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A linear frequency response of compressible axisymmetric jets to an external periodic perturbation 

of real frequency at the jet exit was analyzed based on energy integral method. The focus of the 

analysis is on the dependence of jet-preferred mode, characterized by the non-dimensional Strouhal 

number 𝑆𝑡𝑝 , on the jet parameters, such as the Reynolds number, the amplitude of perturbation, the 

momentum thickness, and particularly the jet Mach number 𝑀0,  at the jet exit. The results show that 

𝑆𝑡𝑝  decreases first with increasing 𝑀0  from zero because the suppression effect of flow 

compressibility on the growth of high-frequency perturbations is stronger than that of low-frequency 

ones. As 𝑀0 increases to above a critical value, the suppression is of approximately the same extent 

to all the perturbations. Consequently, 𝑆𝑡𝑝 starts to increase because the jet development favors high-

frequency perturbations, which have higher rates of energy transfer from the base jet flow and hence 

larger growth rates. With further increasing 𝑀0 ,  𝑆𝑡𝑝 decreases again mainly because the viscous 

dissipation suppresses the growth of high-frequency perturbations more significantly than that of 

low-frequency ones. The influences of the Reynolds number, the amplitude of perturbation, and the 

presumed length of potential core were investigated to substantiate the non-monotonic variation of  

𝑆𝑡𝑝 with 𝑀0. The present theoretical results were found to agree well with available experimental 

results and the existing discrepancies were discussed.  
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at the both boundaries of 𝑟 = 0 and 𝑟 = ∞, one has the relation 
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so that the Rayleigh can be asymptotically approximated by the modified Bessel equation 
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The asymptotic solutions of (A6) are 

�̂�(𝑟 → 0) ∼ 𝐶1𝐼0 (𝛼√1 − 𝑀2Ω(0)𝑟)                                                 (𝐴9) 

and  

�̂�(𝑟 → ∞) ∼ 𝐶2𝐾0 (𝛼√1 − 𝑀2Ω(∞)𝑟)                                            (𝐴10) 
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