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Abstract A simple and highly efficient method is devel-
oped for the one-step in situ preparation of carbon-
encapsulated MoO2 nanocrystals (MoO2@C) with core-
shell structure for high-performance lithium-ion battery
anode. The synthesis is depending on the solid-state reac-
tion of cyclopentadienylmolybdenum tricarbonyl dimer
with ammonium persulfate in an autoclave at 200 °C for
30 min. The large amount of heat generated during the
explosive reaction cleaves the cyclopentadiene ligands into

small carbon fragments, which form carbon shell after
oxidative dehydrogenation coating on the MoO2

nanocrystals, resulting in the formation of core-shell struc-
ture. The MoO2 nanocrystals have an equiaxial morphol-
ogy with an ultrafine diameter of 2–8 nm, and the median
size is 4.9 nm. Hundreds of MoO2 nanocrystals are encap-
sulated together by the worm-like carbon shell, which is
amorphous and about 3–5 nm in thickness. The content of
MoO2 nanocrystals in the nanocomposite is about
69.3 wt.%. The MoO2@C anode shows stable cyclability
and retains a high reversible capacity of 443 mAh g−1 after
50 cycles at a current density of 3 A g−1, owing to the
effective protection of carbon shell.
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Introduction

Lithium-ion batteries (LIBs) have been universally ac-
cepted as power sources for different kinds of consumer
electronics as well as electric/hybrid electric vehicles in
terms of their high energy density, long cycle life, tiny
memory effect, low toxicity, and cost (Jiang et al. 2014;
Sasaki et al. 2013; Mancini et al. 2011). The performance
of LIBs mainly depends on the intrinsic characteristics of
electrode material, and the commercial graphite anode
suffers from a low theoretical specific capacity of
372 mAh g−1 according to its fully lithiated stoichiometry
of LiC6 (Zhou et al. 2012; He et al. 2016). Consequently,
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in the past decades, a lot of efforts have been made
worldwide for exploring various candidates with different
nanostructure and physicochemical property to improve
the battery performance. Transitionmetal oxides typically
demonstrate significantly higher theoretical specific ca-
pacities than graphite and have been intensively investi-
gated as potential anodes in LIBs field (Ji et al. 2011).
Among them, molybdenum dioxide (MoO2) is one of the
most attractive electroconductive metal oxides and ex-
hibits a metallic type of conductivity with a small
resistivity of 8.8 × 10−5 Ω cm at room temperature
(Shi et al. 2009). Additionally, MoO2 can deliver a
high theoretical specific capacity of 838 mAh g−1

and possess a high electrochemical activity for the
storage of lithium-ions (Zhang et al. 2014). There-
fore, together with the affordable cost, MoO2 is
regarded as a very appealing anode candidate for
high-performance LIBs. However, MoO2 undergoes
a large volume change during lithium-ion insertion/
extraction process, and the kinetics associated with
the lithium reduction of MoO2 is sluggish because of
the incomplete four-electron lithiation, resulting in
serious capacity fading and poor cycling perfor-
mance (Zhou et al. 2011).

To address the aforementioned issues, MoO2 in
nanocrystalline forms is widely used to reduce the
diffusion path length for lithium-ions thereby im-
proving both capacity and cyclability (Sun et al.
2011; Ku et al. 2009). Another common strategy
involves incorporation of MoO2 with carbonaceous
materials, which can further enhance the electronic
conductivity and buffer the volume expansion
(Huang et al. 2014; Zhang and Yu 2015; Liu et al.
2013). Thus, MoO2/carbon nanocomposite is con-
sidered as a promising high-performance anode ma-
terial in LIBs, and several synthesis methods have
been developed. The hydrothermal reaction is pri-
marily used to fabricate MoO2 nanoparticles in so-
lution, in which ammonium heptamolybdate
((NH4)6Mo7O24 4H2O) (AHM) is almost the only
one precursor for the evolution of MoO2. For exam-
ple, MoO2 nanoparticles of 20–80 nm in diameter
homogeneously anchored on graphene oxides (GO)
were fabricated by keeping AHM in the GO suspen-
sion at 160–180 °C for 16–26 h, respectively
(Bhaskar et al. 2012; Wang et al. 2015; Xu et al.
2012). MoO2/graphene nanocomposite could be fur-
ther obtained by the addition of reducing agent
(citric acid) during the hydrothermal process or by

annealing treatment of MoO2/GO at 600 °C under
N2 atmosphere. Similarly, carbon-coated uniform
MoO2 porous nanospheres of 60–80 nm were pre-
pared by a hydrothermal treatment of AHM, ethyl-
ene glycol, and polyvinylpyrrolidone in an autoclave
at 180 °C for 60 h followed by a subsequent anneal
at 700 °C for 4 h in a flow of N2 (Wang et al. 2010).
It is evident that these multi-step synthesis processes
always involve long time treatment and high-
temperature annealing rather than the simultaneous
in situ generation because of the different formation
mechanisms of carbon and MoO2 (Liu et al. 2012a,
b). Otherwise, the carbon coating is prone to non-
uniformity on the small MoO2 nanoparticles, and the
products usually have a broad size distribution and
lacked regularity, leading to the unsatisfied rate ca-
pability and cycling performance. Consequently, it is
still an ongoing issue to explore simple, efficient,
high yield, and environmentally friendly preparation
techniques by new formation mechanisms for over-
coming the shortcomings of current methods.

In the present work, a novel solid-state reaction be-
tween cyclopentadienylmolybdenum tricarbonyl dimer
((C5H5)2Mo2(CO)6) and ammonium persulfate
((NH4)2S2O8) has been developed for the one-step in
situ preparation of carbon-encapsulated ultrafine MoO2

nanocrystals (MoO2@C) with core-shell structure.
MoO2@C with homogeneous morphology exhibits
high specific capacity and rate capability, as well as
excellent cycling stability.

Experimental

Materials and preparation

All the chemicals were received as analytical reagent
grade and used without further purification. In detail,
5 mmol of (C5H5)2Mo2(CO)6 (Cp2Mo2(CO)6) and
20 mmol of (NH4)2S2O8 (APS) were weighed and man-
ually milled by an agate mortar. Then, the homoge-
neously mixed reactants were sealed in an autoclave
with a 200-ml polytetrafluoroethylene (PTFE) liner
and held at 200 °C in an electric furnace for 30 min.
After the reaction, the as-prepared powder was thor-
oughly rinsed with deionized water and ethanol in se-
quence to remove the soluble byproducts, and 1.1 g of
MoO2@Cwas eventually obtained after being dried in a
vacuum oven at 60 °C.
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Characterization

Phase structures of the sample were characterized by X-
ray diffraction (XRD) using a PANalytical X’Pert PRO
diffractometer with Cu Kα radiation. Raman spectrum of
the carbon shell was recorded by a Bruker Senterra micro
Raman spectrometer with an excitation wavelength of
633 nm at 2 mW. The surface morphology, microstruc-
ture, and composition of the sample were analyzed by
field-emission scanning electron microscopy (SEM,
JEOL JSM 7500F) and transmission electronmicroscopy
(TEM, JEOL JEM2010) equipped with anX-ray energy-
dispersive spectroscopy system (EDS, EDAX). The re-
action behaviors of the reactants and the final product in
an ambient atmosphere were determined by differential
scanning calorimetry and thermogravimetric analysis
(DSC-TG, Netzsch STA 449F3) using open pans, respec-
tively. TheDSC of the reactants in a sealed aluminum pan
was also carried out on a Netzsch DSC 204F1 to simulate
the reactions in the autoclave. The Brunauer-Emmett-
Teller (BET) surface area, Barrett-Joyner-Halenda
(BJH), and density functional theory (DFT) pore size
distribution of MoO2@C were calculated from the ad-
sorption branch of the nitrogen isotherms at 77 K on a
Micromeritics ASAP 2020 porosimeter.

Electrochemical measurements

For the fabrication of working electrodes, MoO2@C,
acetylene black, and polyvinyl difluoride (PVDF) in a
weight ratio of 80:10:10 were evenly mixed in N-
methyl-2-pyrrolidone (NMP) solvent. The as-prepared
slurry was coated on a thin copper foil (ϕ = 14 mm)
and then thoroughly dried in vacuum at 120 °C. The
electrochemical tests were conducted by the assembly
of coin-type cell in an Ar-filled glove box with lithi-
um foil as the counter electrode separated by a
Celgard 2400 microporous polypropylene film. The
1.0 M LiPF6 solution in a mixture of ethylene carbon-
ate (EC) and dimethyl carbonate (DMC) (1:1 in vol-
ume) was used as the electrolyte. The galvanostatic
charge/discharge curves of cells were measured on a
battery testing system (Neware, BST-5V3mA) be-
tween 0.05 and 3 V versus Li/Li+ at different current
densities. The cyclic voltammogram (CV) was per-
formed on a CHI 630A electrochemical workstation
in the voltage range of 0.01–3.0 Vand at a scan rate of
0.5 mV s−1.

Results and discussion

The XRD results in Fig. 1a indicate that all the strong
diffraction peaks of the as-prepared black sample can be
indexed to (NH4)3H(SO4)2, which is regarded as themain
byproduct with good crystallinity ascribing to the decom-
position of APS. After removal of (NH4)3H(SO4)2
through the washing process, the sharp peaks located
at 2θ = 26°, 37°, and 53° can be unambiguously
assigned to the strongest characteristic peaks of
MoO2 (−111), (−211), and (−312), respectively. It
should be noted that the small peak at 2θ = 14° cor-
responds to the most intensive peak of MoS2 (002).
Since the peak of MoO2 (−111) is much stronger than
MoS2 (002), MoO2 are preferentially and abundantly
formed by the oxidation of Cp2Mo2(CO)6. On the
other hand, carbon diffraction peaks are absent, and
only a broad peak around 2θ = 22° can be found.
However, the carbon shell can be clearly proved by
the two typical D- and G-band Raman shifts located at
1360 and 1580 cm−1, respectively, as shown in
Fig. 1b. The relatively high-intensity D-band peak
confirms that amorphous carbon with lattice distor-
tion is obtained because the low synthesis temperature
is not beneficial to the formation of graphitizable
carbon. Notably, the as-prepared black powder in the
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autoclave emitted a pungent and irritating smell and
adhered to some small liquid droplets, which should
be SO2 and H2O. Consequently, according to these

products above, the major reaction formula in the
process is proposed as follows:

C5H5ð Þ2Mo2 COð Þ6 þ NH4ð Þ2S2O8→ CþMoO2

þ NH4ð Þ3H SO4ð Þ2 þ SO2 þ CO2 þ H2O

The low magnification SEM image of the MoO2@C
in Fig. 2a reveals that the sample has a uniform mor-
phology and consists of equiaxial nanoparticles, dem-
onstrating that the solid-state synthesis is very simple
and effective to yield a highly homogeneous product. It
is distinct that the nanoparticles have a typical diameter
less than 100 nm and aggregate together. At high mag-
nification, these nanoparticles obviously show core-
shell structure composed of white cores inside and an
exterior semitransparent thin layer, corresponding to
MoO2 nanocrystals and carbon shell (Fig. 2b). More-
over, the carbon layer encapsulates lots of MoO2

nanocrystals as a whole, rather than separately and
individually encapsulates each nanocrystal.

The TEM images can provide further details on the
morphology and microstructure of MoO2@C. In
Fig. 3a, it can be seen that the white inner cores under

Fig. 2 SEM images of the MoO2@C at different magnifications
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the carbon layer in SEM image are actually the agglom-
erated ultrafine nanocrystals. The worm-like carbon
shell is interconnected and encapsulates hundreds of
nanocrystals inside, exhibiting a uniform core-shell
structure. These small nanocrystals also show an
equiaxial morphology, and the carbon shell is about 3–
5 nm in thickness (Fig. 3b). The nanocrystal size is
accurately measured in several TEM images, and the
nanocrystals have an ultrafine size of 2–8 nm according
to the histogram (inset of Fig. 3b), where the median
size is 4.9 nm. As a reference, the mean size of MoO2

nanocrystals is also calculated by the Scherrer equation
(Supplementary Material, Fig. S1 and Table S1), which
is as small as 15.95 nm. Therefore, this method is more
inclined to form ultrafine MoO2 nanocrystals compared
to the general hydrothermal route (Bhaskar et al. 2012;
Wang et al. 2015; Xu et al. 2012; Wang et al. 2010).
Besides the nanocrystals, a small amount of few-layered
graphene-like structure indicated by the white arrows
can also be observed and the interlayer space is about

0.64 nm, which is in agreement with the (002) crystal-
line plane of hexagonal MoS2. It is illustrated that MoS2
and MoO2 are co-encapsulated by carbon, and MoO2 is
the dominant product. Additionally, graphene-like
MoS2 is also a popular anode material with high revers-
ible capacity and rate capability (Chang et al. 2013;
Huang et al. 2013; Yang et al. 2012), which can further
enhance the electrochemical properties of the nanocom-
posite. Figure 3c shows that a two-dimensional lattice
image of carbon encapsulated some typical equiaxial
nanocrystals. The carbon shell is further proved to be
amorphous according to its disordered lattice fringes.
On the other hand, lattice fringes in the two nanocrystals
can bewell indexed to (021) and (211), (−111) and (101)
planes of MoO2, respectively. The EDS spectrum of the
sample validates that C, Mo, O, and S are the main
elements, while the Cu signal is from the copper grid
(Fig. 3d). From tens of SEM and TEM images, it is
found that all the MoO2 nanocrystals are perfectly and
homogeneously encapsulated by carbon. Although the
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solid-phase-based synthesis is very simple, the morphol-
ogy and quality of MoO2@C can be effectively
guaranteed.

The DSC-TG analysis conducted in air atmosphere is
used to evaluate the composition of MoO2@C. The
weight loss around 400 °C in the TG curve is accompa-
nied by a strong exothermic peak in the DSC curve,
implying that the exterior carbon shell is burned off
during this stage (Fig. 4a). At the same time, the inner
MoO2 cores are exposed to oxygen and subsequently
oxidized to MoO3. After 500 °C, the oxidation of
MoO2@C is completed, and the TG curve shows a
steady plateau with a residue of 78.0% of the initial
mass. Consequently, the content of MoO2 nanocrystals
is finally calculated to be 69.3 wt.% regardless of the
MoS2 impurity. The nitrogen isotherms, BET surface
area, and total pore volume of the MoO2@C are shown
in Fig. 4b. The broad hysteresis loop in the relative
pressure range of 0.4–1.0 is associated with the exis-
tence of mesopores, and the upward curvature at the
relative pressure higher than 0.8 corresponds to the
cylindrical mesopores (Janssen et al. 2003). However,
the BET surface area and total pore volume of the
MoO2@C should be relatively small according to the
low adsorbing capacity under the pressure of 0.97,
which are calculated to be 42.0 m2 g−1 and
0.07 cm3 g−1, respectively. Therefore, it is reasoned that
carbon shell and MoO2 cores are in close contact with
each other. Furthermore, the isotherm indicates its
mesoporosity with the type IV on the basis of the
Brunauer, Deming, Deming, and Teller (BDDT) classi-
fication (Brunauer et al. 1940). The hysteresis loops of
the adsorption/desorption isotherms seem to be a mixed
type of H1 and H3 character that corresponds to cylin-
drical and slit-shaped pore geometries, respectively
(Arachchige 2007). The BJH pore size distribution of
the MoO2@C in Fig. 4c shows that mesopores less than
30 nm are dominant in the sample. The DFT pore size
distribution in Fig. 4d distinctly reveals micropores and
mesopores in the range of 1–2 and 5–30 nm, respective-
ly. The width of the pore size distribution curves is
similar in both cases, demonstrating the presence of
mesopores with wide size distribution in the MoO2@C.

Figure 5a shows the DSC-TG curves of the pure
APS and the mixture of Cp2Mo2(CO)6 and APS in
open alumina pans, respectively. It is obvious that the
pure APS will exothermically decompose at about
190 °C to create oxygen (Erdey et al. 1964). When
Cp2Mo2(CO)6 is added, the reaction temperature is

distinctly reduced to 186.5 °C (onset point), and the
mixture suffers a much stronger exothermic reaction
than pure APS according to the intensive peak in the
DSC curve. Meanwhile, the sample weight instanta-
neously loses 14.7% of the initial mass based on the
TG curve, which should be caused by the release of
generated gases. After that, the sample weight slowly
decreases with the increment of temperature. These
phenomena imply that an explosive reaction takes
place between the two solid reactants and a large
amount of heat and gases are generated. With the
purpose of simulating the reaction behavior in the
autoclave, the DSC analyses of the reactants in sealed
aluminum pans are further carried out, as shown in
Fig. 5b. A small new exothermic peak is revealed
around 148.0 °C for pure APS, and it is probably
due to the existence of a tiny moist air sealed in the
pan, which can promote the decomposition of APS.
The second peak around 190 °C is similar to that in the
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open pan and slightly shifts to the low-temperature
region. It can be explained that the decomposition prod-
ucts sealed in the reactor can further accelerate the
reaction. When Cp2Mo2(CO)6 is introduced, the ini-
tial peak at 131.5 °C is attributed to the decomposition
of APS under the residual moist air and the subse-
quent oxidation of Cp2Mo2(CO)6. Notably, the dom-
inant peak at 176.4 °C becomes much broader and
stronger, corresponding to the spontaneous ignition of
Cp2Mo2(CO)6 and liberation of H2O, CO2, and SO2.
It has been proved that the ammonium and oxidizing
ions tend to reduce the stability of metallocene com-
plexes and destroy the ferrocene-like sandwich struc-
ture at about 200 °C (Liu et al. 2007; Liu et al. 2014a,
b; Liu et al. 2012b; Liu et al. 2015a, b). Compared to
the reaction in the open pan, lots of heat and gases
generated in the process are encapsulated in the sealed
pan, quickly rising the temperature and pressure in the
reactor. Therefore, the temperature in the autoclave
wil l be much higher than 200 °C, and the
cyclopentadiene ligands in Cp2Mo2(CO)6 are cleaved
into small carbon fragments, which eventually turn to
carbon shell after oxidative dehydrogenation. In

addition, the Mo atoms and carbonyl groups in
Cp2Mo2(CO)6 will be oxidized to MoO2 and CO2,
respectively. On the contrary, APS is reduced to SO2

and (NH4)3H(SO4)2. It is also deduced that some APS
can be transformed to sulfur by deep reduction (Liu
et al. 2015a, b), which then combines with Mo to form
a few of MoS2. During the explosive reaction, carbon
fragments filled the autoclave inhibit the grain growth
of MoO2, resulting in the formation of ultrafine MoO2

nanocrystals. And the π interaction between Mo and
carbon fragments should be responsible for the crea-
tion of core-shell structure (Liu et al. 2016).

Figure 6a displays the first three CV cycle profiles for
MoO2@C anode at a scan rate of 0.5 mV s−1 between
0.01–3 V. The wide irreversible peak located at around
0.9 V only appears in the first cycle and can be associ-
ated with the formation of solid electrolyte interphase
(SEI) film on the carbon shell. In the subsequent cycles,
the pronounced broad redox couple located at 1.2/1.5 V
corresponds to the reversible phase transitions of par-
tially lithiated LixMoO2 during lithium insertion and
extraction (Zhou et al. 2011; Sun et al. 2011; Liu et al.
2014b). Otherwise, due to the existence of MoS2, the
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redox peaks at 1.7 and 2.3 V can be ascribed to two-step
Li-ion removal from Mo via reduction and oxidation of
Li2S into sulfur, respectively (Sen and Mitra 2013). The
charge/discharge profiles in Fig. 6b demonstrate that the
MoO2@C anode possesses an initial discharge and
charge capacity of 1301 and 921 mAh g−1, respectively,
corresponding to an irreversible capacity loss of 29% due
to the SEI film formation. The charge plateaus at 1.5 and
2.3 Vare in accordance with the CV curves.

The cycling stability and Coulombic efficiency of
MoO2@C anodes at various current densities are exhibited
in Fig. 6c. The MoO2@C anode shows good capacity
retention during the 50 successive cycles at 0.1 mA cm−2

(137 mA g−1) and still maintains a high reversible capacity
of 687 mAh g−1. When the current density is elevated, a
high reversible capacity of 656, 670, 591, 597, 500, and
443 mAh g−1 after 50 cycles can be obtained at 0.3, 0.6,
0.9, 1.2, 1.5, and 2.0 mA cm−2 (about 3 A g−1), respec-
tively. MoO2@C retains a higher capacity than the report-
ed pure MoO2 nanoparticles and most MoO2/carbon com-
posites at high rate, as summarized in Table 1, probably
owing to the entire carbon encapsulation and the stable

core-shell structure. The Coulombic efficiencies rapidly
increase to about 98% in the fifth cycle and are well
maintained around 100% in the following cycles, illustrat-
ing the ultrafineMoO2 nanocrystals enable the facile trans-
port of lithium-ions and electrons in the nanocomposite.
The rate capability of MoO2@C is investigated by step-
wise increasing the current density for every 10 cycles
from 0.1 to 2.0 mA cm−2 and then returning back
(Fig. 6d). The MoO2@C anode shows outstanding high
rate performance with a small decline in capacity as the
current density increase. Remarkably, when the current
density decreases from 2.0 to 0.1 mA cm−2, the capacity
of MoO2@C anode returns from 364 to 668 mAh g−1 at
once and further increases to a stable stage of
758 mAh g−1, implying that the anode is highly stable
and reversible.

In order to validate the effectiveness of carbon
shell protection, the morphology of the MoO2@C at
the current density of 3 A g−1 after different cycles
is studied by SEM, as shown in Fig. 7. After the
first cycle, the surface of the MoO2@C is smooth,
and some tiny cracks can be observed (Fig. 7a).

Table 1 A state-of-the-art litera-
ture review of the capacity of pure
MoO2 and MoO2@C composite
in the voltage of 0–3 V

Materials Current density
(mA g−1)

Cycle
number

Capacity
(mAh g−1)

Ref.

MoO2@C 137 50 687 This work
481 656

1187 591

3056 443

MoO2@C 200 50 629 Zhou et al. 2011
400 554

Hierarchical MoO2 200 20 719 Sun et al. 2011
MoO2 particles 328

MoO2@Graphene 200 50 813 Huang et al. 2014
1000 25 544

MoO2 particles 200 50 179

1000 25 115

MoO2 nanobelts@C 100 30 617 Yang et al. 2012
500 412

1000 327

MoO2@C 200 50 821 Liu et al. 2013
800 50 654

MoO2 particles 200 50 411

MoO2@Graphene 540 50 962 Bhaskar et al. 2012
1042 497

2045 427

MoO2 200 215
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Additionally, the width of some cracks becomes
bigger with the increment of cycling number, which
should be closely related to the MoO2 volume
change during lithium-ion insertion/extraction pro-
cess (Fig. 7c–g). However, the MoO2@C does not
peel off from the current collector and is highly
durable. At high magnification images, it is also
remarkable that core-shell structure can be indicated
by the white arrows, implying that the carbon shell
is sufficiently stable to suppress volume expansion
of MoO2 (Fig. 7b–h).

Conclusion

A novel and efficient low-temperature solid-state reac-
tion has been successfully developed for the one-step in
situ preparation of MoO2@C with core-shell structure.
The rapid generation of a large amount of heat in the

autoclave cleaves the cyclopentadiene ligands into small
carbon fragments, which form carbon shell after oxida-
t ive dehydrogenat ion coat ing on the MoO2

nanocrystals, resulting in the formation of core-shell
structure. The median size of ultrafine equiaxial MoO2

nanocrystals is 4.9 nm, and the thickness of amorphous
carbon shell is 3–5 nm. MoO2@C anode shows high
capacity and stable cyclability at fast charge/discharge
rate owing to the good protection of carbon shell.
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