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In this paper, thermocapillary migration of a planar droplet at moderate and large Marangoni numbers is
investigated analytically and numerically. By using the dimension-analysis method, the thermal diffusion
time scale is determined as the controlling one of the thermocapillary droplet migration system. During
this time, the whole thermocapillary migration process is fully developed. By using the front-tracking
method, the steady/unsteady states as the terminal ones at moderate/large Marangoni numbers are cap-
tured in a longer time scale than the thermal diffusion time scale. In the terminal states, the instanta-
neous velocity fields in the unsteady migration process at large Marangoni numbers have the forms of
the steady ones at moderate Marangoni numbers. However, in view of the former instantaneous temper-
ature fields, the surface tension of the top surface of the droplet gradually becomes the main component
of the driving force on the droplet after the inflection point appears. It is different from that the surface
tension of the bottom surface of the droplet is the main component of the driving force on the droplet for
the latter ones. The physical mechanism of thermocapillary droplet migration can be described as the sig-
nificance of the thermal convection around the droplet is higher than/just as the thermal conduction
across the droplet at large/moderate Marangoni numbers.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

An immiscible droplet or bubble is placed in an ambient fluid
with temperature gradient in microgravity environment, it will
move in the direction of increasing temperature due to the surface
tension. This phenomenon is called as thermocapillary migration
in fundamental hydrodynamics and has many practical applica-
tions [1]. The pioneering work in [2] used a linear model to predict
the migration speed of a droplet in the limits of zero Reynolds (Re)
and Marangoni (Ma) numbers. To include inertial effects, the above
analysis was extended to treat the weak nonlinear model in the
range of small Ma numbers [3]. Under the quasi-steady state
assumption, the analytical results were confirmed with the exper-
imental results [4]. Since then, thermocapillary migration of a dro-
plet in a large range of Ma numbers has been studied extensively
by a series of the theoretical analyses [5], numerical simulations
[6] and experimental investigations [7]. In particular, for large
Ma numbers, it was reported that the migration speed of a droplet
increases with increasing Ma number [8]. The theoretical results
are in a qualitative agreement with the correspondent numerical
simulations [9], but are qualitatively inconsistent with the experi-
mental investigations [10,11]. In the above works for large Ma
numbers, both the theoretical analyses and numerical simulations
are based on the assumption of quasi-steady state. However, in the
experiment investigations the droplet migrations are in an acceler-
ating process and do not reach steady states. Therefore, although
the thermocapillary droplet migration at small Ma numbers is well
understood, it is unclear what kinds of states might happen in the
thermocapillary droplet migration at large Ma numbers. Extension
of the quasi-steady state assumption proposed at small Ma num-
bers to large Ma numbers is still a topic to be studied with empha-
sis laid on the physical mechanism. Moreover, in view of the
mechanism of the varied surface tension with temperature, the
thermocapillary migration of a droplet was extended to drive a
film or a droplet on a substrate with a horizontal temperature gra-
dient, such as the examples of films climbing planes by thermocap-
illary effect [12–14] and moving droplets on horizontal substrates
[15–18]. This subject called as thermocapillary actuation has the
similar physical mechanism as thermocapillary droplet migration
and potential applications on the chemical industry and biological
engineering.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2016.10.042&domain=pdf
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Fig. 1. Schematic of the computational domain for thermocapillary migration of a
planar droplet. The top, bottom and right walls are non-slip boundaries. The z-axis
is the mirror symmetric axis of the system.
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To investigate thermocapillary droplet migration in a large
range ofMa numbers, steady-unsteady thermocapillary migrations
of a planar droplet at moderate and large Ma numbers were
observed in both the numerical and analytical studies [19], where
the numerical results are in qualitative agreement with the exper-
imental results. However, the controlling time scale of whole
migration process is the thermal diffusion time scale and far
greater than the convective one. It is expected that a steady state
only appears in the relative time scale of the order OðMaÞ when
the convective time scale is adopted to non-dimensionalize time.
In this paper, using the dimension-analysis method, we first deter-
mine four different time scales in the thermocapillary migration
system and connect them with the non-dimensional parameters
of the system. Then, using the front-tracking method, we numeri-
cally study thermocapillary migration of a planar droplet at mod-
erate and large Ma numbers and capture their terminal states in
a longer time scale, which is beyond the relative thermal diffusion
time scale OðMaÞ. The physical mechanism of the steady/unsteady
migration at the moderate/large Ma numbers is further analyzed
by comparing the time variation of the temperature fields at the
front and the rear of the droplet and determining the driving force
on the droplet based on the terminal temperature distributions at
the interface of the droplet.

The paper is organized as follows. In Section 2, we present the
governing equations of the problem of thermocapillary migration
of a planar droplet and the numerical methods to solve them. In
Section 3, we make the dimension analysis of the above problem
to obtain the controlling time scale of the whole thermocapillary
migration process. In Section 4, numerical results for two cases
of temperature gradients G = 12 K/cm and 9 K/cm are analyzed.
Finally, in Section 5, some conclusions and discussions are given.

2. Governing equations and numerical methods

Consider the thermocapillary migration of a planar droplet with
the radius R0 in a continuous phase fluid of infinite extent (with the
dynamical viscosity l1) under a uniform temperature gradient G.
The reference velocity is defined as

vo ¼ �rHGR0=l1; ð1Þ
where rHð¼ dr=dHÞ is the rate of change of surface tension with
temperature. By taking R0; vo and GR0 as characteristic quantities
to make coordinates, velocity and temperature dimensionless, the
continuity, momentum and energy equations for the continuous
phase fluid and the droplet in a laboratory coordinate system are
written in the following non-dimensional form

@qi

@t
þr � ðqiviÞ ¼ 0;

@qivi

@t
þr � ðqiviviÞ ¼ �rpi þ

1
Re

r � liðrvi þrvT
i Þ þ fr;

@Hi

@t
þr � ðviHiÞ ¼ 1

Ma
ji

ki
r � ðkirHiÞ;

ð2Þ

where vi ¼ ðui;v iÞ;pi andHi are velocity, pressure and temperature,
respectively. The physical coefficients (density qi, dynamic viscosity
li, thermal conductivity ki and thermal diffusivity ji) are non-
dimensionlized by the quantities of continuous fluid. Symbols with
subscript 1 and 2 denote physical coefficients of the continuous
fluid and the droplet, respectively. fr is the scaled surface tension
acting on the interface. The Re and Ma numbers are respectively
defined as

Re ¼ q1v0R0

l1
; Ma ¼ v0R0

j1
: ð3Þ

As shown schematically in Fig. 1, only half of the velocity/tempera-
ture field is determined due to the mirror symmetry about z axis
involved in the system. The solutions of Eq. (2) satisfy the following
initial conditions of the half domain x 2 ½0; x1� and z 2 ½z0; z1�
vi ¼ 0; Hi ¼ z ð4Þ
and boundary conditions at the top and bottom walls (z ¼ z1 and
z ¼ z0), on the central symmetric axis (x ¼ 0) and at the right wall
(x ¼ x1)

v1ðx; z0Þ ¼ v1ðx; z1Þ ¼ 0; H1ðx; z0Þ ¼ z0; H1ðx; z1Þ ¼ z1;

uið0; zÞ ¼ 0;
@v i

@x
ð0; zÞ ¼ 0;

@Hi

@x
ð0; zÞ ¼ 0;

v1ðx1; zÞ ¼ 0; H1ðx1; zÞ ¼ z:

ð5Þ

To simulate the thermocapillary droplet migration, a fixed reg-
ular staggered MAC grid in the computational domain is used. For
discretizing Eq. (2), a second-order central difference scheme for
the spatial variables and an explicit predictor–corrector second-
order scheme for time integration are adopted. By using the
front-tracking method [20], the immiscible interface is considered
to have a finite width, so that all physical coefficients across the
interface are continuous. Here, a weighting function [21] is taken
as

wijðrpÞ ¼ dðxp � iDxÞdðzp � jDzÞ; ð6Þ
where

dðrÞ ¼ ð1=4DrÞ½1þ cosðpr=2DrÞ�; jrj < 2Dr;
0; jrj P 2Dr;

�
ð7Þ

and ðxp; zpÞ is the interface node. With the updated physical coeffi-
cients, the velocity, pressure and temperature fields are computed
by the Chorin’s projection method. Meanwhile, the non-
dimensional surface tension [20] is written in the form of body force
as

dfr ¼
Z
Ds

@

@s
ðrsÞdsðR0=q1v2

0Þ=ðR2
0dxdzÞ

¼ ½ðrsÞ2 � ðrsÞ1�=q1v2
0R0dxdz

¼ f½ð1=Ca�HÞs�2 � ½ð1=Ca�HÞs�1g=Redxdz; ð8Þ
where s is an unit tangent vector, s is the arc length along the inter-
face, rð¼ r0 þ rHHÞ is the surface tension coefficient and
Cað¼ v0l1=r0) is the Capillary number. The surface tension at the
interface is distributed to the grid points by means of the weighting
function (6). More details of the numerical methods were presented
in [19].
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3. Dimension analysis

The system of thermocapillary droplet migration, which has the
five basic dimensions (mass M, length L, time T, temperature K and
quantity of heat Q), is governed by the seven non-dimensional
parameters (Re; Ma; Ca; q2; l2; k2 and j2). They are related to
the eight independent characteristic quantities (R0; v0; GR0;

r0; q1; l1; k1 and j1). Based on the above five basic dimensions,
the eight characteristic quantities can be described as
R0 � L; v0 � L=T; GR0 � K; r0 � MT�2; q1 � ML�3; l1 � ML�1T�1,

k1 � QL�1K�1 and j1 � L2T�1. By using the dimension-analysis
method, four time scales describing different physical processes
are determined as the convective time scale (Tc ¼ R0=v0), the
momentum diffusion time scale (Tm ¼ R2

0q1=l1), the thermal diffu-

sion time scale (Tt ¼ R2
0=j1) and the capillary action time scale

(Tr ¼ R0l0=r0). When the convective time scale Tc is taken as
the scaled time in Section 2, the other three dimensionless time
scales are written as Re ¼ Tm=Tc; Ma ¼ Tt=Tc and Ca ¼ Tr=Tc ,
respectively. They are exactly the three non-dimensional parame-
ters of the system.

In [19], the numerical studies on the thermocapillary droplet
migration focused on the parameters of the system
0:66 6 Re 6 53:4; 44:7 6 Ma 6 3622:8 and 0:0044 6 Ca 6 0:040,
which are regulated with the radius R0. For each R0; Ma is the lar-
gest one in the three parameters of the system. It is clear that the
thermal diffusion time scale Tt is the largest one of the system and
controls the whole migration process. So, a steady or unsteady
state as the terminal one of the thermocapillary droplet migration
will be expected to reach in a time scale of this order, or t ¼ OðMaÞ
in the dimensionless terms.
t
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Fig. 2. Comparison between the numerical results at Ma = 0.01, Ca = 0.01 and
q2 ¼ l2 ¼ k2 ¼ j2 ¼ 0:5 and the analytical one of droplet migration velocity in the
limits of zero Re and Ma numbers. (a) the numerical results at a fixed Re = 0.01 with
four grid resolutions; (b) the numerical results at four Re(=0.005, 0.01, 0.05 and 0.1)
with a fixed grid resolution for 48 grid points per droplet radius.
4. Results and analysis

To verify the accuracy of the numerical model in Section 2, we
adopt very small Re and Ma numbers to determine the terminal
migration velocity of the droplet and compare with the analytical
solution in the limits of zero Re and Ma numbers given in the
Appendix. The non-dimensional parameters are chosen as
Re = 0.01, Ma = 0.01, Ca = 0.01, q2 ¼ l2 ¼ k2 ¼ j2 ¼ 0:5. The com-
putational domain is fixed to the size 6� 12. Based on
72� 144; 144� 288; 288� 576 and 432� 864 grid points, i.e.,
12, 24, 48 and 72 grid points per droplet radius, migration veloci-
ties of the droplet are plotted in Fig. 2(a). For each grid resolution,
the migration velocity of the droplet increased from zero reaches a
steady value at last and approximates to the analytical result
V1 ¼ 0:222. A convergent trend is found when increasing the grid
resolution in the simulations. In Fig. 2(b), the migration velocities
of the droplet at four Re(=0.005, 0.01, 0.05 and 0.1), Ma = 0.01,
Ca = 0.01, q2 ¼ l2 ¼ k2 ¼ j2 ¼ 0:5 with the grid resolution for 48
grid points per droplet radius exhibit a convergent approximation
to the analytical result with an error (about 9%) when decreasing
Re numbers. In the following calculations, we fix 48 grid points
per droplet radius as the grid resolution. It is expected that thermal
boundary layers around the droplet surface at large Ma numbers
have a thickness of OðMa�1=2Þ [22]. So the above grid resolution
can be used to depict the thermocapillary droplet migration in a
large range of Ma numbers.

The silicone oil of nominal viscosity 5cst and the FC-75 Fluo-
rinert liquid, i.e., the working media in the space experiments
[11], are adopted as the continuous phase fluid and the droplet,
respectively. The physical parameters of the continuous fluid and
the droplet at temperature 25 �C are given in Table 1. rH is fixed
as �0.044 dyn/cm K [11] and r0 � 6 dyn=cm [23] is adopted. From
the values of the continuous fluid parameters, Prantdl number
(Pr ¼ Ma=Re ¼ l1=q1j1) is determined as 67.8. The computational
domain is chosen as fx; zg 2 f½0;4�; ½�4;44�g. The initial droplet is
placed at the position (0,0) and the integration time step is varied
in 1� 10�5 � 2� 10�4 depending on the migration velocity. To
simulate the migration process in the longer time scale OðMaÞ at
moderate and large Ma numbers, we regulate R0 to approach the
given Ma number.
4.1. Flow field with the temperature gradient G = 12 K/cm

To simulate the migration process with G = 12 K/cm, the dro-
plets with R0 = 0.05 cm, 0.075 cm and 0.10 cm are taken to make
the systematic parameters, which are presented in Table 2 and
hereinafter referred to as Ma numbers. For Ma 6 178:9, the thick-
ness of thermal boundary layers is not smaller than 1/13.4. So
the above grid resolution is sufficiently high to describe the ther-
mal boundary layers for Ma 6 178:9.

Fig. 3(a) displays the time evolution of droplet migration veloc-
ities for Ma = 44.7, 100.6 and 178.9. The maximal computational
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Fig. 3. (a) Droplet migration velocities in a flow field with the temperature gradient
G ¼ 12 K=cm versus non-dimensional time for Ma = 44.7, 100.6 and 178.9; (b) time
evolution of temperature difference between the front and the rear of the droplet.

Table 1
Physical parameters of the continuous phase fluid (5cst Silicone oil) and the droplet (FC-75) at temperature 25 �C, which are the working media in the space experiment [11].

q (g=cm3) l (10�2 dyn=cm2) k (W/mK) j (10�4 cm2=s)

Silicone oil 0.91 4.268 0.111 6.915
FC-75 1.77 1.416 0.063 2.018

Table 2
Correspondence of non-dimensional parameters Re, Ma and Ca to the droplet radius
R0 for the thermocapillary droplet migration in a flow field with the temperature
gradient G ¼ 12 K=cm.

R0 ðcmÞ Re Ma Ca

0.05 0.66 44.7 0.0044
0.075 1.48 100.6 0.0066
0.10 2.64 178.9 0.0088
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time is Tmax ¼ 220. As given in Section 3, the controlling time scale
of whole migration process is the relative thermal diffusion time
scale Tt � OðMaÞ. Since Tmax is beyond Tt , all physical processes
including the thermal diffusion in the system are fully developed
at Tmax. The whole migration processes exhibit three stages based
on the curve features. At the initial one(t 6 3), the migration veloc-
ities markedly increase from zero to local maximums. Then they
have decreasing-increasing processes in the range 3 < t 6 70. After
the oscillating processes, the migration velocities trend to two dif-
ferent qualitative behaviors in the range 70 < t 6 Tmax depending
on the Ma numbers. One is the approaching a steady value (for
Ma = 44.7), the other two are the monotonically increasing with
time and do not reach any constants (for Ma = 100.6 and 178.9).
The increasing slope for Ma = 178.9 is larger than that for
Ma = 100.6. To further depict the above migration processes,
time evolution of temperature difference DH½¼ Hð1;0Þ �Hð1;pÞ�
between the front (h ¼ 0) and the rear (h ¼ p) of the droplet is
shown in Fig. 3(b). DH initially drops from 2 and then has an oscil-
lating process. At last, it approaches a constant for Ma = 44.7 and
monotonically increases with time for Ma = 100.6 and 178.9. The
stationary temperature difference satisfies the requirement of
steady thermocapillary migration of the droplet. However, the
increasing temperature difference deviates from the requirement
of steady thermocapillary migration of the droplet. Thus, it is con-
cluded that the thermocapillary droplet migration at the moderate/
large Ma numbers can/cannot reach a steady state and thus in a
steady/unsteady process.

In Fig. 4(a), terminal streamlines in a reference frame moving
with the droplets at Tmax for Ma = 44.7, 100.6 and 178.9 are shown.
The droplets are located at the positions zc ¼ 24:7; 24:6 and 29:2,
respectively. Two vortices symmetric about the z-axis appear
within the droplet. For each Ma number, the external streamlines
go around the droplet and the flow over the droplet does not sep-
arate. Although the terminal streamlines evolved in the range of
Ma numbers correspond to both the steady and unsteady states,
their patterns are similar and almost independent of Ma numbers.
These properties reveal that the instantaneous velocity fields in the
unsteady migration processes at large Ma numbers may have the
forms of the steady ones at moderate Ma numbers.

Fig. 4(b) displays terminal isotherms in the laboratory coordi-
nate frame at Tmax for Ma = 44.7, 100.6 and 178.9. For each Ma
number, the whole temperature field is divided into external and
internal domains of the droplet. On the one hand, the isotherms
in the external domain exhibit three kinds of characteristics in
the different areas. The first one is the unperturbed uniformly-
spaced parallel lines above the droplet. The second one is the bend-
ing isotherms near the droplet to the contrary of the migration
direction. More and more isotherms are concentrated to the inter-
face of the droplet as Ma number increases, so that the thermal
boundary layer is formed near the interface. The last one is the
curved temperature field with a gradient below the droplet. In
the thermal boundary layer, there appear two regions related to
the thermal transfer across the interface. One is the most of inter-
face with @Hi

@r ð1; hÞ > 0, the other is a local part near the rear of the

droplet with @Hi
@r ð1; hÞ < 0. The thermal flux across the interface in

the former/latter one goes from the outside/inside of the droplet
to the inside/outside. The former/latter one is larger/smaller as
Ma number increases. So, for large Ma numbers, the thermal flux
across the interface at the terminal states almost goes from the
outside of the droplet to the inside. On the other hand, the iso-
therms in the internal domain of the droplet exhibit different kinds



18

20

22

24

26

28

30

18

20

22

24

26

28

30

22

24

26

28

30

32

34

θ/π

ΔΘ
/R

e=
[Θ

(1
,θ

)−
Θ

(1
,π

)]
/R

e

0 0.2 0.4 0.6 0.
0

0.5

1

1.5

2

2.5

3

Re=0.66,Ma=44.7
Re=1.48,Ma=100.6
Re=2.64,Ma=178.9

(a)

(b)

(c)

Fig. 4. (a) Terminal streamlines in a reference frame moving with the droplet at
Tmax ¼ 220 for Ma = 44.7, 100.6 and 178.9; (b) terminal isotherms in a laboratory
coordinate frame; (c) relative temperature distributions along the interface from
the front to the rear of the droplet for the terminal states in (b).

708 Z.-B. Wu / International Journal of Heat and Mass Transfer 105 (2017) 704–711
of the patterns depending on Ma numbers. For Ma = 44.7, the pat-
tern of the isotherms has a small cap-type when the droplet
migrates in the steady process. In this case, the temperature in
the small cap-type isotherm (H2 ¼ 15:8) is the lowest and about
2.8 lower than the front temperature. For Ma = 100.6, the
pea-type isotherms as the terminal state are formed in the
unsteady migration process. At this time, the temperature in the
pea-type isotherm (H2 ¼ 12:8) is the lowest and about 4.4 lower
than the front temperature. For Ma = 178.9, the isotherms with
two vortices are generated when the droplet is in the accelerating
process. The lowest temperature within the droplet (H2 ¼ 11)
appears in the center of the vortex and is about 9.7 lower than
the front temperature. In general, the thermal convection and con-
duction are two ways of heat transfer in the system, but the droplet
can only obtain the thermal energy though the thermal conduction
across the interface. For moderate Ma numbers, the thermal con-
vection around the droplet and the thermal conduction across
the droplet are equally important to heat transfer in the system,
so that the external and internal temperature of the droplet may
have a fixed difference. This leads to a steady migration process.
For large Ma numbers, the thermal convection around the droplet
is a stronger way of heat transfer in the system than the thermal
conduction across the droplet. The internal temperature of the dro-
plet is more difficult to increase than the external one of the dro-
plet during the migration of droplet. In the whole migration
process, although the internal temperature of the droplet
increases, its increment is far lower than that of the external tem-
perature. The increasing difference of temperature leads to an
unsteady migration precess.

Fig. 4(c) displays the relative temperature distributions
DH=Re ¼ ½Hð1; hÞ �Hð1;pÞ�=Re along the interface from the front
(h ¼ 0) to the rear (h ¼ p) of the droplet for the terminal states
shown in Fig. 4(b). In the range of Ma numbers, DH=Re monoto-
nously decreases as h increases, i.e., @DH

@h =Re ¼ @H
@h =Re < 0. Although

� @H
@h =Re > 0 holds on the whole surface, its averaged values

DH
Dh

�� ��
t=Re � ½Hð1;0Þ �Hð1;p=2Þ�=ðpRe=2Þ on the top surface

h 2 0; p2
� �� �

and DH
Dh

�� ��
b=Re � ½Hð1;p=2Þ �Hð1;pÞ�=ðpRe=2Þ on the

bottom surface h 2 ðp2 ;p�
� �

are varied depending on Ma numbers.
For Ma = 44.7, DH

Dh

�� ��
t=Re < DH

Dh

�� ��
b=Re. For Ma = 100.6, the above rela-

tion holds, but their difference decreases. For Ma = 178.9,
DH
Dh

�� ��
t=Re � DH

Dh

�� ��
b=Re, and an inflection point @2H

@h2
¼ 0

� 	
appears near

h ¼ p=2. The net force acting on the droplet exerted by the contin-
uous phase fluid in the vertical direction [1] is written as

Fz ¼
Z
S
n �P1 � izdS

¼
Z p

0
ðP1nn cosh�P1ns sinhÞdh

¼
Z p

0
P1nn cosh� P2ns� 1

ReCa
@r
@h


 �
sinh

� 

dh

¼
Z p

0
P1nn cosh�P2ns sinh� 1

Re
@H
@h

sinh

 �

dh

��2p
Re

ð1þl2ÞV1� 1
Re

Z p

0

@H
@h

sinhdh

��2p
Re

ð1þl2ÞV1þ 1
Re

R
N
2
i¼1

@H
@h

����
����
t

sinhiDhþ 1
Re

RN
i¼N

2þ1
@H
@h

����
����
b

sinhiDh

��2p
Re

ð1þl2ÞV1þ 1
Re

DH
Dh

����
����
t

þ DH
Dh

����
����
b


 �
DhR

N
2
i¼1 sinhi;

ð9Þ
where n is the unit normal to the surface, P1 ¼ �p1Iþ
1
Re ½rv1 þ ðrv1ÞT � is the stress tensor of the continuous phase
and V1 is the instantaneous migration velocity of the droplet.
In the above derivation, the tangential stress balance
P1ns �P2ns ¼ � 1

ReCa
@r
@h at the interface of the two-phase fluids is

used. Due to the above investigations in the steady and unsteady
migration processes, the instantaneous velocity fields of two-
phase fluids are assumed as those in the limits of zero Re and zero
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Ma numbers given in the Appendix. This assumption is also sup-
ported with the identical velocity fields at the zero-order approxi-
mation of thermocapillary migration of a spherical droplet at zero
Ma(Re), small Ma(Re) and large Ma(Re) numbers [2,3,8].

In Eq. (9), the net force includes of the first term for the drag
force and the second term for the driving force. When the driving
force is larger than the drag force, i.e., Fz > 0, the droplet
migrates in an accelerating process. When the driving force is
equal to the drag force, i.e., Fz ¼ 0, the droplet is in a steady state.
The surface tensions of the top and bottom surfaces of the dro-
plet simultaneously contribute to the driving force. However,
for moderate Ma numbers, the surface tension of the bottom
surface, which is larger than that of the top surface, is the main
component of the driving force. For large Ma numbers, the
surface tensions of the top and bottom surfaces of the droplet
have the same order of magnitude in the driving force when
the inflection point appears. The driving force on the droplet
decreases as Ma number increases.

4.2. Flow field with the temperature gradient G = 9 K/cm

To simulate the migration process with G = 9 K/cm, the droplets
with R0 = 0.075 cm, 0.10 cm and 0.125 cm are taken to make the
systematic parameters, which are presented in Table 3. For
Ma 6 209:7, the thickness of thermal boundary layer is not smaller
than 1/14.5. So the above grid resolution is sufficiently high to
describe the thermal boundary layers for Ma 6 209:7.

Fig. 5(a) displays the time evolution of droplet migration veloc-
ities for Ma = 75.5, 134.2 and 209.7. The maximal computational
time Tmax ¼ 220 is beyond the relative thermal diffusion time scale
Tt � OðMaÞ. The initial migration processes exhibit increasing–de
creasing–increasing processes in the range 0 < t 6 100. Then the
migration velocities trend to two different qualitative behaviors
in the range 100 < t 6 Tmax depending on Ma numbers. One is
the approaching a steady value (for Ma = 75.5), the other two are
the monotonically increasing with time and do not reach any con-
stants (for Ma = 134.2 and 209.7). The increasing slope for
Ma = 209.7 is larger than that for Ma = 134.2. These migration pro-
cesses can be understood in the time evolution of temperature dif-
ference DH between the front and the rear of the droplet shown in
Fig. 5(b). For Ma = 75.5, the stationary temperature difference sat-
isfies the requirement of steady thermocapillary migration of the
droplet. However, for Ma = 134.2 and 209.7, the monotonically
increasing temperature difference deviates from the requirement
of steady thermocapillary migration of the droplet. Thus, it can
be concluded that the thermocapillary droplet migration at moder-
ate/largeMa numbers can/cannot reach a steady state and thus in a
steady/unsteady process.

In Fig. 6(a), terminal streamlines in a reference frame moving
with the droplets at Tmax for Ma = 75.5, 134.2 and 209.7 are shown.
The droplets are located at the positions zc ¼ 24:2; 26:3 and 34:3,
respectively. The terminal streamlines evolved in the range of Ma
numbers reveal that the instantaneous velocity fields are similar
no matter they are the steady states or the unsteady ones. Fig. 6(b)
displays terminal isotherms in the laboratory coordinate frame at
Tmax for Ma = 75.5, 134.2 and 209.7. For each Ma number, the
Table 3
Correspondence of non-dimensional parameters Re, Ma and Ca to the droplet radius
R0 for the thermocapillary droplet migration in a flow field with the temperature
gradient G ¼ 9 K=cm.

R0 ðcmÞ Re Ma Ca

0.075 1.11 75.5 0.0050
0.10 1.98 134.2 0.0066
0.125 3.09 209.7 0.0082
isotherms in the external domain of the droplet bend to the con-
trary of the migration direction and converge near the interface
of the droplet to form a thermal boundary layer. In the thermal
boundary layer, there appear two regions with @Hi

@r ð1; hÞ > 0 for

the most of interface and @Hi
@r ð1; hÞ < 0 for a local part near the rear

of the droplet. They exhibit two thermal fluxes with different
directions across the interface and evolve as Ma number increases.
For large Ma numbers, the thermal flux across the interface at the
terminal states almost goes from the outside of the droplet to the
inside. Meanwhile, the isotherms in the internal domain of the dro-
plet exhibit different kinds of patterns depending on Ma numbers.
For Ma = 75.5, the pattern of the isotherms has a small cap-type
when the droplet migrates in the steady process. The lowest tem-
perature within the droplet is H2 ¼ 13:8 in the small cap-type iso-
therm and about 3.5 lower than the front temperature. The
constant temperature difference DH ¼ 3:5 between the outside
and inside of the droplet implies a steady migration precess. It is
based on the fact that the thermal convection and conduction are
two equally important to heat transfer in the system at moderate
Ma numbers. For Ma = 134.2, the pea-type isotherms are formed
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in the unsteady migration process. The lowest temperature within
the droplet is H2 ¼ 12 in the pea-type isotherm and about 6.2
lower than the front temperature. For Ma = 209.7, the isotherms
with two vortices are generated when the droplet is in the acceler-
ating process. The lowest temperature within the droplet is
H2 ¼ 11:2 in the center of the vortex and about 15.0 lower than
the front temperature. The temperature difference DH between
the outside and inside of the droplet increases from 6.2 to 15 when
Ma number increases from 134.2 to 209.7. This leads to an
unsteady migration precess. The reason is that the thermal convec-
tion around the droplet is a stronger way of the heat transfer in the
system than the thermal conduction across the droplet at large Ma
numbers. As shown in Fig. 6(c), DH=Re in the whole surface mono-
tonously decreases as h increases in the range of Ma numbers. For
Ma = 75.5, DH

Dh

�� ��
t=Re < DH

Dh

�� ��
b=Re. For Ma = 134.2, the above relation

holds, but their difference decreases. The surface tension of the
bottom surface, which is larger than that of the top surface, is
the main component of the driving force in Eq. (9). For

Ma = 209.7, DH
Dh

�� ��
t=Re > DH

Dh

�� ��
b=Re, and an inflection point @2H

@h2
¼ 0

� 	
appears near h ¼ p=2. The surface tension of the top surface, which
is larger than that of the bottom surface, is the main component of
the driving force in Eq. (9) after the inflection points appears. The
driving force on the droplet decreases first and then increases as
Ma number increases. From Figs. 4(c) and 6(c), it can be concluded
that the appearance of the inflection point implies that the driving
force will increase as Ma number increases.
5. Conclusions and discussions

To sum up, thermocapillary migration of a planar droplet at
moderate and large Ma numbers has been investigated analyti-
cally and numerically. Firstly, by using the dimension-analysis
method, the thermal diffusion time scale has been determined
as the controlling one of the thermocapillary droplet migration
system. During this time, the whole thermocapillary migration
process is fully developed. Then, by the aid of the front-
tracking method, the numerical simulations in a longer time
scale, which is beyond the thermal diffusion time scale, have
exhibited that the terminal states of thermocapillary droplet
migration at moderate and large Ma numbers are steady and
unsteady, respectively. In the terminal states, the instantaneous
velocity fields in the unsteady migration processes at large Ma
numbers have the forms of the steady ones at moderate Ma num-
bers. However, in view of the former instantaneous temperature
fields, the surface tension of the top surface of the droplet grad-
ually becomes the main component of the driving force on the
droplet after the inflection point appears. It is different from that
the surface tension of the bottom surface of the droplet is the
main component of the driving force on the droplet for the latter
ones. The analysis based on the time evolution of velocity and
temperature fields implies that the temperature difference
between the front and rear of the droplet is a constant for mod-
erate Ma numbers and has the increasing tread for large Ma
numbers. It satisfies/deviates from the requirement of steady
thermocapillary migration of the droplet at moderate/large Ma
numbers. These phenomena originate from the evolution of the
heat transfer across/around the droplet in the system depending
on Ma numbers. The significance of the thermal convection
around the droplet is higher than/just as the thermal conduction
across the droplet at large/moderate Ma numbers.
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Appendix A. A general solution of steady thermocapillary
migration of a planar droplet in the limits of zero Re and zero
Ma numbers

The steady incompressible continuous, momentum and energy
equations for the continuous phase fluid and the droplet in the lim-
its of zero Re and Ma numbers can be written in the following
dimensionless form in a polar coordinate system (r; h) moving with
the droplet velocity V1

r � vi ¼ 0;

rpi ¼
li

Re
Dvi;

DHi ¼ 0;

ð10Þ

where vi ¼ ðv ir;v ihÞ. The boundary conditions are written in the
form of dimensionless as

ðv1r ;v1hÞ ! ð�V1 cos h;V1 sin hÞ; p1 ! 0; H1 ! r cos h ð11Þ
at infinity and

v1rð1; hÞ ¼ v2rð1; hÞ ¼ 0;
v1hð1; hÞ ¼ v2hð1; hÞ;

n �P1 � n �P2 ¼ 1
ReCa

½rn�rr�;
H1ð1; hÞ ¼ H2ð1; hÞ;
@H1

@r
ð1; hÞ ¼ k2

@H2

@r
ð1; hÞ

ð12Þ

at the interface of the two-phase fluids, n is the unit vector normal

to the interface, Pi ¼ �piIþ li
Re ½rvi þ ðrviÞT � is the stress tensors of

the two-phase fluids. Following the methods for solving the linear
model [2,24], the solutions of the Eq. (10) with the boundary
conditions (11) and (12) can be determined as

W1ðr; hÞ ¼ �V1 r � 1
r


 �
sin h;

W2ðr; hÞ ¼ �V1rðr2 � 1Þ sin h;

p1ðr; hÞ ¼ 0;
p2ðr; hÞ ¼ p0

0 � 8l2V1r cos h=Re;

H1ðr; hÞ ¼ r þ 1� k2
1þ k2

1
r


 �
cos h;

H2ðr; hÞ ¼ 2
1þ k2

r cos h;

ð13Þ

where the velocity fields ðv ir;v ihÞ ¼ @Wi
r@h ;� @Wi

@r

� 	
are written in terms

of the stream functions Wiðr; hÞ of the two-phase fluids. The pres-
sure fields piðr; hÞ with a constant p0

0 are obtained by integrating
the momentum equations in Eq. (10).

In addition to the above boundary conditions (12) at the inter-
face, the steady thermocapillary droplet migration requires that
the total net force acting on the droplet is zero. In particular, the
zero net force in the vertical direction [1] is expressed asZ
S1

ðP1ns sinh�P1nn coshÞdS¼
Z p

0
ðP1ns sinh�P1nn coshÞjr¼1dh¼0:

ð14Þ
When the shear stress P1rh for the continuous fluid is replaced by
using the stress boundary condition in Eq. (12), the steady droplet
migration speed is derived as

V1 ¼ � 1
2pð1þ l2Þ

Z p

0

@H1

@h
ð1; hÞ sin hdh ¼ 1

2ð1þ l2Þð1þ k2Þ :

ð15Þ
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