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Abstract: 

Low-dimensional carbon allotropes, from fullerenes, carbon nanotubes, to graphene, 

have been broadly explored due to their outstanding and special properties. However, 

there exist significant challenges in retaining such properties of basic building blocks 

when scaling them up to three-dimensional materials and structures for many 

technological applications. Here we show theoretically the atomistic structure of a stable 

3-dimensional carbon honeycomb (C-honeycomb) structure with superb mechanical and 

thermal properties. A combination of sp2 bonding in the wall and sp3 bonding in the triple 

junction of C-honeycomb is the key to retain the stability of C-honeycomb. The specific 

strength could be the best in structural carbon materials, and this strength remains at a 
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high level but tunable with different cell sizes. C-honeycomb is also found to have a very 

high thermal conductivity, e.g. >100 W/mK along the axis of the hexagonal cell with a 

density only ~0.4 g/cm3. Due to the low density and high thermal conductivity, the 

specific thermal conductivity of C-honeycombs is larger than most engineering materials, 

including metals and high thermal conductivity semiconductors, as well as light-weight 

CNT arrays and graphene-based nanocomposites. Such high specific strength, high 

thermal conductivity, and anomalous Poisson’s effect in C-honeycomb render it 

appealing for the use in various engineering practices. 

Keywords: 

Carbon honeycomb, specific strength, thermal conductivity, sp3-bonding 
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Inspired by the extraordinary properties seen in low-dimensional carbon allotropes,  

such as carbon nanotubes and graphene, researchers are exploring ways to realize 

stable carbon structures of different kinds1. At the same time, it is desirable to use such 

low-dimensional carbon structures as building blocks to realize three-dimensional (3-D) 

engineering materials and structures which may inherit their superb properties. In reality, 

the scale-up leads to a substantial degradation of properties that we desire to retain. 

Mechanically, single-layer graphene2 is the strongest materials with an in-plane modulus 

of about 1 TPa and a tensile strength of 130 GPa3. The in-plane scale-up by chemically 

growing large-area polycrystalline graphene4 is indeed very successful: the strength of 

polycrystalline graphene may be as high as that of pristine graphene5. Even though 

different boundary structures and pre-existing defects may reduce the strength 

dramatically6-8, two-dimensional polycrystalline graphene may have a strength on the 

order of tens of GPa, a value significantly greater than for most existing engineering 

materials. However, the realized mechanical and thermal properties of 3-D carbon 

materials, by staggering graphene sheets or vertically grown carbon nanotube arrays, 

are significantly lower than those of individual graphene sheets or individual CNTs9: the 

strongest graphene paper reported in the literature has a strength 2~3 orders of 

magnitude lower than that of graphene10. Similarly, the thermal conductivity of a single 

carbon nanotube was reported to be more than 3000 W/mK11, while the best efforts on 

vertically grown carbon nanotube arrays for thermal interface materials resulted in a 

thermal conductivity of two orders of magnitude lower12. The huge gap in the thermal and 

mechanical properties between the low-dimensional carbon allotropes and their 3-D 

derivatives originates from the dissimilar bonding characteristics between carbon atoms 
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within graphene or CNTs and the architected 3-D engineering materials: The 

intra-structure bonding is covalent in nature, while van der Waals bonding dominates 

between different layers/tubes or with other materials1. Such heterogeneous bonding 

leads to property inheritance a mission impossible. 

The interest in finding 3-D carbon structures has been lasting for decades.13-21 

While the stability and phase transition of bulk carbon allotropes have widely 

explored,22-24 the stability of the hypothesized 3-D carbon structures remains an open 

question. Furthermore, the elastic constants of some of these hypothesized 3-D carbon 

structures were studied, but due to the connections among different graphene pieces, 

whether the exceptional properties, such as large strength and high thermal conductivity 

can be inherited by these structures is unclear. Recent success in the synthesis of 

carbon honeycomb (C-honeycomb)25 shows a great potential in scaling up the 

low-dimensional carbon allotropes to 3-D engineering materials and structures while 

retaining strong covalent bonding. Such a C-honeycomb structure may circumvent the 

change of bonding while using graphene as basic building blocks. The junctions that 

connect graphene layers to form honeycomb walls, as shown in Figure 1a, are hence 

crucial for the physical properties of C-honeycombs. 

These materials can find applications as conducting framework for electrodes in 

lithium ion batteries and fuel cells, supercapacitors, membranes for water treatment and 

reclamation, and so on. Krainyukova and Zubarev25 postulated that the C-honeycomb 

structure is made by connecting graphene nanoribbons along their zigzag edges and the 

carbon atoms in the junction line are uniformly distributed and each such carbon atom is 

connected with three neighbouring carbon atoms that belong to three graphene ribbons, 
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respectively, through sp2 bonding, as shown in the Supporting Information (Figure S1). 

However, there is no theoretical or experimental evidence to verify such an assumption. 

Furthermore, whether the C-honeycomb could successfully inherit the outstanding 

properties of two-dimensional single-layer graphene remains an open question. In this 

report, we employ first-principles density-functional theory (DFT) calculations to study 

the structural stability of the postulated C-honeycombs. We reveal a stable 

C-honeycomb structure where the junctions are indeed formed by sp3 bonding. Such a 

stable C-honeycomb structure exhibits the highest specific strength and thermal 

conductivity among all architected 3-D carbon materials that might find applications in 

ultra-light structural and multifunctional materials. 

First-principles DFT calculations are performed to determine the atomic structure 

of C-honeycomb using the Vienna Ab initio Simulation Package (VASP).26, 27 The 

projector augmented wave (PAW) pseudopotentials28 and the generalized gradient 

approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) functional29 are used. The 

C-honeycomb structures studied here are relaxed using a conjugate gradient (CG) 

algorithm until the atomic forces are converged to 1e-5 eV/Å and the total energy is 

minimized. To examine the stability, phonon dispersion of C-honeycomb structures is 

computed using Phonopy package30 and the ab initio molecular dynamics simulation are 

conducted. The parameters used in these simulations are documented in the Supporting 

Information section I (SI-1).  
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Figure 1. Stable C-honeycomb structure. (a) Atomistic structure of carbon honeycomb 
and the coordinate defined based on the honeycomb; (b) and (c) Local atomistic 
structure at the 5-5-8 junction of C-honeycomb cells viewed along the armchair direction 
and viewed along the zigzag direction, respectively, and (d) the electron density at the 
junction region (only one-third portion of junction is shown due to the symmetry); (e) The 
phonon dispersion of the stable C-honeycomb with cell size of 5.8 Å where all phonons 
have positive frequencies. (f) to (h) The 6-6-6 junction along armchair direction of 
graphene wall: (f) and (g) Local atomistic structure at the 6-6-6 junction of C-honeycomb; 
(h) The phonon dispersion of the stable C-honeycomb with cell size of 5.2 Å where all 
phonons have positive frequencies. 

 

Depending on whether the widths of graphene nanoribbons are identical or not, the 

C-honeycomb structure can be ordered with the same size of a and b, as shown in 

Figure 1a, or irregular with different size of a and b. For simplicity we focus on only the 

ordered C-honeycombs, where the cell sizes, a and b, are the same under an unstrained 

condition. Figure 1b and c show the zoom-in views of a fraction of a C-honeycomb, 
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including the junction region and three graphene nanoribbons. In what follows, we term a 

junction based on its minimum periodic defective structure. The junction in Fig. 1b is 

hence termed as 5-5-8 junction since it is composed of an array of defective units, and 

each containing two 5-rings and one 8-ring. As shown, the cell size, a (and b), can be 

tuned by changing the width of the graphene nanoribbons, with results in a 

C-honeycomb with a different density. We start with an unstrained C-honeycomb, whose 

cell sizes, a and b, are set to be 5.8 Å, with the postulated zigzag junction structure.25 

 Imaginary phonon frequencies shown in Figure S1d suggest that the 

C-honeycombs with such proposed junctions25 are mechanically unstable. The instability 

of structure shown in Figure S1a (termed 5-5 junction) can be understood by the nature 

of sp2 bonding, which tends to form a smooth structure, as those found in both graphene 

and carbon nanotubes. Here the graphene nanoribbon plane is perpendicular to the 

fragment consisting of the atom in the junction line and its neighboring atoms. Such a 

distortion from a planar structure destroys the parallel orientation of the constituent p 

orbitals. For the atoms in the junctions, they would prefer to form sp3 bonding with their 

neighbors for lower energy level. Such hybridized sp2/sp3 bonding may give rise to other 

stable two-dimensional structures as well.31 

To understand the stability of C-honeycomb structures, we also ran ab initio 

molecular dynamics simulations on the C-honeycombs with 5-5-8 junction and 5-5 

junction under constant temperature and volume ensemble at 300 K to observe the 

evolution of the carbon atoms. As expected, the 5-5-8 junction is stable but the 5-5 

junction structure cannot be maintained. Carbon atoms in the 5-5 junction deviate from 

their initial positions by moving closer to form pairs, which is the fundamental difference 

Page 7 of 24

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8 

between the unstable structure and the structure revealed from the simulation. The 

junction we observed here is essentially identical to the proposed “graphitic Y junctions” 

by Kawai et al.15 

As shown in Figure 1b and c, in the current structure, each carbon atom in the 

junction connects with four neighboring atoms, one in the junction line and the other 

three in the three neighboring graphene nanoribbons, indicating that carbon atoms have 

formed sp3 bonds in the 5-5-8 junction. The contour of the electron density is plotted in 

Figure 1d to further confirm the forming of bonds between two neighboring carbon atoms 

in the 5-5-8 junction line. In fact, the formation of sp3 bonding is quite similar to the phase 

transition from graphite to diamond when the interlayer graphite is compressed to such a 

short interatomic distance.  

The cohesive energy of the stable C-honeycomb is -7.768 eV/atom, 0.135 

eV/atom lower than that with purely sp2 bonding. While the cohesive energy of such a 

C-honeycomb structure is higher than that in graphene, we also note that the stability of 

the structure is not solely governed by the cohesive energy, as evident from the 

significant distinction in cohesive energy among carbon allotropes. The key to the 

stability of a structure is indeed that there exists sufficiently high energy barrier (to the 

unstable state) from a local energy minimum to resist thermal perturbation. From the 

calculated phonon dispersion of the C-honeycomb structures with sp3 bonding at the 

5-5-8 junction, as shown in Figure 1e, one could expect that the current C-honeycomb is 

stable since all phonon frequencies are positive. 

The evolution from the unstable structure to the stable structure could be 

explained by the following mechanism. The single atoms in the 5-5 junction lines form 
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9 

sp2 bonds with their neighboring atoms, and their unhybridized p-orbitals are directed 

along the junction line. The interaction between these orbitals is similar to those between 

different sheets in graphite. Due to the short interatomic distance (~ 2.5 Å) compared 

with the interlayer distance in graphite, those atoms are expected to repel with each 

other, and would prefer to form pairs, instead of staying in their original positions as 

single atoms in an unstable equilibrium state.  

The 5-5-8 junction has alternative C-C bonds shared by three 5-rings of the walls. 

There is a vacancy formed by the three 8-rings along the cell-axis of the junction (Figure 

1b and c).  

We also construct C-honeycomb with graphene nanoribbons connected along 

their armchair edges. Such a junction is composed of periodic units containing two 

coplanar 6-atom rings and one non-coplanar 6-atom ring (Figure 1f and g), and is termed 

as 6-6-6 junction. The structure was hypothesized by Park and Ihm,21 and Kuc and 

Seifert.16 We calculated the phonon dispersion of the C-honeycomb with a=b=5.2 Å. The 

result shown in Figure 1h indicates that it is mechanically stable as well.  

We now explore the mechanical and thermal properties of the stable 

C-honeycomb. To study the mechanical properties of carbon honeycomb, the 

quasi-static displacement-controlled deformation is used by imposing the deformation 

with a small strain increment (a typical value of 0.01 is used) along one direction. The 

other two dimensions of the simulation domain, as well as the atomic coordinates, are 

adjusted through CG algorithm to make the total energy minimized. The corresponding 

stress is then obtained from the reaction force induced by the imposed strain divided by 

the current cross-sectional area. Molecular dynamics (MD) simulations are performed to 
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10 

analyze the thermal conductivity. While recently the first-principles-based Boltzmann 

transport equation method has been widely used to predict the thermal conductivity of 

many crystalline materials, and the calculated thermal conductivity is usually consistent 

with experimental measurements, it can be challenging to apply such methodology to 

materials with complicated structures due to the computational cost. Thus, we perform 

equilibrium MD simulations using LAMMPS32 to estimate the thermal conductivity of 

carbon honeycombs through Green-Kubo formalism.33 Although in classical MD 

simulations the quantum effects are not included, the thermal conductivity from 

molecular dynamics simulations is very close to that from the Boltzmann transport 

equation calculations where the quantum effects are fully taken into account (within 

15%),34 as well as the measured data, even for graphene, whose Debye temperature is 

around 2000 K. The optimized reactive empirical bond-order potential34 is employed to 

describe the interatomic interactions among carbon atoms. The reported thermal 

conductivity is obtained from the averaged value from ten independent runs. The details 

of mechanical calculations and thermal conductivity simulations are presented in the 

Supporting Information SI-II and SI-III, respectively. 

As both the 5-5-8 junction and the 6-6-6 junction C-honeycomb exhibit similar 

mechanical behavior, we will focus on the 5-5-8 junction in what follows. The 

corresponding mechanical properties shown in Figure 1b. For convenience, we define a 

coordinate system based on the C-honeycomb structure, as illustrated in Figure 1a. It is 

noted that the zigzag direction of graphene layers in each wall of the c-honeycomb is 

perpendicular to the armchair direction of the C-honeycomb. Unless stated otherwise, for 

the rest of this work, the armchair and the zigzag direction are referred to the 3-D 
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11 

C-honeycomb structure that defined in Figure 1a. The mechanical properties of 

C-honeycombs are studied by DFT calculations, with detailed information supplied in 

SI-2. Figure 2 shows the mechanical behavior of the C-honeycomb subjected to tension 

along different directions. The stress-strain curves of C-honeycomb of different cell sizes 

are shown in Figure 2a, with the loading along the armchair direction on the left, the 

loading along the zigzag direction in the middle and the loading along the cell-axis on the 

right. With the minimum cell size a = 5.8Å, the C-honeycomb structure shown in Figure1 

has a strength of 37.8GPa along the armchair direction (x-axis) and 38.6GPa in the 

zigzag direction (y-axis).  When the cell size increases to a = 22.9Å, the respective 

strengths are about 0.9GPa and 8GPa. Interestingly, the stress-strain response of 

C-honeycombs is very nonlinear, with growing Young’s modulus when strained at the 

initial stage. We show in Figure S4 the evolution of Young’s modulus as a function of 

strain for C-honeycombs of different sizes and loading. At the continuum level, the 

Young’s moduli ��� and ��� of a C-honeycomb in the zigzag and armchair direction are 

given as35  
���
�	

= � �
����

����
(�/������)����� and 

���
�	

= � �
����

(�/������)
����� , respectively. Here �� 

is the normal bending stiffness of the graphene wall36, and  , !, " are the three 

geometrical parameters of the C-honeycomb (Figure 1a). The theoretical predictions in 

both the armchair and zigzag direction of the C-honeycomb before deformation are also 

shown in Figure S4. This nonlinear elasticity is a result of strongly coupled tension and 

bending deformation to the graphene nanoribbon wall. The patterns of the deformed 

C-honeycomb cell size a = b = 10.1 Å at different strains suggest that the angle between 

the honeycomb walls changes dramatically as loading increases (Figure S5). Atoms 

within a wall are not coplanar in most cases. Such pre-curved graphene walls may 
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12 

introduce nonlinear mechanical response during tension. With growing cell size, both the 

strength and the failure strain decrease, as seen in Figure 2b. While the honeycomb 

structure has large tensile strength, we note that it may buckle under compression. 

Given the atomic thin graphene wall in the carbon honeycomb and its low bending rigidity, 

the wall may be bent under compression, and give rise to a nonlinear stress-strain 

response during compression.  

 

 

Figure 2. The mechanical behavior of C-honeycomb of different cell sizes. (a) 
Stress versus strain curves for tensile loading along the armchair (left), the zigzag 
(middle), and the cell-axis directions (right). (b) The failure strength (left) and failure 
strain (right) as a function of cell size. 
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13 

 
In addition to the appealing mechanical strengths in stable C-honeycomb, we also 

observe a strongly anisotropic Poisson’s effect. Figure 3 shows the Poisson’s ratio as a 

function of strain in C-honeycomb of different cell sizes. Following the convention, the 

Poisson's ratio #��$�� defines the ratio of the resultant strain  %�� in the zigzag direction 

when a strain  %��  is imposed in the armchair direction, i.e., #��$�� = −%��/%�� . In 

Figure 3a, we examine #��$�� (left) and  #��$�� (right) as a function of strain. Tensile 

strain applied to the armchair (zigzag) direction of a C-honeycomb introduces nearly the 

same amount of compressive strain in the zigzag (armchair) direction. The Poisson’s 

ratio can reach about 2 when the C-honeycomb reaches its failure strain. From the 

theoretical prediction for C-honeycombs, the Poisson’s ratio for loading along the 

armchair direction is given as35 #��$�� = �����
(�/������)����; while that for loading along the 

zigzag direction is predicted to be #��$�� = (�/������)����
����� . Given the hexagonal structure 

with " = 30) at small deformation, #��$�� = #��$�� = 1, which are in great agreement 

with DFT calculations shown in Figure 3. By looking at the subsequent deformation in the 

cell axis direction (z-direction in Figure 1a), we see that straining along the armchair or 

zigzag direction of a C-honeycomb introduces nearly no deformation along the cell-axis 

(Figure 3b), i.e.,	#��$� and #��$� are nearly zero. This anisotropic property could be 

utilized in functional structure design. For example, we may attach a layer of 

C-honeycomb material to either the inner or the outer wall of a tube with co-axial 

orientation of C-honeycomb with the tube. The C-honeycomb could then accommodate 

significant radius change in the tube without length change from the C-honeycomb along 
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14 

the tube axis. Such structures may find their applications in biomedical engineering like 

expanding blood vessels radically without exerting any axial stretch.  

 

 

 

 
Figure 3. The strong anisotropic Poisson’s effect in C-honeycomb of different cell 
sizes. (a) The Poisson’s ratio versus strain curves for tensile loading along the armchair 
(left, ν-�$..) and the zigzag direction (right, ν..$-�). (b) The Poisson’s ratio along the 
hexagonal tube direction (cell-axis) while loading along the armchair (left, ν-�$.)  and 
zigzag-directions (right, ν..$.). 
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of C-honeycombs with  = 5.8Å to 29.7Å are only 1.31 g/cm3 to 0.31 g/cm3, much 

lower than 3.52 g/cm3 for diamond and 2.26 g/cm3 for graphite40.The high specific 

strength of 3-D C-honeycomb render it extremely competitive for the use as an ultra-light 

weight architected functional material41.  

 

  

Figure 4. Specific strength and thermal conductivity of C-honeycomb. (a) Specific 
strength of C-honeycomb of different cell sizes and other carbon-based materials. Here 
‘a’ to ‘m’ refer to different data sources: ‘a’, ‘b’ and ‘c’ are, respectively, the specific 
strength of C-honeycomb along the zigzag, armchair and axial direction; ‘d’: diamond21; 
‘e’: graphene3; ‘f’: CNTs of radius (3 3), (5 5), and (10 10)3; ‘g’: carbon-nanotube fiber9; ‘h’: 
ceramic nanolattices20; ‘I’: SWNT- MWNT- and FGS-PMMA22; ‘j’: ultra-flyweight 
aerogels23; ‘k’: nanocomposite-SWNT -MWNT and –GPL24; ‘l’: graphene oxide paper10. 
(b) Thermal conductivity of carbon allotropes, their derivatives and some common 
materials. Here ‘1’ to ‘10’ refer to different data source: ‘1’ and ‘2’ are the specific thermal 
conductivity of c-honeycomb along cell axis and armchair (zigzag) direction, respectively; 
‘3’: diamond25; ‘4’: graphite25; ‘5’: CNT arrays26; ‘6’: graphene27; ‘7’: graphene laminate28; 
‘8’: graphite nanoplatelet-epoxy composite29; ‘9’: aluminum25; ‘10’: silicon25. 

 

We show in Figure 4 the superior mechanical and thermal properties in 

comparison with other known low-density materials. As seen in Figure 4a, C-honeycomb 

trails to carbon nanotubes (CNTs) and graphene in terms of specific strength, rendering 

a 3-D material with much superior strengths than composites made of CNT or graphene3, 
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9, 10, 41-45. The specific thermal conductivity of C-honeycomb is presented in Figure 4b46-50. 

SI-3, Figure S6 and Figure S7 describe the details about the calculation of the thermal 

conductivity of C-honeycombs with different sizes at room temperature using equilibrium 

molecular dynamics simulations as well as the obtained thermal conductivity data. The 

thermal conductivity along cell axis (armchair or zigzag) direction of C-honeycomb with 

 = 5.8Å  is 205 ± 60  (39 ± 11 ) W/mK, and decreases to 96 ± 25  ( 5 ± 2 ) W/mK 

when	 = 22.9Å. The thermal conductivity also exhibits strong anisotropy (Figure S7). 

Due to the ultra-low density and high thermal conductivity along the z direction, the 

specific thermal conductivity of C-honeycombs is larger than most engineering materials, 

including metals and high thermal conductivity semiconductors, as well as light-weight 

CNT arrays47 and graphene-based nanocomposites50.  

As mentioned at the beginning, the heterogeneous bonding in scaling up 

low-dimensional carbon allotropes as nanocomposites are intrinsically ineffective in 

reaching the properties that we desire to inherit from individual CNTs and graphene 

sheets, which limits the technological applications of those carbon allotropes. Here we 

demonstrate the feasibility of constructing stable 3-D architectured C-honeycomb with 

covalent bonding. The specific strength of C-honeycomb could be the best in structural 

carbon materials. Its specific thermal conductivity is also much better than most metal 

and high thermal conductivity semiconductors. Its strong anisotropic Poisson’s effect 

may be utilized to design multi-functional structures with applications ranging from 

biomedical engineering to energy and environment systems. With the growing interest 

for 3-D nano-architectured functional materials, the well patterned two-level hexagonal 
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structures in C-honeycomb pave a new strategy in achieving desirable properties that 

are comparable with carbon allotropes.   
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