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Three-dimensional detonation cellular structures in rectangular
ducts using an improved CESE scheme∗

Yang Shen(沈洋)1, Hua Shen(申华)2, Kai-Xin Liu(刘凯欣)1,
Pu Chen(陈璞)1, and De-Liang Zhang(张德良)3,†
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The three-dimensional premixed H2-O2 detonation propagation in rectangular ducts is simulated using an in-house
parallel detonation code based on the second-order space–time conservation element and solution element (CE/SE) scheme.
The simulation reproduces three typical cellular structures by setting appropriate cross-sectional size and initial perturbation
in square tubes. As the cross-sectional size decreases, critical cellular structures transforming the rectangular or diagonal
mode into the spinning mode are obtained and discussed in the perspective of phase variation as well as decreasing of triple
point lines. Furthermore, multiple cellular structures are observed through examples with typical aspect ratios. Utilizing
the visualization of detailed three-dimensional structures, their formation mechanism is further analyzed.

Keywords: CE/SE scheme, three-dimensional gaseous detonation, cellular pattern
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1. Introduction
Detonation is a supersonic flow with chemical reactions.

Since discovered in an experiment of flame propagation, it has
been studied for over one hundred years. Nowadays the re-
search on mechanism of detonation ignition and propagation,
especially on structural analysis of cellular patterns, is still
popular due to its importance in construction blasting, produc-
tion security, military facilities,[1] and so on.

Limited by experimental equipment and technique, it is
difficult to capture the details of detonation structures. As
a result, smoked foil technique[2] and high-speed schlieren
technique[3] were developed in 1960s to observe the detona-
tion structure indirectly. White et al.[4] was the first to make a
detailed experimental research on three-dimensional gas det-
onation. Strehlow[5–7] gave a well-documented description of
detonation structure. In his papers, the structure of detonation
cells had been described as an interaction of Mach configura-
tions. Hanana et al.[8] experimentally obtained clear patterns
recorded on the wall of square ducts. Through analysis, they
considered that there were two kinds of stable cellular struc-
tures in three-dimensional cases: the diagonal mode and the
rectangular mode. Lin et al.[9] improved the experimental set
to study the critical structure in the transition process of the de-
flagration to detonation (DDT) under different boundary con-
ditions.

Compared with experiments, numerical methods have ad-
vantages in providing global distribution of any variable at any
time. A key problem of simulating the detonation is how to

describe the chemical reaction in numerical method. Taki et
al.[10] used a two-step kinetics model to analyze the structure
of transverse wave. Oran et al.[11] proposed a detailed reaction
model examining the cellular pattern of two-dimensional oxy-
hydrogen detonation. Besides, one-step kinetics model[12] and
other simplified models[13] were also put forward in previous
work. Sichel et al.[14] developed Taki’s model by introducing
a parameter which reflected changes in gas composition, and
promoted the computational precision a lot. In the early study,
two-dimensional (2D) simulations were usually used to study
the detonation cellular structures and there were thousands of
literatures available. However, detonation was an intrinsically
three-dimensional process. With the rapid development of
computational fluid dynamics (CFD), three-dimensional simu-
lations gradually became feasible. Williams et al.[15] adopted
the one-step reaction model and numerically modeled three-
dimensional structures in self-sustaining detonations. Their
simulation started from a 2D periodic solution, and added a
one-dimensional perturbation perpendicular to the motion of
the initial 2D transverse waves. Tsuboi et al.[16,17] used a
Harten–Yee non-monotone upstream-centered scheme to sim-
ulate three-dimensional hydrogen/air detonation and obtained
the rectangular mode and diagonal mode. Deledicque et al.[18]

also presented a detailed numerical study of three-dimensional
structures in gaseous detonations using the one-step reaction
model and a parallelized, unsplit, shock-capturing algorithm.
Dou et al.[19,20] and Wang et al.[21,22] used the one-step kinet-
ics model and the fifth order weighted essentially non oscil-
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latory (WENO) scheme to simulate detonation propagation in
square tubes. They found that the detonation wave in small
size of square tubes could propagate spirally just as in round
tubes, which was named as spinning mode. Additionally,
Weng,[23] Ivanov,[24] Cai,[25] and Huang[26,27] also did a lot
of simulation work with three-dimensional rectangular ducts
and obtained similar results. However, to the best of the au-
thors’ knowledge, most of previous work focusing on three-
dimensional problems required a relatively high-order scheme
and cost a plenty of computing resources.

In this paper, we employed the in-house parallel detona-
tion code based on an improved three-dimensional space–time
conservation element and solution element (CE/SE) scheme
with second-order accuracy[28] to further study the three-
dimensional cellular structures of detonation propagating in
rectangular ducts. For the first time, we attained the cellular
patterns with critical cross-sectional size as well as different
aspect ratios.

2. Chemical reaction model and numerical
method
Detonation is an extreme chemical reactive flow involving

strong shocks. Therefore, to simulate the detonation process
accurately, the following two aspects are crucial: (i) an appro-
priate chemical reaction model and (ii) a good shock captur-
ing scheme. Currently, detailed chemical reaction models[11]

are most close to the real situation, since elementary reac-
tions actually occur during the detonation. However, it re-
quires too many computational resources even for 2D cases,
not to mention three-dimensional computation. To achieve
an acceptable compromise between the solution accuracy and
the computational time, we choose an improved two-step ki-
netic model,[14] in which the complex chemical reactions are
simplified to an induction reaction and an exothermic reac-
tion. Neglecting the influences of thermal conduction, viscos-
ity, and mass diffusion, the detonation propagation can be de-
scribed in three-dimensional Cartesian coordinate system by
the reactive Euler equation

∂𝑈

∂ t
+

∂𝐸(𝑈)

∂x
+

∂𝐹 (𝑈)

∂y
+

∂𝐺(𝑈)

∂ z
= 𝑆, (1)

where 𝑈 = (ρ,ρu,ρv,ρw,e,ρα,ρβ )T, 𝐸 = (ρu,ρu2 +

p,ρuv,ρuw,(e + p)u,ραu,ρβu)T, 𝐹 = (ρv,ρuv,ρv2 +

p,ρvw,(e + p)v,ραv,ρβv)T, 𝐺 = (ρw,ρuw,ρvw,ρw2 +

p,(e+ p)w,ραw,ρβw)T, and 𝑆 = (0,0,0,0,0,ωα ,ωβ )
T. 𝑈

is the conservative vector. 𝐸, 𝐹 , and 𝐺 are the corresponding
flux vectors in x, y, and z directions, respectively. 𝑆 stands
for the source term caused by chemical reactions. Variable e
represents the total energy per unit volume, expressed as

e =
p

γ−1
+

ρ

2
(u2 + v2 +w2)+ρβQ, (2)

where Q is the H2–O2 reaction heat per unit volume and γ

stands for the specific heat ratio. Dimensionless parameters α

and β represent the reacting progress of induced reaction and
exothermic reaction, respectively. Parameters ωα and ωβ in 𝑆

represent the reaction rates of α and β , which are calculated
as

ωα =
P

3R0T
exp
(

35.1715− 8530.6
T

−7.22×10−11P2 exp
(

21205
T

))
, (3)

ωβ =

 0, if α > 0,

(1−β )aexp
(
− b

T

)
+ c, if α ≤ 0. (4)

The unit of temperature T , pressure P, and universal gas con-
stant R0 are K, atm, and J/(mol·K), respectively. The analyt-
ical form and parameters determined for the induction period
in Eq. (3) are based on a survey and study of existing mod-
els. Equation (4), measuring the process of heat releasing, is
a generic Arrhenius form, in which the specific input param-
eters a, b, and c are determined by ensuring that they gen-
erally reproduced the properties of the full chemical kinetics
model. It is deemed to provide the most accurate description of
exothermic reaction in stoichiometric H2–O2 mixtures when
a = 1.2×108, b = 8000, and c = 0.[14]

For shock capturing, we employ the CE/SE scheme,[29]

which is a unique computational framework for solving hy-
perbolic equations. This numerical method takes time and
space both as equal mathematical dimensions. Conservation
elements (CEs) and solution elements (SEs) are defined appro-
priately to make local and global conservation law be strictly
guaranteed. CE is a space–time control volume on which the
conservation law is implemented. Meanwhile, SE is used to
solve the fluxes involved in the discrete conservation law. The
dissipation of the scheme can be efficiently controlled, because
it is constructed based on a non-dissipative scheme.[29] As a
result, it not only has a good shock capturing capacity, but also
can be used to simulate acoustic waves.[30] In order to solve
problems with complex boundary conditions as well as with a
lower expense of computational resource, unstructured[31] and
essentially conservative adaptive[32] definition of CEs can be
also employed. But these improved schemes will lose some
degree of global conservativeness. Moreover, dimension split-
ting method is not required for multi-dimensional cases, re-
sulting in a genuinely multi-dimensional scheme.[28,33] These
properties make CE/SE method be very efficient for detona-
tion simulations. Up to now, it has already been successfully
used for simulating gaseous detonation[34,35] and liquid-fueled
two-phase detonation.[36,37]

Notably, the characteristic time scales for flow and chem-
ical reactions may have several orders’ difference. To save
CPU time, a decoupling method is used to handle the stiff
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source terms. That is to say, we first solve the flow field
without considering chemical reactions and then integrate the
source terms using sub-time step. According to the Gauss di-
vergence theorem, the governing equation (1) without source
terms can be written as

©
∫∫
S(V )

𝐻 · d𝑠= 0, (5)

where 𝐻 ≡ (𝑈 ,𝐸,𝐹 ,𝐺), S(V ) is the boundary of an arbi-
trary close space-time region V , and d𝑠 = dσ ·𝑛 with dσ

and 𝑛 being the volume and the unit outward normal vector
of a boundary element of S(V ), respectively. Integrating the
second-order Taylor expansion on boundary of each CE, we
can eventually get the relationship between current conserva-
tive vector and the one in next half time step as

(𝑈)
n+1/2
i, j,k + ∑

x,y,z

∆x2

24
(𝑈xx)

n+1/2
i, j,k

=
1
8

(
�̄� +

∆t
∆x

�̄�+
∆t
∆y

�̄� +
∆t
∆z

�̄�

)
, (6)

with the m-th vector components of

Ūm = ∑
a,b,c

Ûm

(
±a ∆x

4
,±b ∆y

4
,±c ∆z

4
,0
)n

i∓a1/2, j∓b1/2,k∓c1/2
,

Ēm = ∑
a,b,c
±aÊm

(
0,±b ∆y

4
,±c ∆z

4
,

∆t
4

)n

i∓a1/2, j∓b1/2,k∓c1/2
,

Ḡm = ∑
a,b,c
±cĜm

(
±a ∆x

4
,±b ∆y

4
,0,

∆t
4

)n

i∓a1/2, j∓b1/2,k∓c1/2
,

F̄m = ∑
a,b,c
±bF̂m

(
±a ∆x

4
,0,±c ∆z

4
,

∆t
4

)n

i∓a1/2, j∓b1/2,k∓c1/2
.

(7)

Herein subscript parameters i, j, k, and superscript one n rep-
resent the sequence number of space-time mesh in x, y, z,
and t direction, respectively. Symbols ±a and ∓a mean that
when one of them makes a positive operator, the other must be
negative. However, operator ±a, ±b, and ±c are independent
of one another. Symbol ∧ represents a new defined function
through integration above, which expands as

N̂m(δx,δy,δz,δt)P

= (Nm)p + ∑
k=x,y,z,t

(Nmk)pδk+ ∑
k=x,y,z,t

2
3
(Nmkk)pδk2

+ ∑
k,l=x,y,z,t

l 6=k

1
2
(Nmkl)pδkδl, (8)

where Nm can be Um, Em, Fm, or Gm. To get the value of
(Um)

n+1/2
i, j,k , it requires to obtain the second derivative in spatial

direction of the current space–time point (i, j, k, n) at first,
namely (Umxx)

n+1/2
i, j,k , (Umyy)

n+1/2
i, j,k , and (Umzz)

n+1/2
i, j,k . We can

use first derivative value of the point in current time to esti-
mate the second derivative and cross derivative next half step.
Taking (Umxx)

n+1/2
i, j,k and (Umxy)

n+1/2
i, j,k as an example, the differ-

ential formula is

(Umxx)
n+1/2
i, j,k

=

∑
a,b

[
(Ûmx)

n
i+1/2, j±a1/2,k±b1/2− (Ûmx)

n
i−1/2, j±a1/2,k±b1/2

]
4∆x

,

(9)

(Umxy)
n+1/2
i, j,k

=

∑
a,b

[
(Ûmx)

n
i±a1/2, j+1/2,k±b1/2− (Ûmx)

n
i±a1/2, j−1/2,k±b1/2

]
4∆y

.

(10)

Then the value of (Um)
n+1/2
i, j,k can be obtained using Eq. (6). Fi-

nally, similarly with first-order Taylor expansion,[28] the con-
tinuity of variables in SEs at the junction point is made use to
get the x, y, z directional derivatives of conservative vector in
next time step.

3. Results and discussion
Numerous factors, including the size and aspect ratio of

cross-section, the initial perturbation, the reaction model and
so on, exert a coupling effect on detonation structures in a rect-
angular duct. We focus on the effect of the size and aspect ratio
of cross-section (AR) herein. Although the cellular structures
in square tubes have been comprehensively studied before, we
carry out similar simulations both as a code validation and as
baselines for comparison. The settings of 14 total cases are
listed in Table 1. There are five things to note. (i) At least 50
grid points are guaranteed for one cellular width to ensure the
accuracy of simulation results. We have tried beforehand the
simulation with grid resolution of 10, 25, and 50 points per
millimeter (pts./mm). After comparison of the cellular pat-
terns, we concluded that 25 pts./mm is enough for examples
with cross-sectional size greater than 2 mm, while it had bet-
ter be 50 pts./mm when cross-sectional size equals to 1 mm.
(ii) It needs to lengthen the computational domain to 160 mm
when the cross-sectional size reduced to 2 mm or 1 mm, be-
cause detonation structure at first 80 mm in these cases is not
always stable. (iii) All the initial perturbations are only given
at first 30 time steps to trigger transverse waves. (iv) Each ex-
ample takes 8 CPU cores in parallel running. (v) In all cases,
high pressure is initially implemented on the left 5% part of
the computational domain (P = 45 atm and T = 298 K) and
the rest part is filled with H2–O2 mixtures of normal tempera-
ture and pressure (P= 1 atm and T = 298 K). Additionally, re-
flective boundary condition is performed for all the side walls,
the left wall of CPU 1 and the right wall of CPU 8.

114702-3



Chin. Phys. B Vol. 25, No. 11 (2016) 114702

Table 1. Simulation parameters in different cases.

Case 1 2 3 4 5
Domain/mm 80×4×4 80×4×4 160×2×2 160×2×2 160×1×1

Grid resolution/pts.·mm−1 25 25 25 25 50
Perturbation Diagonal Rectangular Diagonal Rectangular Diagonal

Case 6 7 8 9 10
Domains/mm 160×1×1 80×8×4 80×8×4 80×12×4 80×12×4

Grid resolution/pts.·mm−1 50 25 25 25 25
Perturbation Rectangular Diagonal Rectangular Diagonal Rectangular

Case 11 12 13 14
Domains/mm 160×2×1 160×2×1 160×3×1 160×4×1

Grid resolution/pts.·mm−1 50 50 50 50
Perturbation Diagonal Rectangular Rectangular Rectangular

3.1. Influences of cross-sectional size

In the cases with square cross-sections, the diagonal mode
and the rectangular mode are observed in Cases 1 and 2 with
relatively large cross-section size, and the spinning mode is
obtained in Cases 5 and 6 with very small size, as shown in
Figs. 1(a), 1(b), 1(e), 1(f), 2(a), 2(b), 2(e), and 2(f). In the
propagation process of Case 1 or 2, the shock front and the
transverse waves (TW) intersect at a set number of triple point
lines (TL), the trajectory of which will form fish-scale shaped
cellular pattern on walls of the duct, as shown in Figs. 2(a) and
2(b). The shock front is divided by TLs into several protrud-
ing Mach stems (MS) and incident shocks (IS). Adjacent TLs
impact and separate generating new MS, meanwhile old ones
damping to IS. In diagonal mode, each of two groups of TLs
forms enclosed rectangles, which are orthogonal to each other
and manage about 45 degrees on lateral walls of the duct. Both
rectangles keep centrosymmetric and the whole structure has
four symmetric axes. Meanwhile, TLs in rectangular mode are
parallel to the wall and show transverse lines of high pressure,
called slapping waves, on the surface in each cycle. In Cases
5 and 6, the simulation results show two similar types of spin-
ning structures, one spinning clockwise and the other spinning
counterclockwise, depending on types of initial perturbation.
In this condition, only two perpendicular TLs exist. Compar-
ing with situation in Case 2, these two TLs have approximately
π/4 radian of phase difference, and lose all the symmetry. Fig-
ure 2(e) or 2(f) shows that a strip with high pressure can be
observed spinning along the wall. The thickness of the pattern
on each side wall is not uniform, because the TL parallel to the
wall gradually leaves away from the surface. This is another
type of influence by the slapping wave.

Logically, critical structures appear in Cases 3 and 4 with
medium cross-section size. In Case 3 with initially diago-
nal perturbation, the elementary cells shown in Fig. 2(c) are
the same as 1/4 fusiform shape partitioned along central x–y
and x–z planes in Fig. 2(a). Comparing motion of TLs shown
in Fig. 1(c) with typical diagonal mode, the critical patterns
have only one group of TLs forming an enclosed rectangle
on the shock front. This kind of structure loses axisymmetry
but keeps centrosymmetric, in which two couples of parallel

TLs sustain a phase difference of π/4 radian. As for Case
4 with initially rectangular perturbation, two couples of TLs
gradually accumulate π/8 radian of phase difference at the
middle of computational domain, as shown in Fig. 1(d). It
is evident that the cellular structure in Case 4 is swept by each
two groups of TLs in Cases 5 and 6 with π/2 radian of phase
difference. In our observation of maximum pressure histo-
ries (MPHs) on section x–y and x–z in Fig. 2(d), this transi-
tion structure has bright oblique stripes with uneven thickness,
more like structures in Figs. 2(e) and 2(f) other than normal
rectangular mode. If we examine the MPHs on y–z slices,
spinning motion of four points intersected by TLs can be ob-
served clearly. Therefore, it can be also named as quadruple
spinning. However, this transition structure will not keep all
along but eventually turn into single spinning.

Furthermore, we extract the data of MPHs along the cen-
tral and angular lines in x direction and make the diagram dis-
played in Fig. 3. In regions D2 and R2, both two propagation
modes are forced to have one transverse cell. Correspondingly,
the peak value of pressure in each cycle is unstable. In regions
D3 and R3, the detonation structure is firstly in the process of
transition. In Case 3, one group of TLs gradually disappears in
about 5–7 cycles, while two couples of TLs in Case 4 accumu-
late phase difference to transform typical rectangular patterns
into quadruple spinning. Finally in region D4 for the diagonal
mode, pressure histories almost have the same amplitudes with
an enclosed rectangle of TLs holding at π/4 radian phase dif-
ference. That means that the detonation structure keeps self-
sustaining. However in the rectangular mode, quadruple spin-
ning is not as stable as structures in Case 3, since it needs a
relatively high energy to keep this propagation style. As seen
in Fig. 3, the envelope curve of pressure histories has a trend of
decreasing while temporarily keeping typical rectangular and
quadruple spinning mode. It lasts until to the second transition
region R5, in which the pressure close to shock front reaches
a critical value. In this transition zone, cellular patterns grad-
ually merge together and TL number decreases. Ultimately in
region R6, the detonation structures change to steady single
spinning, being the same as patterns in Case 6.
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Fig. 1. (color online) Pressure isosurfaces and motion of TLs during about one period in (a) Case 1, (b) Case 2, (b) Case 3, (d) the
middle domain of Case 4, (e) Case 5, and (f) Case 6.
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Fig. 3. (color online) Comparison of MPHs along the central line (a)
and angular line (b) between Cases 3 and 4.

Generally speaking, when the size of cross-section is big
enough, it will form diagonal or rectangular pattern, depend-
ing on types of initial perturbation. Otherwise, when the size
of cross-section is very small, the detonation structures will fi-
nally convert into spinning patterns, however we change the
other conditions. Additionally, critical structures also exist
while the diagonal or rectangular mode is transformed into the
spinning mode. It is the process with accumulation of phase
difference and decreasing of TLs. Comparing with the rect-
angular mode, the diagonal one is more difficult to be trans-
formed into the spinning mode, since TLs in this condition
originally move along the diagonal line, different from spin-
ning structures.

3.2. Influences of cross-sectional aspect ratio

In different propagation modes, the AR makes different
influences on cellular structures. Firstly, we assess the effect
with the cell size equal to 4 mm. Cases 1, 7, and 9 with AR
ranging from 1 to 3 are carried out to study multiple cellu-
lar structures in the diagonal mode. When the length in one
transverse direction of square tubes is stretched integer times,

detonation cells generally duplicate the same number, as in
Case 9. But if carefully examining the cellular structure of
Case 7 in Fig. 4(a), we find that even though the size on x–z
sides does not change, the number of cells also turns from one
in Case 1 to a half. Correspondingly, the cellular patterns on
z–y sides decrease to 1.5 transverse cells. Figure 5(a) clearly
shows the distribution of MPHs on several y–z slices in half
a cycle. Those high pressure areas are swept by TLs. One of
the most remarkable things is that multiple cellular structures
on section A–A, B–B, and C–C consist of elementary cells as
in Case 3 with adjacent units keeping opposite phases, rather
than structures shown in Fig. 5(b) or 5(c). In essence, imag-
inary style 5(c) is based on 5(b). Their relationship is simi-
lar to Case 3 and Case 1, which to form is determined by the
cross-sectional size. The reason for the final cellular structure
presenting like Fig. 5(a) comes down to the preservation and
loss of symmetry. Specifically, the elementary structures in
Figs. 5(b) and 5(c) remain axisymmetry but lose centrosym-
metry, and the other way around in style 5(a). It is consid-
ered that keeping axisymmetric is more difficult than remain-
ing centrosymmetry, which can be proved by critical situation
in Case 3. Furthermore, multiple structures in Case 9 are also
not appropriate for Case 7, because its length of the longer side
is relatively small. Therefore, it is not surprising for cellular
patterns in Case 7 being the compressing version of elemen-
tary structures in Case 9.

Similarly, Cases 2, 8, and 10 are used to study multiple
cellular structures in the rectangular mode. For all the cases,
the number of cells on sides of the ducts does not change like
Case 7, as shown in Fig. 4(b). It has been discussed above that
accumulation of phase difference and decreasing of TLs even-
tually come to structure of Case 3 in the diagonal mode, but
to the quadruple spinning of Case 4 in the rectangular mode.
Consequently, it is impossible to form a half cell in rectangular
motion of TLs. In addition, TLs in a rectangular elementary
cell are parallel to the duct wall. That is to say, in multiple
structures TLs parallel to the longer sides must be linked to a
whole line to keep steady, resulting in keeping the same phase
along z direction. If observing the surface on the longer sides
of the duct, we will find a linked slapping wave in each cycle.
Figures 5(d) and 5(e) clearly show distribution of MPHs on
several y–z slices in Cases 8 and 10. On section E–E and H–
H, we can find that the associated TL is not entirely straight,
of which the middle part has a delay comparing with the edge.
But this kind of difference will not accumulate, as shown in
section D–D, F–F and G–G, I–I. Another thing worth noting
is that the number of TLs along y direction is not a process of
linear growth with AR increasing, nor the phase of TLs will
present the elementary structures as in Case 2. But in general,
positions of TLs keep centrosymmetric as well as axisymmet-
ric.
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Case 1 X↩Y X↩Z

Case 7 X↩Y X↩Z

Case 9 X↩Y X↩Z Case 10 X↩Y X↩Z

Case 8 X↩Y X↩Z

Case 2 X↩Y X↩Z

A B C

A B C

D E F

D E F G H I

G H I

(a) (b)

Fig. 4. (color online) Cellular patterns on the lateral walls with typical ARs in (a) Cases 1, 7, and 9, as well as in (b) Cases 2, 8, and 10.

A↩A

B↩B

C↩C

D↩D G↩G

H↩H

I↩I

E↩E

F↩F

(a) (b)

(d) (e)

(c)

Fig. 5. (color online) Distribution of MPHs with motion of TLs on y–z
slices in Case 7 with (a) simulation results, and (b) one or (c) another
kind of imaginary structures, as well as (d) in Case 8 and (e) Case 10.

While simulating with the cell size of 1 mm, the effect
of ARs differs a little from examples above. A case study of
initially diagonal perturbation and AR = 2 (Case 11) is shown
in Fig. 6. Comparing with Figs. 1(d) and 1(e), we find that the

cellular structures in this case consist of two elementary cells

x=105.7 mm

x=107.3 mm

x=109.7 mm 

X↩Y lower

X↩Z back (reverse)

X↩Y upper (reverse)

X↩Z front

2.0T106 7.0T106

(a)

(b)

Fig. 6. (color online) Cellular patterns on the surface in Case 11, in-
cluding (a) y–z slices and (b) expansion of lateral walls.
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X↩Y lower

X↩Z back (reverse)

X↩Y upper (reverse)

X↩Z front

X↩Y lower

X↩Z back (reverse)

X↩Y upper (reverse)

X↩Z front

1.5T106 7.0T106

1.5T106 7.0T106

transition spinning

(a)

(b)

Fig. 7. (color online) Cellular pattern on x–y and x–z sides in Case 12 with x
ranging from 0.075 m to 0.089 m (a), and from 0.127 m to 0.141 m (b).

in Case 5 with opposite spinning directions, which appear also
similar with the upper half part of patterns in Case 4. In this
condition, each of two TLs parallel to shorter sides just moves
twice as long as that parallel to longer sides. However, if tak-
ing these two TLs as a whole, their motion cycle is the same
as the long TL. This type of detonation structure forms at the
first quarter of the computational domain and keep steady all
the time.

On the other hand, results in Case 12 with initially rect-
angular perturbation have something different. Observing the
cellular patterns in Fig. 7, the detonation structures become
similar to those with initially diagonal perturbation in the mid-
dle area of the domain. However, the cellular patterns on lower
or upper side in this case just correspond to patterns on upper
or lower one in Case 11. That is to say, intersection of TLs in
these two cases moves in opposite spinning directions. When
the detonation propagates to the third quarter of the domain,
the cellular patterns will change to the type shown in Fig. 7(b).
It looks like the structure of single spinning, but actually with
certain difference. After a careful examination of the MPHs
on y–z section, we find that TLs in this example spin neither
as Case 5 nor as Case 6, but move along the path of symbol ∞.
Figure 8 show the distribution of MPHs on y–z slices in about
one cycle, in which two directions of ∞ shaped trajectory are
clearly displayed.

x=119.0 mm x=120.0 mm x=120.5 mm x=121.3 mm

x=121.8 mm      x=122.8 mm            x=124.0 mm        x=124.8 mm

(a)

x=137.8 mm                 x=138.5 mm                x=139.3 mm                 x=140.0 mm

x=141.0 mm       x=142.0 mm               x=142.8 mm               x=143.8 mm
(b)

Fig. 8. (color online) Two kinds of ∞ shaped trajectory of the cellular patterns on y–z slices in Case 12. (a) One direction of ∞ shaped
trajectory. (b) The other direction of ∞ shaped trajectory.
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The most remarkable difference between structures in
Figs. 6 and 8 is the number of short TLs. In Case 12 with
initially rectangular perturbation, TLs moving along y direc-
tion will eventually merge to only one line. Furthermore, as
discussed in Case 11, this unique TL on shorter sides of the
duct moves twice as long as the long TL does, which finally
forms the ∞ shaped motion style. Another thing we are in-
terested in is how these two motion styles displayed in Fig. 8
make a mutual transformation. Through observing the details
of the whole structures on y–z slices along x direction, it is
confirmed that one cycle of transition spinning exists between
these two types, as shown in Fig. 7(b). This means at some
special time, the motion cycle of the short TL will be equal to
the long line, as in Case 5 or 6. The most obvious difference
between zone before and after on the lateral walls is that the
strips on x–z sides stretch in orthogonal directions.

(a) t=52.30 ms (b) t=53.03 ms 

(c) t=53.67 ms (d) t=54.38 ms 

MS

MS

IS

IS

MS

IS

MS

MS

IS

MS

Fig. 9. (color online) Pressure isosurfaces in about half a cycle in Case 14.

As expected, if the AR becomes big enough, the detona-
tion structure will degenerate to the 2D situation. Take simula-
tion results in Case 14 as an example, in which we set AR = 4:1
with initially rectangular perturbation, as shown in Fig. 9. On
the shorter side of the duct, MPHs almost do not change along
z direction, and cellular patterns on the longer sides of the duct
are similar to results in 2D simulations. Therefore, there are
only two TLs moving along y direction with good symmetry.
Additionally, Case 13 with AR = 3 is the critical situation, in
which the structures start as in Fig. 9 and end at Fig. 8, never
forming patterns of double spinning shown in Fig. 7(a).

4. Conclusion
An in-house parallel detonation code based on the CE/SE

scheme with second-order Taylor expansion as well as two-
step kinetic model is used to simulate the three-dimensional
detonation in rectangular ducts with premixed H2–O2 atmo-
sphere. We chiefly obtain three well-understood types of prop-

agation mode as well as critical structures through typical ex-
amples in square tubes, and then examine the influence of AR
on detonation cellular structures in the rectangular, diagonal
and spinning mode. Ultimately, the simulation reveals that: (i)
the process of the rectangular or diagonal mode transforming
into the spinning mode occurs with phase variation as well as
decreasing of TLs; (ii) multiple cellular structures will gen-
erally consist of elementary cells in square tubes with certain
phase difference or periodic inequality, or degenerate to the
2D situation when assigned a high value of AR. Based on our
results, we conclude that quantitative change in size or aspect
ratio of cross-section will finally make qualitative differences
on the three-dimensional detonation cellular structures.
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