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Aimed at the problem of isolator being seriously heated by aeroheating at a long time 

fly, effects of wall temperature on flow characteristics and performance of isolator are 

experimentally and numerically investigated in detail under the different entrance 

conditions including total temperature and total pressure. The results show that shock 

train is affected by the dual mechanism of isolator wall temperature and airflow total 

temperature. With an increase of wall temperature and a reduction of total temperature, 

the length of shock train increases. This tendency can be characterized by the variation 

of shock train length with ratio of wall temperature to total temperature, viz., shock 

train length increases with ratio of wall temperature to total temperature. Based on the 

present data, both the ratio of wall temperature to total temperature and specific heat 

ratio are introduced to modify the correlation of Waltrup and Billig [5] for predicting 

shock train length of practical design with the coverage of more physical influencing 

factors. 

Nomenclature 

H = Duct height, 50mm 

Ma = Mach number 

P = Pressure 

Reθ = Reynolds number based boundary layer momentum thickness 

R = Gas constant 

s = shock train length 

T = Temperature 

x = Streamwise coordinate originating at the isolator entrance 

y = Transverse coordinate originating at the half isolator height 

θ = boundary-layer momentum thickness 

γ = Specific heat ratio 

ρ = Density 
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Subscript 

B13 = Last measured point on the isolator bottom wall 

b = Isolator exit 

T1 = First measured point on the isolator top wall 

t = Stagnation condition 

w = Wall 

1 = Isolator entrance or starting position of shock train 

I. Introduction 

An isolator module is a constant or nearly constant area duct located between the inlet and combustor of 

scramjet [1-2]. Its role is to house shock train induced by heat release in a combustor and extend engine 

operation conditions such as higher equivalence ratio without incurring spillage or unstart [3]. In engine design, 

the isolator length has to be optimal to minimize the weight and drag of the overall system and fully hold shock 

train, and therefore it is vital to well understand shock train behavior and accurately calculate shock train length 

in the isolator under flight conditions. To resolve these issues, numerous investigations [4-13] have performed to 

examine the influence of parameters such as the entrance conditions, the exit back pressure ratio and geometric 

effects. It is found that the occurrence of shock train pattern strongly depends on the upstream Mach number and 

the boundary layer thickness. According to the review of Mtsuo et al. [4], there exist three basic shock structures 

for confined flows. When the approach Mach number is very low or upstream boundary layer is very thin, a 

single normal shock may exist. As the boundary layer thickness increases at low Mach numbers, a series of 

bifurcated normal shocks (normal shock train) form, along with a small boundary layer separation. At higher 

Mach numbers, a more severe shock wave-boundary layer interaction occurs, leading to the formation of 

multiple crossing oblique shocks (x-shaped shock train) with large scale separations. It is also revealed that for a 

given entrance condition, shock train length increases with an increase of the exit back pressure, and pressure 

profiles inside shock train present a similarity. Based on the experimental data measured from cylindrical ducts, 

Waltrup and Billig [5] developed an empirical relationship, which correlates shock train length (s) with Mach 

number (Ma1), back pressure ratio (Pb/P1), boundary-layer momentum thickness (θ), Reynolds number (Reθ) and 
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duct diameter (D). For a given back pressure ratio, shock train length varies inversely with (Ma1
2-l)Reθ

1/4 and 

directly with (Dθ)1/2. For a given upstream flow properties, shock train length is a quadratic function of Pb/P1. A 

further study by Bement et al. [11] confirmed that the Waltrup and Billig correlation is also applicable to 

calculate shock train length in a rectangular isolator by replacing cylinder diameter with duct height of 

rectangular section, but a discrepancy exist between the predicted curve and experimental data. The difference 

should be attributed to geometric differences [12-13].  

These fruitful achievements promote a deep understanding of shock train structures and isolator design, but 

most of results are obtained using room-temperature supply air or cold air as flow gas (Tt=300K), so that the 

role of air temperature and heat transferred from airflow to the isolator wall cannot be taken into account. At 

real flight conditions, the air temperature in the isolator is high, and the isolator walls are also subjected to 

severe aerodynamic heating [14, 15], resulting in the isolator surfaces being heated up. Accordingly, the 

boundary layer thickness on the wetted surfaces increases, as well as an increase of the gas static temperature in 

the boundary layer, reducing the fullness of boundary layer profile and the gas density. Thus an increase of wall 

temperature will lead to a more likely separation of boundary layer, as Coet and Chanetz [16], Bleilebens and 

Olivier [17], Olivier and Habermann [18], Reinartz [19] and John et al. [20] discovered. Their work also 

suggests that the boundary layer separation scale induced by shock wave increases with an increase of wall 

temperature. From these results, it can be inferred that the ability of isolator holding shock train will go down 

with an increase of wall temperature. This tendency coincides with the research results of Cuffel [15], Fisher et 

al. [21-23] and Lin et al. [24, 25], but is contrary to the findings of Fischer and Olivier [26]. Fischer and Olivier 

[26] believed that the opposite effect should be attributed to the wall being heated up beyond the recovery 

temperature of the airflow. Furthermore, the boundary-layer profile in the correlation of Waltrup and Billig [5] 

is denoted by boundary-layer momentum thickness, which indirectly involves the wall temperature influences, 
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but whether it fully covers the wall temperature effects or not still need be checked. As mentioned above, the 

effects of surface temperature and gas total temperature on shock train have not been well elucidated. This paper 

describes our recent efforts in confirming the effects of surface temperature on shock train and isolator 

performance by a combination of experimental and numerical tests. 

II. Experimental and numerical description 

A. Experimental description 

Experiments described here were carried out in a direct-connect test facility, composed of a heater, a 2D 

nozzle, an isolator and a throttle valve to simulate back pressure rise induced by heat release. In the heater, 

compressed dry air was heated to the required total temperature (Tt) and total pressure (Pt) by hydrogen 

combustion and oxygen replenishment. A two dimensional nozzle designed for a Mach number of 2.5 was used 

in conjunction with a nearly constant-area isolator with a length of 600mm and a cross-section area of 

50×70mm2. Isolator walls were uniformly heated by a heated ceramic chip, and wall temperatures of vertical 

and horizontal sides were almost identical. Wall static pressure taps were located on the centerline of the top, 

bottom and side wall, respectively, as shown in Fig. 1. On the top wall, there were 24 pressure transducers at 

intervals of 20mm, denoted by “T1~T24” in Fig. 1. On the bottom wall, there were 13 pressure transducers at 

intervals of 40mm, denoted by “B1~B13” in Fig. 1. On the side wall, there were 8 pressure transducers, denoted 

by “S1~S8” in Fig. 1. Additionally, 12 K-type sheathed thermocouple denoted by “Tw1~Tw12” in Fig. 1 were 

located on the centerline of the bottom wall to monitor the heating process of isolator walls. Pressure profiles on 

isolator walls were measured at different isolator wall temperatures for different back pressures. 
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Fig. 1 Schematic of experimental isolator and measuring tap distributions 

B. Numerical description 

In addition to the measurements, numerical simulations were performed on a 2D domain including nozzle 

and isolator to provide tremendous information to understand the flow phenomenon. The current numerical 

algorithms are the same as those in our previous studies [27-29]. The full N-S equations for two-dimensional 

turbulent flow are solved by the finite volume method. The turbulence model of k- SST is employed to close 

the governing equations. The numerical flux through each cell face is evaluated using a second-order total 

variation diminishing (TVD) scheme based on an approximate Riemann solver named Harten-Lax-van Leer 

contact (HLLC). The minmod limiter is used to suppress spurious oscillations near the discontinuities while 

high-order accuracy is retained away from the jumps. A second-order fully implicit scheme is employed to 

discretize the time terms. In addition, methods of multi-grid and dual time-step are used to accelerate the 

convergence. 

A comparison between numerical and experimental results was also made to guarantee the credibility of 

numerical results under the conditions of Tt=1500K, Pt=1.0MPa, γ=1.33 and the wall temperature of isolator and 

nozzle being equal to 300K, as shown in Fig. 2. From Fig. 2b, it can be seen that numerical results are in 

agreement with the experiment data, in spite of some scatter being present. Additionally, the mass-weighted 

average Mach number at the nozzle exit from simulation is 2.5, consistent with the design condition. Thus our 

results from CFD simulations can further assist in understanding effects of wall temperature on shock train.  

D
ow

nl
oa

de
d 

by
 C

H
IN

E
SE

 A
C

A
D

E
M

Y
 O

F 
SC

IE
N

C
E

S 
on

 M
ay

 4
, 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
47

08
 



 

a) Mach contours 

 

b) Wall pressure distributions 

Fig. 2 Numerical verification at the condition of Tt=1500K, Pt=1.0MPa, γ=1.33 and wall temperature of 

isolator and nozzle is equal to 300K. 

III. Results and discussion 

This section presents the effects of wall temperature and back pressure on shock train at two experimental 

flow conditions and one numerical flow condition. Condition I corresponds to the experimental condition of 

total temperature Tt=1500K, total pressure Pt=1.0MPa, and Mach number Ma1=2.5 at the isolator entrance. 

Condition II corresponds to the experimental condition of total temperature Tt=1000K, total pressure 

Pt=0.84MPa, and Mach number Ma1=2.5 at the isolator entrance. Condition III corresponds to the numerical 

condition of total temperature Tt=1000K, total pressure Pt=1.0MPa, and Mach number Ma1=2.5 at the isolator 

entrance. In order to enrich flow information, numerical tests with a constant specific heat ratio of 1.33 at the 

condition I and III are also performed on a two-dimensional domain including a nozzle and isolator where the 

nozzle wall temperature is specified as 300K, identical to experimental tests. Although two dimensional 

numerical results cannot reflect three dimensional effects in a rectangular isolator, they assist to elucidate 
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experimental phenomenon and qualitatively demonstrates the influencing trend of wall temperature on shock 

train and isolator performance. 

A. Shock train length 

A combination of experimental and numerical tests was conducted to study the variation trend of shock train 

length with wall temperature for different back pressures. The typical results are exhibited in Figs. 3~6 and 8, 

together with Table 1. Wall pressure rise is used to characterize shock train length. Figure 3 shows the 

experimental wall pressure distributions for different wall temperatures at the condition I and PB13/PT1≈3.9, 

where wall static pressure P is normalized by the pressure PT1 of the first measure point on the top wall and the 

exit back pressure generated by throttling is characterized by PB13/PT1. From Fig. 3a and 3b, it can be seen that 

little difference exists in wall pressure profiles and the starting position of pressure rise for Tw=300K, Tw=700K 

and Tw=900K, which is identical to the results of Fischer and Olivier [26] at a low back pressure level. This 

indicates wall temperature has little influence on shock train length at a low back pressure level.  

With an increase of back pressure, shock train obviously turns long, and a notable difference is observed 

from the top and bottom wall pressure distributions for Tw=300K, Tw=500K and Tw=700K at the condition I, as 

shown in Fig. 4, which corresponds to PB13/PT1≈4.3. As can be seen, with an increase of wall temperature, the 

starting position of shock train moves upstream, and wall pressure around the starting position of pressure rise 

also increases but that close to the exit is approximate to the same pressure level. This suggests that shock train 

length increases with an increase of wall temperature, leading to a reduction in the ability of isolator holding 

shock train. This conclusion is consistent with Chang et al’ findings that wall cooling improves the maximum 

back pressure ratio of isolator [30].  

With a further increase of back pressure, shock train moves close to the isolator entrance, and wall 

temperature effect is more visible, as shown in Fig. 5, which presents the experimental wall pressure 
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distributions for Tw=300K, Tw=500K, Tw=700K and Tw=900K at the condition I and PB13/PT1≈5.2. It can be seen 

that the variation of shock train length with wall temperature is the same as Fig. 4, but an increase is identified 

in the increment of shock train length for the same two wall temperatures. This disparity for different back 

pressure can be more easily observed from experimental statistical results in Fig. 6. Figure 6 shows a series of 

experimental data distributions on variation of shock train length s with back pressure ratio PB13/PT1 between 

Tw=300K and Tw=900K at the condition I. Here shock train length s for a specific back pressure ratio PB13/PT1 is 

defined as the streamwise distance between the last measure point B13 and the shock train starting position xst 

depicted in Fig. 7. xst is specified as the first measure point whose pressure being greater than or equal to 1.1PT1. 

Due to the existence of some scatter in Fig. 8, the trend line is plotted to specifically underline the effect of wall 

temperature on shock train length. For a constant shock train length, back pressure ratio PB13/PT1 reduces with an 

increase of wall temperature. The difference in PB13/PT1 between Tw=300K and Tw=900K increases with an 

increase of shock train length. These characteristics can be quantitatively observed from numerical results in Fig. 

8 and Table 1. For example, the difference of shock train length between Tw=300K and Tw=500K, Tw=700K, 

Tw=900K for Pb/P1=4.8 is in sequence 11-, 20-, 29-mm while for Pb/P1=4.8 is in sequence 13-, 24-, 33-mm. 

From the contents stated above, it can be found that the extent of wall temperature effect enhances with an 

increase of back pressure, indicating that wall temperature effect mainly appears in the interaction of waves with 

boundary layer. From Fig 8, it can be known that shock train mainly consists of a series of X type shocks, and 

the number of X type shock grows with back pressure. Naturally, wall temperature effect is strengthened by an 

increasing number of X type shock. At low back pressure, shock train just contains a few of X type shocks so 

that wall temperature effect is extremely weak and cannot be visible in wall pressure distributions due to the 

insufficient measure point. At high back pressure, shock train contains a series of X type shocks, and therefore 

wall temperature effect is bound to be more apparent. 
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a) Top wall        b) Bottom wall 

Fig. 3 Wall pressure distributions of the rectangular isolator for different wall temperatures at the 

condition I and PB13/PT1≈3.9 (experiment). 

  

a) Top wall        b) Bottom wall 

Fig. 4 Wall pressure distributions of the rectangular isolator for different wall temperatures at the 

condition I and PB13/PT1≈4.3 (experiment). 

  

a) Top wall        b) Bottom wall 

Fig. 5 Wall pressure distributions of the rectangular isolator for different wall temperatures at the 

condition I and PB13/PT1≈5.2 (experiment). 
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Fig. 6 Statistical analysis on variation of shock train length s with back pressure ratio PB13/PT1 between 

Tw=300K and Tw=900K at the condition I (experiment). 

 

Fig. 7 Definition of shock train length s for a specific back pressure ratio PB13/PT1. 

  

a) Pb/P1=4.8         b) Pb/P1=6.2 

Fig. 8 Mach contours for different wall temperatures from the 2D numerical simulation at the condition I 

and different back pressures. 

 

Table 1 Shock train length distributions for different wall temperatures from 

CFD simulation at the condition I 

      Wall condition 

Back pressure 

Tw(K) 300 500 700 900 Adiabatic wall 

Tw/Tt 0.2 0.33 0.47 0.6 ≈1 

Pb/P1=4.8 
s(mm) 250 261 270 279 296 

Δs(mm) 0 11 20 29 46 

Pb/P1=6.2 
s(mm) 403 416 427 436 450 

Δs(mm) 0 13 24 33 47 

With an increase of back pressure, the starting position of shock train moves upstream, and its corresponding 

boundary layer momentum thickness reduces with wall temperature. According to the correlation of Waltrup 

D
ow

nl
oa

de
d 

by
 C

H
IN

E
SE

 A
C

A
D

E
M

Y
 O

F 
SC

IE
N

C
E

S 
on

 M
ay

 4
, 2

01
7 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
47

08
 

http://arc.aiaa.org/action/showImage?doi=10.2514/6.2016-4708&iName=master.img-046.jpg&w=198&h=148
http://arc.aiaa.org/action/showImage?doi=10.2514/6.2016-4708&iName=master.img-046.jpg&w=198&h=148
http://arc.aiaa.org/action/showImage?doi=10.2514/6.2016-4708&iName=master.img-046.jpg&w=198&h=148
http://arc.aiaa.org/action/showImage?doi=10.2514/6.2016-4708&iName=master.img-046.jpg&w=198&h=148
http://arc.aiaa.org/action/showImage?doi=10.2514/6.2016-4708&iName=master.img-046.jpg&w=198&h=148
http://arc.aiaa.org/action/showImage?doi=10.2514/6.2016-4708&iName=master.img-046.jpg&w=198&h=148
http://arc.aiaa.org/action/showImage?doi=10.2514/6.2016-4708&iName=master.img-052.jpg&w=198&h=78
http://arc.aiaa.org/action/showImage?doi=10.2514/6.2016-4708&iName=master.img-052.jpg&w=198&h=78
http://arc.aiaa.org/action/showImage?doi=10.2514/6.2016-4708&iName=master.img-052.jpg&w=198&h=78
http://arc.aiaa.org/action/showImage?doi=10.2514/6.2016-4708&iName=master.img-055.jpg&w=198&h=104
http://arc.aiaa.org/action/showImage?doi=10.2514/6.2016-4708&iName=master.img-056.jpg&w=197&h=104


and Billig [5] expressed as Eq. (1), shock train length varies directly with θ0.25. For a constant Mach number and 

Reynolds number, shock train length from Eq. (1) should gradually decreases reduces with wall temperature. 

This predicted tendency is contrary to our results. Consequently, wall temperature effect cannot be elucidated by 

the boundary-layer momentum thickness θ, the only parameter involved wall temperature effect in Eq. (1), and 

another dimensionless parameter has to be introduced to elucidate this influence. To figure out this parameter, a 

further numerical computation is performed at the condition III where Tt=1000K, Pt=1.0MPa, and Ma1=2.5, as 

shown in Fig. 9 and Table 2. Compared to Fig. 9a and Table 1, shock train length obtained from the condition 

III is almost identical with that obtained from the condition I as long as the ratio of wall temperature to gas total 

temperature is approximately the same. For example, when Tw/Tt≈0.3, shock train length for Tw=300K and 

Tt=1000K is 256mm at Pb/P1=4.8 while that for Tw=500K and Tt=1500K is 261mm. The tiny difference may be 

attributed to the disparity of Reynolds number for the two numerical conditions. To confirm numerical results, a 

series of experimental tests were conducted at the condition II where Tt=1000K, Pt=0.84MPa, and Mach number 

Ma1=2.5. The typical experimental results are shown in Fig. 10. Figure 10 presents statistical results on variation 

of shock train length s with back pressure ratio PB13/PT1 for a constant ratio of wall temperature to total 

temperature (Tw/Tt=0.6) with the two experimental conditions (Condition I and II). Some scatter exists in Fig. 

10 due to the difference of Reynolds number, but it is experimentally demonstrated that shock train length is 

mainly dependent on the ratio of wall temperature to gas total temperature if the main factors except wall 

temperature and gas total temperature are approximately consistent. In addition, shock train length increases 

with the ratio of wall temperature to gas total temperature, as shown in Fig. 9 and Table 1 and 2, which 

coincides with the findings of Lin et al. [24, 25].  
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Fig. 9 Mach contour for different wall temperatures for PR=4.8 from the 2D numerical simulation at the 

condition III. 

Table 2 Shock train length distributions for different wall temperatures from 

CFD simulation at the condition III 

      Wall condition 

Pressure ratio     

Tw(K) 300 500 700 900 Adiabatic wall 

Tw/Tt 0.3 0.5 0.7 0.9 ≈1 

Pb/P1=4.8 
s(mm) 256 277 284 294 295 

Δs(mm) 0 21 28 38 39 

 

 

Fig. 10 Statistical analysis on variation of shock train length s with back pressure ratio PB13/PT1 for a 

constant ratio of wall temperature to total temperature (Tw/Tt=0.6) with the two wall and total 

temperatures being different from each other (experiment). 

B. Physical Mechanism 

The inner physical mechanism of an increase in wall temperature degrading isolator performance and 

increasing shock train length can be explained in below. Figure 11 shows typical static temperature profiles in 

the boundary layer for different wall temperatures. It can be noted that static temperature level in the boundary 

layer increases remarkably with wall temperature. Because static pressure keeps constant for different wall 

temperatures, the density increases considerably with wall temperature from the state P=ρRT. Thus the effect of 

wall cooling is to reduce the boundary layer thickness , as reported in the literature [28]. The fullness of 
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velocity distributions in the boundary layer can be denoted by u∞/. Consequently, with an increase of wall 

temperature, both velocity u and density ρ reduces, leading to a reduction of kinetic energy ρu2 in the boundary 

layer. Correspondingly, the incipient pressure separating the boundary layer drops. This will lead to a more 

easily formation of shock train in the isolator with high wall temperature. Consequently, shock train length 

increases with an increase of wall temperature for a constant back pressure level.  

From the definition of boundary layer momentum thickness Eq. (2), a striking feature is identified that 

boundary layer momentum thickness θ will decrease with wall temperature. Shock train length s predicted by 

the correlation Eq. (1) of Waltrup and Billig [5] will reduce. The predicting tendency conflicts with our results 

and majority of previous conclusions [15, 21-25]. An improved correlation is urgently needed to accounting for 

wall temperature effects. 

 

Fig. 11 Typical static temperature profiles in the boundary layer for different wall temperatures 
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1
u u
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C. Correlation of shock train length and wall temperature effects  

Although Eq. (1) is derived from the cold airflow experiments with a cylindrical isolator, it still works in 

principle for rectangular cross sections if the parameter D is replaced by the duct height H [11]. As noted in Sec. 
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III.B, it is concluded that the ratio of wall temperature to gas total temperature can be introduced to characterize 

wall temperature effect on shock train. Thus we propose the following relationship denoted by Eq. (3) to cover 

the relevant parameters. 

 
 
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 (3) 

From the reference [1], it is known that the specific heat ratio γ of air will reduces with an increase of static 

temperature when static temperature is larger than 400K, and otherwise γ=1.4. Data to correlate Eq. (1) are 

obtained from the airflow experiments where γ=1.4, but our data are obtained from the high enthalpy flow tests 

where γ≈1.33. Thus the specific heat ratio effect also need be considered. From the oblique shock relationship 

denoted by Eq. (4), we known that pressure ratio P2/P1 across an oblique shock with shock angle of β will 

reduce with a reduction of γ for a constant approach Mach number, contributing to a longer shock train. In view 

of shock train consisting of a series of X type shocks, the form of γ in Eq. (4) is adopted in Eq. (5) to 

characterize specific heat ratio effect on shock train. To coincide with Eq. (1) for γ=1.4 at the absence of wall 

temperature effect, let 2 20
1 =1.4 1

1
1
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（ ）

  
 


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1

1.4
=1.7-

Ma
. Thus Equation (5) is 

expressed as Eq. (6). It can be noted that shock train length given by Eq. (6) increases with a reduction of γ for a 

fixed back pressure, consistent with physical mechanism. 
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According to Eq. (6), the function f(Tw/Tt) can be calculated using the known parameters of s, Ma1, γ, θ1, 

1
Re , Pb/P1 and H, where the subscript 1 denotes the starting location of shock train. Due to the parameters Ma1, 

θ1 without measured in the experiments, the function f(Tw/Tt) are only obtained from numerical data. The 

mass-average Mach number is calculated by Eq. (7), and the boundary layer momentum thickness is computed 

by Eq. (8). The flow-channel geometry height H is 50mm. Figure 15 shows the variation of the function f(Tw/Tt) 

with the ratio Tw/Tt based on the present data. It can be observed that the function f(Tw/Tt) reduces nonlinearly 

with an increase of the ratio Tw/Tt. When the ratio Tw/Tt increases from a small value, the f(Tw/Tt) drops rapidly. 

When Tw/Tt → 1, the slope of the function f(Tw/Tt) with the ratio Tw/Tt turns small. Thus a power function 

expressed by Eq. (9) is introduced to characterize this tendency. To make the correlation be as simple as 

possible, φ1 and φ2 in Eq. (9) are viewed as the unknown constant coefficients, leading to φ1=1.91 and φ2=-0.18. 

Some scatter is noted in Fig. 12 due to the lack of accounting for the mutual interaction between wall 

temperature effects and back pressure levels. Substitute the Eq. (9) into Eq. (6), a modified correlation Eq. (10) 

is finally settled. Figure 13 shows the degree of success obtained in the correlation Eq. (10). Some scatter is 

present but Equation (10) adequately represents all of the data. Compared with the correlation Eq. (1) of 

Waltrup and Billig [5], the modified correlation covers more physical influencing factors, not only considered 

the wall temperature effect, but counted for the specific heat ratio influence, and can well explain the main 

factor effects on shock train length. Need of special note is that the data to correlate Eq. (10) is just from 2D 

numerical simulation at the condition of Ma1=2.5. The prediction accuracy of Eq. (10), especially at other flow 

conditions and geometries, needs to be verified by the further experimental data.  
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Fig. 12 Variation of the function f(Tw/Tt) with the ratio Tw/Tt based on numerical data. 

 

Fig. 13 A comparison of our numerical data against those from Eq. (10). 

IV. Conclusions 

Experiments were carried out to study effects of temperature on shock train structures and isolator 

performance in a direct-connect test facility using high-temperature vitiated air. A 2D supersonic nozzle with 

Mach number of 2.5 was used to provide the supersonic flow entering the isolator with a 50mm×70mm 

rectangular configuration. Wall static pressures and surface temperatures along isolator walls were measured to 

characterize shock train lengths and pressure profiles at two typical experimental conditions. In addition to the 
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measurements, numerical simulations were performed on a 2D domain including nozzle and isolator to provide 

more tremendous information. Numerical quantitative data were also employed to correlate wall temperature 

effects. The major conclusions were as follows: 

(1) Wall temperature plays an important role in the length of shock train. With an increase of wall 

temperature, shock train length increases and isolator performance degrades, consistent with majority of 

previous conclusions [15, 21-25] but contrary to the tendency given by the correlation of Waltrup and Billig [5]. 

An improved correlation is urgently needed to accounting for wall temperature effects. In addition, the extent of 

wall temperature effect enhances with an increase of back pressure level. 

(2) Wall temperature effect can be can be characterized by the ratio of wall temperature to gas total 

temperature. Shock train length increases with ratio of wall temperature togas total temperature. In view of the 

difference in specific heat ratio between high-temperature vitiated air and cold airflow, both the ratio of wall 

temperature to total temperature and specific heat ratio are introduced to improve the correlation of Waltrup and 

Billig [5] for predicting shock train length of practical design. The modified correlation covers more physical 

influencing factors, and can well explain the variation trend of shock train length with the main factors.  

(3) Need of special note is that the modified correlation based on our numerical data needs to be verified by 

the further experimental data, especially at other flow conditions and geometries. The physical phenomena of 

the observed wall temperature effect are also present at other flow conditions and geometries, and so similar 

behavior of the flowfield is expected there as well. 
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