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• High resolution computations of capillary gravity wave packets from primitive fluid equations.
• Primitive dynamics of packets compared to solutions of critical, focussing, 2D NLS.
• Similarities and contrasts with focussing of light beams in Kerr media discussed.
• Long time dynamics – beyond validity of NLS – explored.
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a b s t r a c t

The dynamics of focussing of extended patches of nonlinear capillary–gravity waves within the primitive
fluid dynamic equations is presented. It is found that, when the envelope has certain properties, the patch
focusses initially in accordance to predictions from nonlinear Schrödinger equation, and focussing can
concentrate energy to the vicinity of a point or a curve on the fluid surface. After initial focussing, other
effects dominate and the patch breaks up into a complex set of localised structures – lumps and breathers
– plus dispersive radiation. We perform simulations both in the inviscid regime and for small viscosities.
Lastly we discuss throughout the similarities and differences between the dynamics of ripple patches and
self-focussing light beams.
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1. Introduction

The nonlinear Schrödinger equation (NLS) is a universal model
that appears in many contexts in science, including nonlinear op-
tics, plasma physics, and hydrodynamics [1] and provides a canon-
ical description for the evolution of the envelope of dispersive
and/or diffracting quasi-monochromatic, plane, weakly nonlinear
waves. The envelope of free-surface water-wave packets can thus
be approximated by 2 + 1 dimensional cubic NLS equation in the
small-amplitude deep-water limit [2]. For capillary–gravity (CG)
waves, that is, when the effects due to gravity and surface ten-
sion are equally important, the associated NLS equation is of the fo-
cusing type [3,2]. This equation has solutions which, under certain
conditions, become singular in finite time [4]. The natural question
we address in this paper is to what extent the focussing collapse
behaviour, whereby the energy of the wavepacket is focussed to
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the neighbourhood of a point or a curve, can be observed in the full
surface wave equations (confirming the NLS prediction) when ap-
propriate initial conditions are given. Furthermore, one would also
like to find out what physical effects, if any, arrest the focussing,
and the dynamical behaviour that ensues after the focussing time.

Nonlinear capillary–gravity are of intrinsic interest due to
their complexity and play an important role in atmosphere–ocean
coupling (see e.g. [5]). In contrast to the KdV soliton which
occurs in two-dimensional shallow water and is localised only
in the propagation direction, fully localised CG solitary waves
(‘‘lumps’’) can be found on the surface of a three-dimensional
fluid of arbitrary depth [6]. In very shallow water (characterised
by a Bond number σ/ρgd2 larger than 1/3 corresponding to a
depth d of a few millimetres in water), these lumps bifurcate
from zero wavenumber and can be approximated by solutions
of the Kadomtsev–Petviashvili (KPI) equation [7]. This regime is
physically less realistic in view of the additional dissipation due to
bottom friction. In amore realistic, deeperwater regime (when the
Bond number is less than 1/3—see Table 1 for physical parameters)
these lumps bifurcate from the minimum of the dispersive phase-
speed occurring at finite wavenumber [3,8,6]. Therefore, small-
amplitude lumps in deep water can be approximately constructed
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Table 1
Physical parameters for water and mercury.

Parameter Symbol Water Mercury

Fluid density ρ (kg/m3) 998 13579
Surface tension σ (N/m) 0.0728 0.48
Kinematic viscosity ν (m2/s) 1.307 × 10−6 0.114×10−6

Reynolds number Re 341 2270
CG wavelength (k = 1) λ (cm) 1.7 1.2
CG phase speed (k = 1) cp (cm/s) 16.1 13.6
Deep water regime (cm) >0.9 >0.6

by using the localised ground state of the focussing NLS (called
the Townes profile [9]) to modulate a carrier wave with minimum
phase speed [3,10], and occur in a variety of models where they
also coexist with unstable elevation waves [3,11]. These small-
amplitude lumps are known to be unstable, which can be seen
by either recalling that the Townes Profile is unstable within the
focussing NLS or by direct computation on the full equations.
However, certain larger-amplitude lumps occurring on the same
branch of solution beyond the regime of validity of NLS have
been constructed numerically, and are stable [6,10]. In addition,
these lumps coexist with stable breathers which appear in time
dependent computations. These lumps and breathers seem to act
as ‘‘attractors’’ for the dynamics of the inviscid CGwaveswhenever
wavepackets constructed from a perturbed TP or from higher
energy states of NLS evolve in time [10]. The stable structures
will play an important part in the evolution of more general
collapsing wavepackets considered here, particularly in arresting
the focussing dynamics.

Deep water lumps have recently been observed in laboratory
experiments with water, where they are excited by a moving jet
of air, directed at the surface, at a constant subcritical speed. The
lumps are generated behind the jet where free depression lumps
are shed, but then quickly dissipate due to the viscous effect [12].
Simulations of a similarmechanism – albeit in shallowwater –was
discussed in [13].

In this paper we report the results of ‘‘numerical wavetank’’
experiments in the modulated CG wave regime. Direct time-
dependent numerical simulations of surfacewaves in the primitive
Euler equations with a variety of initial data consisting of modu-
lated CGwaves (Gaussian, super-Gaussian etc.) are performed. The
computations are achievedwith a truncated Hamiltonian formula-
tion of potential flow, and, in some cases, include a small-viscosity
limitmodel [10]. Our results confirm the self-focussing predictions
of the cubic NLS, and show an eventual breakdown of the focussing
structures into a complex set of localised lumps and breathers,
together with some dispersive radiation. The transition between
an NLS-like focussing behaviour and the emergence of lumps and
breathers occurs when the modulation lengthscale has focussed
to be comparable to the carrier wavelength. The phenomena com-
puted here should be observable in laboratory wave experiments
using mercury [14], or water in microgravity, as these conditions
would reduce the relative effect of viscosity (see Table 1).

The universality of the NLS equation and its centrality in
nonlinear optics has led recently to many water-wave-nonlinear
optics analogies, primarily between gravity waves on the surface
of a two dimensional fluid domain, such as undular bores, the
Peregrine soliton, etc. and light propagation in optical fibres (see,
for example, [15,16] and references therein). In a similar spirit we
also discuss analogies and contrasts between three-dimensional
capillary–gravity water waves and light beams in Kerr media. The
simplest fundamental model for a light beam propagating in a bulk
medium is the 2 + 1 dimensional focusing cubic NLS. The collapse
dynamics occurs when the initial beam power is above a critical
value and the nonlinear Kerr effect due to the intensity-dependent
refractive index overcomes linear diffraction, self-focussing the
beam to extreme intensities. The lowest collapse power is achieved
by the Townes profile (TP) [9] which was discovered in this
context. Experiments in [17] show that a collapsing Gaussian beam
can evolve to the TP singularity, but recent theoretical [18] and
experimental [19] studies show that if the initial beam has a
sharper intensity modulation (e.g. a ‘‘super-Gaussian’’ profile in
the plane transverse to beam propagation) and sufficiently strong
power, the dynamical behaviour is distinct from the Gaussian
beam, and the beam evolves towards a self-similar high-intensity
collapse on a ring. Eventually, a variety of large amplitude effects
(dependent on initial power) will halt the collapse [20]. In [21]
the primitive Maxwell equations are solved in a model for light
propagation in a bulk dielectric and some features of optical self
focussing are observed.

In all water-wave-nonlinear optics analogies, one must keep
in mind that while NLS is an extremely accurate model in optics,
its range of applicability in water waves is more restricted—in
particular by the limited range of amplitudes and modulation
scales that are physically achievable.

2. Formulation

The equations for the surface elevation η(x, t) and the inviscid
velocity potential ξ(x, t) at the surface for a weakly viscous
incompressible flow (as modelled in [22]) is described by [10]

ηt − G0ξ = 2Re−11η + (G1 + G2) ξ , (1)

ξt + (1 − ∆) η = 2Re−11ξ +
1
2


(G0ξ)2 − |∇ξ |

2

+ 2 (G0ξ) (G1ξ + ∇ξ · ∇η)


+ ∇ ·


∇η

1 + |∇η|2
− ∇η


(2)

with

G0 = (−∆)1/2 , G1 = ∇ · η∇ − G0ηG0,

G2 =
1
2


G0η

2∆ + 1η2G0 + 2G0ηG0ηG0

.

The system (1)–(2) is non-dimensional, with the fluid density ρ,
the gravitational acceleration g and the surface tension coefficient
σ of the fluid, having been removed by proper rescaling (see [10]).
The dimensional spatial and temporal scales for some fluids are
given in Table 1. The only parameter remaining in the problem is
the Reynolds number Re defined as

Re =
inertial forces
viscous forces

=
1
ν


σ 3

ρ3g

1/4

where ν is the kinematic viscosity of the fluid. In the inviscid limit
(Re → ∞), the system (1)–(2) has Hamiltonian structure, with
canonical variables ξ and η, and Hamiltonian given by

H [η, ξ ] =
1
2


R2


ξ (G0 + G1 + G2) ξ + η2

+ 2


1 + |∇η|2 − 1


dxdy. (3)

In themodulational regime, the envelope of quasi-monochromatic
inviscid CG waves are governed by the cubic NLS. Taking a
modulated sinusoid solution with wave number k = (k, l) and
frequency ω, where ω2

= |k|

1 + |k|

2


η = ϵÃ(X̃, Ỹ , τ )ei(kx+ly−ωt)
+ c.c. + O(ϵ2), (4)

ξ = ϵB̃(X̃, Ỹ , τ )ei(kx+ly−ωt)
+ c.c. + O(ϵ2), (5)
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standard asymptotic methods applied to the system (1)–(2) yields,

iÃτ + λ1ÃX̃ X̃ + λ2ÃỸ Ỹ + γ |Ã|
2Ã = 0, (6)

with B̃ = −i ω
|k| Ã and where ϵ is a small parameter governing

the amplitude and modulation scales (X̃, Ỹ , τ ) =

ϵ(x − cg t),

ϵy, ϵ2t

, where cg = ωk is the group velocity. Assuming, without

loss of generality, that the carrier wave propagates in the x
direction (i.e. l = 0), the NLS coefficients are given by

λ1 =
ωkk

2
, λ2 =

ωk

2k
, γ =

ωk2

4
2k4 + k2 + 8

(2k2 − 1)(1 + k4)
. (7)

A fundamental difference between derivation the cubic NLS
in water wave problems and in optical beams arises from the
geometry of the problem. In nonlinear optics, the modulation
is in the plane perpendicular to the propagation direction
(i.e. transverse to the beam) so that the linear dispersive terms
in NLS, arising from the parabolic approximation to the wave
equation, are isotropic (λ1 = λ2 > 0). Inwaterwave problems, the
modulation is both in the direction of propagation and transverse
to it, and the effects leading to the dispersive terms are distinct.
λ2 > 0 arises, as in nonlinear optics, from transverse modulations
(the curvature of wavefronts), whereas λ1 arises from usual
dispersive effects in the propagation direction andmay be of either
sign. In optics, the Kerr nonlinearity is material dependent and
results in γ > 0 in most materials (a decrease in wavespeed
with amplitude), whereas in water waves, the Stokes’ nonlinear
correction to wave speed may lead to either sign for γ . From the
above relations (7), it is clear that for the water wave capillary or
the capillary gravity regime, when k > 1

√
2
, then λ1 > 0 (shorter

waves travel faster), λ2 > 0 and γ > 0 (larger waves travel more
slowly). Then, the equation is of the same type as the focusing
cubic NLS arising in nonlinear optics. One quantitative difference,
however, is that since λ1 ≠ λ2, focussing is not isotropic, and a
uniformly focussing patch of ripples will have an envelope with
transverse-to-propagation lengthscale ratio

√
λ2/λ1. Finally, in

water waves, the wavenumber k = 1 is particularly important
as, at this wavelength, the group and phase speeds of dispersive
surface waves are equal, and therefore localised wave packets are
steadily travelling solitary waves. This is the regime where lumps
can be found. For the remainder of the paper we shall restrict
ourselves to this regime although similar focussing dynamics
occurs over a range of wavenumbers near k = 1. For k = 1 we
have

λ1 =

√
2
4

, λ2 =

√
2
2

, γ =
11

√
2

8
.

Since the signs of the coefficients are positive, one can
normalise NLS (6) with X̃ = X/

√
λ1, Ỹ = Y/

√
λ2 and Ã = A/

√
γ

such that one obtains a new equation for A(X, Y , τ ) with λ1 =

λ2 = γ = 1. The solution of this equation then conserves mass

M =


|A|

2 dXdY ,

and its Hamiltonian energy

E =


(|∇A|

2
−

1
2
|A|

4) dXdY .

A virial argument (see [4]) shows that, the variance

V =


(X2

+ Y 2)|A|
2 dXdY

satisfies V ′′
= 8E . Therefore, if E is initially negative, the solution

will focus and blowup in finite time as V → 0—the so-called wave
collapse. Dissipation from (1)–(2) leads to a linear damping term
Fig. 1. Stable solitary CG wave (‘‘lump’’). Breathers have similar profile with time
periodic amplitude oscillations.

in NLS, but this does not arrest blowup in general – that is – for
any given fixed damping parameter there exists initial data that
blows up in finite time [23–25]. For E positive,V increaseswithout
bound corresponding to the dispersive spreading of the wave. The
Townes profile can be obtained as theminimiser forM with E = 0
and therefore corresponds to the unstable boundary state between
blowup and spreading solutions. This argument applies only to
NLS. It does not rule out stable solitary wave solutions to the
original CGwater wave problem (1)–(2) at larger amplitudes. Such
solutions in fact exist: they are the lumps found in [10,6] (see Fig. 1)
and will play a role in the dynamics shown below.

3. Numerical simulations

Using a pseudo-spectral method, we simulate the dynamical
equations (1)–(2) in a spatially double-periodic domain on a grid
consisting of 256 × 512 or 256 × 1024 nodes in transverse
and wave propagation directions respectively. Time integration
of the system is accomplished with a Runge–Kutta method
combined with an integrating factor (the detailed description of
the numerical method and code validation can be found in [10]).
All the computations are de-aliased with a doubling of Fourier
modes. The Hamiltonian expression (3) is a conserved quantity in
the inviscid case and is used to check the global accuracy of our
numerical computations.

In all computations, we initialise (1)–(2) with a packet
modulated by an envelope A0(X, Y ) (see (4)–(5)):

η(x, y, 0) = 2ϵ
1

√
γ
A0


ϵx

√
λ1

,
ϵy

√
λ2


cos(kx) (8)

ξ(x, y, 0) = 2ϵ
ω

k
1

√
γ
A0


ϵx

√
λ1

,
ϵy

√
λ2


sin(kx). (9)

The envelope A0 is taken as one of the following

Ag , Asg , Asq = α e−
(X2+Y2)

β , α e
−

(X2+Y2)2

β2 , α e
−

(X4+Y4)

β2 ,

where the subscripts stand for Gaussian, super-Gaussian and
square, respectively. It follows that

Mg = πα2β/2, Msg = π3/2α2β/2
√
2,

Eg = πα2 
1 − α2β/8


, Esg = 2πα2 

1 − α2β
√

π/16

,

Vg = Vsg = πα2β2/4.

To obtain focusing of the wavepacket, we choose α and β such that
E is negativewhich requiresM to be sufficiently large. In thewater
wave problem M is proportional to the leading order Hamiltonian
energy of the waves

H ≈ (1 + k2)


|Ã|
2 dX̃dỸ =

(1 + k2)
γ

M ≈ 1.03M,

where we have taken k = 1 in the last step.
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Fig. 2. Evolution of the wave envelope function E extracted from solutions to
(1)–(2) with an initial super-Gaussian profile in (8)–(9). For this data H = 238.7 ≈

1.03M = 238.5. The images are taken at (a) t = 0 (b) t = 125 (c) t = 200 (d)
t = 250. The NLS collapse time is ≈ 306. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

In optics M is the power of the beam and in collapse
experiments is usually measured in multiples of the Townes’
profile power MT which is approximately 11.7 in this scaling. In
the water wave setting, the minimum energy of a finite amplitude
stable lump – which is not captured by NLS – is H ≈ 6.1. As was
shown in [10], a collapsing perturbed Townes profile with H ≈

12.1, after radiating some energy, generates a lump or breather
with 12.1 > H > 6.1.

Thewave collapse time for Gaussian and super-Gaussian can be
respectively found as

τ ∗

g =


β2

2(α2β − 8)
, for α2β > 8, (10)

τ ∗

sg =


β2

2(
√

πα2β − 16)
, for α2β >

16
√

π
. (11)

This result applies to the collapse to a point and only gives an upper
bound to the time for other types of collapse.

If fluid experiments were performed to observe these phenom-
ena, onewould replace the use of an initial condition (8)–(9) with a
wavemaker capable of producing a modulated packet. That is, the
paddles would oscillate at the carrier frequency and their ampli-
tudes would bemodulated both in space and in time to produce an
emerging patch of ripples of the form (8).

We have chosen parameters for the numerical experiments that
would be physically feasible in a laboratory. The energy H of the
wavepacket is independent of ϵ, but the size of the packet and
its focussing time are not. In particular for k = 1,

√
βλ1/πϵ

is the number of carrier wavelengths in the packet, which is
chosen here to be in the range 12–25. The distance travelled by
the packet in the time for collapse, for sufficiently large energy,
is approximately

√
β/2π5/4αϵ2 in units of wavelengths. This is

chosen to be in the range 60–250, although we shall see that the
wavepacket breaks down before the collapse time. This regime
corresponds to M ≈ 20MT , which is a regime for which, within
Fig. 3. Closeup of a typical free-surface for a focussing super-Gaussian patch at late
times.

NLS, Gaussian profiles collapse to a point, but super-Gaussian
profiles collapse to a ring [19]. The regime also gives an upper
bound on the number of stable localised structures that can be
generated. Physical experimental dimensions corresponding to
this regime can then be concluded from Table 1.

Once solutions to (1)–(2) are obtained, an approximation to the
wave envelope is defined by

E =


η2 + |R[η]|

2. (12)

Here, R is the Riesz transform, which can be defined as a Fourier
multiplier, namely

R[η](k, l) =


ik

√
k2 + l2

,
il

√
k2 + l2

⊤η(k, l),

where· represents the Fourier transform. This is a natural way to
identify the wavepacket in the modulational regime, from (4). This
expression has been proposed in [26], in the one-dimensional case,
where the Riesz transform is replaced by the Hilbert transform
which shifts a sinusoid by half its period and hence, when
combined as above, removes the fast oscillation from a modulated
signal.

We will compare the solutions obtained from direct computa-
tion on the fluid equations to those of NLS. At typical amplitudes,
nonlinear water waves have a prominent second harmonic com-
ponent (the ϵ2e2i(x−ωt) terms in (4)–(5)), and therefore it is useful
to understand how E depends on higher order terms. After solv-
ing these terms using the full equations, restricting to k = 1, and
substituting (4) in E one obtains

E = 2ϵ|Ã|


1 − ϵ(Ãeix + Ã∗e−ix) + O(ϵ2)


. (13)

The first experiment, presented in Fig. 2, shows snapshots of
the time evolution of E for a focussing CG wave packet computed
from the inviscid limits of (1)–(2) (ie Re = ∞), with initial
super-Gaussian modulation envelope (time increases in the four
frames from top-left to bottom-right). The parameters chosen
were ϵ = 0.1, α = −1.4 and β = 60 and the figures are in
a frame of reference moving with the patch. In this experiment,
as elsewhere in the paper, the scales of the x and y axes are
chosen to be equal. In the time sequencewe see a smooth envelope
generating nonlinearly a second harmonic (the vertical stripes
in the second panel) with an amplitude increase on an ellipse.
This is followed by a continued focussing of energy in which the
focussed region breaks up into a large number of high intensity
spots. These are depression lumps and/or breathers that appear
as the red spots in third and fourth panels. The onset of breakup
into these structures can be approximately predicted using their
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Fig. 4. Evolution of |A| in NLS equation for the same initial data as in Fig. 2 at the
two intermediate times: (a) t = 125 (b) t = 200.

Fig. 5. Evolution ofE reconstructed from the NLS equation for the same initial data
as in Fig. 2 at the two intermediate times: (a) t = 125 (b) t = 200. These images
should be compared to Fig. 2(b) and (c).

characteristics from [10]: the stable lumps exist for c < c∗
≈

1.404, where c∗ is the speed at which they attain their energy
minimum on the branch of solutions. From the NLS equation,
the speed–amplitude dependence of the carrier wave is c =
√
2 − γ ϵ2

|Ã|
2. Thus, stable lumps can be generated when |ϵÃ| is

larger than 0.1/
√

γ . Each of these spots is a localised structure
similar to the one shown in Fig. 1. In Fig. 3 we show a typical
free surface image where a number of these waves are apparent.
These lumps and breathers continue to interact and merge in a
complex manner – their collisions are inelastic (see [10]) – and
the initial coherence of the modulation is completely lost (fourth
panel). These computations further strengthenobservations in [10]
that lump and breather structures appear naturally as ‘‘attractors’’
of CG inviscid nonlinear water wave dynamics. In Figs. 4 and 5
are shown computations based on the NLS equation for the same
initial data. Fig. 4 shows the modulation amplitude |A| at the two
intermediate times of Fig. 2, showing the clear focussing on an
ellipse. Fig. 5 shows the same data at the same times but adding
a second harmonic component consistent with the modulation
expansion of the free surface equations (see (13)) so that the
solutions can be compared directly with Fig. 2. In Fig. 6 we show
the Fourier spectrum of the solution presented in Fig. 2. One sees
clearly the generation of the second harmonic followed by, in the
third panel, a broadband spectrum indicating the solution in no
longer well approximated by the NLS equation.

The next set of figures depicts three numerical experiments
with different initial envelopes. The first one shown in Fig. 7
uses the ‘‘square’’ initial data: the largest initial gradient of the
envelope |A| lies in the neighbourhood of a square in the plane.
The evolution shows that the focussing occurs on a similar curve
(see [19] for an argument based on the high power limit). The
following two figures highlight the fact that the water wave
problem in this regime is not invariant under rotations of the
carrier wavevector, an effect which does not arise in the optical
beam case. In particular we take an envelope that is Gaussian
in one variable and Super-Gaussian in the other. In Fig. 8 the
envelope is given by A0 = α exp(X4/β2) exp(Y 2/β) and
thus the initial focussing is expected to be the largest at the
front and back of the packet (see the third and fourth panels
in Fig. 8) in fact splitting the packet. In Fig. 9 the variables X
and Y are exchanged (corresponding to a π/2 rotation of the
wavevector) and the behaviour is markedly different, particularly
after initial focussing. Note that the different aspect ratio in the two
experiments arises from the scaling required by the non-isotropic
nature of the diffraction in the surface wave NLS.

A second set of experiments were performed including
dissipation in the water wave equations. The computations were
made using Re = 2272 in (1)–(2), as a model for CG waves on
Fig. 6. Fourier spectral amplitude of solutions to (1)–(2) for the same initial data as in Fig. 2 at (a) t = 0 (b) t = 125 (c) t = 200 (d) t = 250. Only the k ≥ 0 part of the
spectrum is shown.
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Fig. 7. Evolution of E for an initially ‘‘square’’ envelope profile. The parameters
were chosen as follows: ϵ = 0.1, α = −1.4, β = 60. The images are at (a) t = 0
(b) t = 160 (c) t = 200 (d) t = 300.

the surface of mercury (see Table 1). Given that the spectrum has
k ≥ 1, the viscous decay time in (1)–(2) is less than 0.5Re and
the focussing phenomena may be observed if the collapse time
is comparable. Figs. 10 and 11 show the focussing of a Gaussian
modulation packet in two cases, where the only difference is
π in the relative phase of the carrier wave with respect to the
modulation. In Fig. 10 the troughof the surfacewave is at the centre
of the packet, whereas in Fig. 11 the crest is at the centre. The NLS
equation does not distinguish between these two cases. Nonlinear
surface waves, however, have a strong asymmetry between crests
and troughs, and the two computations eventually differ during the
focussing evolution, the depressionwave having a faster evolution.
The parameters chosen for this experiment are k = 1, ϵ = 0.1,
α = −1.736 and β = 60.

In Fig. 12 a super-Gaussianpacket of the same initialwaterwave
energy as in the inviscid case of Fig. 2 is shown evolving in the
dissipative system. The experiment confirms that ring focussing
can be observed despite the presence of damping, although there
is substantial decay in the energy.

We conducted further experiments varying the carrier wave-
number kwithin the range 0.75 ≤ k ≤ 1.25. Recall that for smaller
wavenumbers the NLS ceases to focus and for larger wavenumbers
dissipation would prevent physically observable phenomena. At
lower k the dynamics includes even stronger second harmonic
generation due to the resonance corresponding to Wilton ripples
at k =

√
2/2. In these cases a secondary disturbance propagates

ahead of the patch and may create a second focussing region.
Larger k packets also focus, but the evolution is characterised by
a frequency downshift before the generation of lumps, which have
most of their energy near k = 1.

4. Conclusions

In physically realistic situations, the strong focussing of
capillary–gravity wavepackets can occur, with, as a consequence,
the generation of fully localised structures such as lumps and
breathers. The initial stages of this focussing is well captured by
Fig. 8. Evolution of E for a wavepacket with super-Gaussian variation in x and
Gaussian in y. The parameters are ϵ = 0.1, α = −1.4 and β = 60. The images
are shown for (a) t = 0 (b) t = 160 (c) t = 200 (d) t = 250.

Fig. 9. Evolution of E for a wavepacket with super-Gaussian variation in y and
Gaussian in x with the same parameters as in Fig. 8. The images are shown for
(a) t = 0 (b) t = 160 (c) t = 200 (d) t = 250.

the NLS equation and therefore there are similarities with the self-
focussing of light beams. In particular, at large energies (compared
to the ground state of the NLS equation) one can obtain focussing
in the vicinity of curves on the surface (ellipses, rectangles). In
the water wave case, however, the NLS regime is fairly short lived
for realisable situations: in the experiments we have conducted
NLS focussing results in an amplification of the surface wave by a
factor of 2–3, after which the wavepacket breaks up into localised
structures which undergo complex dynamical interactions. By
contrast, NLS is a very accurate model for light, and experiments
where focussing is observed over a greater range of amplitudes,
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Fig. 10. Viscous evolution of the wave envelope E extracted from (1)–(2) with an
initial Gaussian profile in (9)–(10). The images are taken at (a) t = 0 (b) t = 152
(c) t = 200 (d) t = 300. We chose parameters ϵ = 0.1, α = −1.736 and
β = 60. For this data H = 292.8 ≈ 1.03M = 292.6. The NLS collapse time is
approximately 323.

Fig. 11. Similar experiment to that in Fig. 10, except that the carrier wave shifted
by π (i.e. α = 1.736).

have been performed. Due to the short lived nature of the focussing
NLS regime in water waves, some of the phenomena observed in
optics, such as the azimuthal instability of focussing rings, are not
observed in the water wave case.
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