved near

local extrema in smooth regions. 

Considering this property of I [ f min , f max ] and the discussions in

Section 4.1 , we can propose an improved accurate MP scheme as

follows. If the primary numerical flux ̂ f o 
i +1 / 2 

does not lie in the in-

terval I [ f min , f max ], the TVD numerical flux ( Eq. (21) with the lim-

iter (24) is considered. If ̂ f o 
i +1 / 2 

lies in I [ f min , f max ], the accuracy

should be preserved due to the use of a high-order scheme to ob-

tain 

̂ f o 
i +1 / 2 

. This mechanism can be achieved by the following spe-
ific procedures 

̂ f i +1 / 2 = 

̂ f o 
i +1 / 2 

+ ̂

 f Re 
i +1 / 2 

2 

− sgn 

((̂ f o i +1 / 2 − f min 
)

·
(̂ f o i +1 / 2 − f max 

))
×

̂ f o 
i +1 / 2 

− ̂ f Re 
i +1 / 2 

2 

, (25)

here ̂ f Re 
i +1 / 2 = f i + 

sgn (� f i −1 / 2 ) + sgn (� f i +1 / 2 ) 

2 

×
∣∣� f i −1 / 2 

∣∣∣∣� f i +1 / 2 

∣∣∣∣� f i −1 / 2 

∣∣ + 

∣∣� f i +1 / 2 

∣∣ + ε
, (26)

nd ε = 10 −40 . The improved accurate monotonicity-preserving

cheme is referred to as MP-R. 

emark 2. Dissipative schemes, which can damp various spurious

aves in smooth regions, should be used. With this strategy, spu-

ious waves are eliminated while accuracy is still high-order if the

rimary numerical flux is not further limited. However, a quanti-

ative criterion to determine a sufficient dissipation has not been

stablished so far [19] , although there are some heuristic choices.

ome researches use center schemes with artificially controllable

issipation [8,9] . However, it is not certain to what extent the dis-

ipations of these schemes are proper. It is more common to use

pwind schemes, such as the fifth-order upwind scheme ( Eq. (9) )

r the following fifth-order upwind compact scheme [7] 

̂ f o i +1 / 2 = 

−24 ̂

 f i −1 / 2 + 3 f i −1 + 47 f i + 11 f i +1 − f i +2 

36 

. (27)

n this paper, we continue to use the fifth-order upwind scheme

hat was used in the original MP scheme. 

. Numerical tests 

Several numerical tests in one- and two-dimensional spaces

ere performed. In the rest of this paper, MP5-R refers to the

fth-order improved MP scheme; MP5 refers to the fifth-order MP

cheme [5] ; “WENO5” refers to the fifth-order WENO scheme [13] .

or the linear case, the governing equation is 

 t + u x = 0 . (28)

or 1D nonlinear cases, the governing equations are the 1D Euler

quations: 

 t + [ f(u) ] x = 0 , (29)
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Fig. 2. Advection of an initial profile with discontinuities over 10 periods ( t = 20 ) 

by MP5-R and MP5. (For interpretation of the references to color in this figure leg- 

end, the reader is referred to the web version of this article.) 

Fig. 3. Advection a disturbed initial profile over 10 periods ( t = 20 ) by MP5-R and 

MP5. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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here u and f are given in the following form: 

 = 

( 

ρ
ρu 

ρE 

) 

, f = 

⎛ ⎝ 

ρu 

ρu 

2 + p 

(ρE + p) u 

⎞ ⎠ . 

ere, ρ is the density, u is the velocity, E = ρe + 

u 2 

2 is the to-

al energy, e is the internal energy, and p is the pressure. In this

tudy, the ideal equation of state p = (γ − 1) ρe is used, where

is the ratio of the specific heats. If not mentioned otherwise,

= 1 . 4 . The 1D Euler equations are solved by following the gen-

ral characteristic-wise methodology [13,25] . Specifically, the Roe

pproximation is used for the characteristic decomposition at the

ell faces, and the Lax–Friedrichs flux splitting method [26,27] is

sed in each characteristic field. For two-dimensional cases, the

D Euler equations are solved in a dimension-by-dimension fash-

on. A third-order TVD Runge–Kutta scheme [14] is used for the

ime integration. Because κ in the left-sided upper limit f UL is

FL-dependent, and should be 1 −ν
ν , the value of κ is set to 4

5] which theoretically leads to a CFL number restriction ν ≤ 0.2

hile ν = 0 . 4 still yields non-oscillatory results [5] . Therefore, the

FL number is set to 0.4 for all computations. 

.1. Advection of an initial profile with discontinuities 

First of all, we consider the classical test case of the advection

f an initial profile composed of a Gaussian wave, a square wave,

 triangular wave and an ellipse [6] . This is a difficult test case

ecause it includes discontinuities as well as smooth portions of

urves and extrema [6] . Therefore, we use this case to show abil-

ties of the MP5-R scheme of accuracy-preserving and suppressing

he numerical oscillations more efficiently at discontinuities. 

The initial condition is defined on the domain [ −1 , 1] as: 

 (x, 0) = u 0 (x ) 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

exp 

(
−log (2)(x + 0 . 7) 2 / 0 . 0 0 09 

)
, if − 0 . 8 ≤ x ≤ −0 . 6 

1 , if − 0 . 4 ≤ x ≤ −0 . 2 

1 − | 10(x − 0 . 1) | , if 0 ≤ x ≤ 0 . 2 √ 

1 − 100(x − 0 . 5) 2 , if 0 ≤ x ≤ 0 . 2 

0 , otherwise 

nd periodic boundary conditions are prescribed. As done in [6] ,

e use uniform grid composed of 200 mesh-cells, and the solution

btained at t = 20 (10 periods) are shown in Fig. 2 . 

From Fig. 2 , it can be seen that the high-resolution property

f the MP5-R scheme are essentially the same as that of the MP5

cheme. In order to show the ability of the MP5-R scheme of sup-

ressing the numerical oscillations more efficiently at disturbed

iscontinuities, we add some disturbances (see Eq. (18) ) to the ini-

ial conditions : 

 (x, 0) = u 0 (x ) + u dis (x ;−0 . 4) − u dis (x ;−0 . 2) . 

rom Fig. 3 , we can see that there are obvious oscillations at dis-

urbed discontinuities. After this long time integration, the MP5

cheme still preserve the oscillations to some extent, which may

een clearly in Fig. 3 . In contrast, the MP5-R scheme has already

amped the oscillations at disturbed discontinuities. Therefore, we

an claim that the MP5-R scheme will suppress numerical oscilla-

ions more efficiently than the MP5 scheme when we solve non-

inear problems. 

.2. Resolution tests 

In this section, we use two typical tests: the shock density-wave

nteraction problem [26] and the double Mach reflection problem

28] , to show the high resolution property of the new method. 
.2.1. The shock density-wave interaction problem 

The initial conditions are set by a Mach 3 shock interacting with

 perturbed density field 

(ρ, u, p) = 

{
(3 . 857 , 2 . 629 , 10 . 333) , if 0 ≤ x ≤ 1 

(1 + 0 . 2 sin (5 x ) , 0 , 1) , if 1 ≤ x ≤ 10 

nd the final time is t = 1 . 8 . A zero-gradient boundary condition

s applied at x = 0 and x = 10 . Moreover, we shall refer to the so-

ution computed by the classical WENO5 scheme with 5001 grid

oints as the “reference” solution. 

Fig. 4 shows the calculated density profiles at t = 1 . 8 on a grid

ith 201 grid points. From Fig. 4 , we can see that a good agree-

ent with the reference solution is obtained for all schemes. How-

ver, the MP5-R scheme captures much more fine scale structures

f the solution than WENO5, particularly in the high-frequency

aves behind the shock. The results obtained by the MP5 scheme

re also plotted in Fig. 4 . It can be seen that the high-resolution

roperty of the MP5-R scheme is essentially the same as those of

he MP5 scheme. More importantly, we will show that the MP5-R

cheme further shows high robustness. 



6 Z. He et al. / Computers and Fluids 140 (2016) 1–10 

Fig. 4. Shock-density wave interaction on a 201 points grid: (a) density profiles obtained by MP5-R, MP5 and WENO5; (b) enlarged portion of (a). 

Fig. 5. Double-Mach reflection of a Mach 10 shock wave at t = 0 . 2 : 30 density contours from 1.88783 to 20.9144 obtained by (a) MP5-R; (b) MP5; (c) WENO5. 
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5.2.2. Double Mach reflection problem 

The computational domain is [0, 4] × [0, 1], and the reflect-

ing wall lies at the bottom of the computational domain for 1/6

≤ x ≤ 4. Initially a right-moving Mach 10 shock is positioned at

(x, y ) = (1 / 6 , 0) and makes a 60 ° angle with the x -axis. For the
ottom boundary, the exact post-shock conation is imposed for

he part from x = 0 to x = 1 / 6 , and a reflective boundary condi-

ion is used for the rest. At the top boundary, the flow values are

et to describe the exact motion of the Mach 10 shock. Inflow

nd outflow boundary conditions are used for the left and right
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Fig. 6. Close-up view of the “blow-up” region of: (a) Fig. 5 (a); (b) Fig. 5 (b); (c) Fig. 5 (c). 
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oundaries. The unshocked fluid has a density of 1.4 and a pres-

ure of 1. The problem was run till t = 0 . 2 , and the results for [0,

] × [0, 1] are displayed. 

Fig. 5 shows the density contours of the solution on a 961 ×
41 grid. Good agreement with the results at the same resolution

n Hu et al. [29] is observed. Note that while the WENO5 scheme

redicts a smeared slip line, the MP5-R scheme resolves much bet-

er the wave structures near the second triple point and predicts

 strong jet near the wall. As shown in the close-up views of the

blow-up” region ( Fig. 6 ), the MP5-R scheme does show a high res-

lution property. 

From Figs. 5 and 6 , we can also see that the resolution property

f the MP5-R scheme is essentially as high as that of MP5 scheme,

hile the MP5-R scheme will be shown to have a high robustness.

.3. Robustness tests 

In this section, we consider several challenging tests to show

he high robustness of the MP5-R scheme. Note that the original

P5 scheme cannot calculate these problems with the same codes

ue to the appearance of negative pressure. 

.3.1. One-dimensional problems involving very strong discontinuities 

We show that the MP5-R scheme passes two one-dimensional

est problems involving very strong discontinuities: the two-blast-

ave interaction problem, and the LeBlanc problem. The latter is

n extreme shock-tube problem. For the first problem, the initial
ondition is 

(ρ, u, p) = 

{ 

(1 , 0 , 10 0 0) , if 0 ≤ x ≤ 0 . 1 

(1 , 0 , 0 . 01) , if 0 . 1 ≤ x ≤ 0 . 9 

(1 , 0 , 100) , if 0 . 9 ≤ x ≤ 1 , 

 = 401 is used, and the final time is t = 0 . 038 . Reflective bound-

ry conditions are applied at both x = 0 and x = 1 . The “refer-

nce” solution is a high-resolution numerical solution on 4001 grid

oints calculated by the WENO5 scheme. For the second problem,

he initial condition is 

(ρ, u, p) = 

⎧ ⎨ ⎩ 

(
1 , 0 , 

2 

3 

× 10 

−1 
)
, if 0 ≤ x ≤ 3 (

10 

−3 , 0 , 2 
3 

× 10 

−10 
)
, if 3 ≤ x ≤ 9 , 

he ratio of specific heats γ = 5 / 3 , two grids of �x = 9 / 800 and

x = 9 / 3200 are used respectively, and the final time is t = 6 . 

Fig. 7 gives the computed pressure, density, and velocity distri-

utions. A good agreement with the exact solution is obtained for

he two-blast-wave interaction problem. However, due to the high

ensity ratio as well as a high pressure ratio in the LeBlanc prob-

em, an inaccurate numerical result (especially in the shock loca-

ion), even with a very fine grid, is obtained. This finding, in accor-

ance with the report [30] , but beyond the scope of preset paper,

eveals that [30] the Eulerian shock-capturing methods work very

nefficiently when applied to problems with an initial high density

atio as well as a high pressure ratio, and may give inaccurate nu-

erical results even over a very fine mesh. 
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Fig. 7. One-dimensional problems involving very strong discontinuities: (left) two-blast-wave problem; (right) LeBlanc shock-tube problem. 
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Fig. 8. Shock-bubble interaction problem at t = 0 . 075 : (upper) 33 pressure contours from 0.9 to 200; (lower) 33 density contours from 0.6 to 7.1. 
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.3.2. Shock-bubble interaction problem 

For this problem, a very strong shock wave (Mach 12) in air

mpacts on a cylindrical helium bubble. Air and helium are treated

s the same ideal gas fluid for simplicity. Numerical computations

or this problem can be found in Bagabir and Drikakis [31] . For this

roblem, the initial conditions are 

(ρ, u, v , p) = 

{ 

(1 , −6 , 0 , 1) , pre-shocked air 
(5 . 799 , 5 . 750 , 0 , 167 . 833) , post-shocked air 
(0 . 138 , −6 , 0 , 1) , helium bubble 

nd the final time is t = 0 . 075 . The computational domain for this

roblem is [0, 0] × [1, 0.5]. Initially, the shock wave is at x = 0 . 05 ,

nd the half helium bubble of radius 0.15 is at (0.25, 0). Note that a

rame velocity u = −6 is applied to keep the bubble approximately

n the center of the computational domain. Reflective conditions

re applied at the lower and upper boundaries, an outflow condi-

ion is applied at the right boundary, and an inflow condition is

pplied to the left boundary with the post-shocked state. 
Fig. 8 shows the pressure and density contours of the solu-

ion on a 201 × 101 grid. A good result is obtained by the MP5-R

cheme. The second reflected shock wave and triple-wave config-

rations are calculated with good resolution. It is confirmed again

hat the MP5-R scheme achieves a good compromise between res-

lution and robustness. 

.3.3. Two-dimensional Sedov problem 

Finally, we consider the challenging two-dimensional Sedov

roblem, which has been studied in Zhang and Shu [27] , to

emonstrate the high robustness of the MP5-R scheme. The com-

utation is performed on the domain [0, 0] × [1.1, 1.1]. For the

nitial condition, the density is 1, velocity is zero, total energy

s 10 −12 everywhere except that the energy in the lower left

orner cell is the constant 0 . 244816 
�x �y 

. A uniform grid with grid

pacing �x = �y = 

1 . 1 
320 is used, and the final time is t = 1 . A

eflective boundary condition is applied at the lower and left
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Fig. 9. Two-dimensional Sedov problem. t = 1 , �x = �y = 

1 . 1 
320 

: (left) Color contour of density; (right) Color contour of pressure. 
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boundaries, and an outflow condition is applied at the right and

upper boundaries. 

Fig. 9 gives the computed density and pressure contours. This

result further confirms our conclusions stated above. 

6. Conclusions 

In this paper, we performed a detailed analysis on the MP

scheme, to reveal the potential causes for the weak robustness

of the MP scheme. Based on this analysis, a simple modification

is proposed, resulting in a new version of the MP scheme. Com-

pared with the original MP scheme, the improved scheme shows

not only very high resolution property, but also very high robust-

ness. Therefore, the present scheme is suitable for direct numer-

ical simulation of multi-scale problems with discontinuities, such

as the shock wave-turbulent boundary layer interaction problem

or Richtmyer–Meshkov instability problem. 
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