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Abstract 

Most of the floating tunnel and supporting tendon or cable of submerged floating tunnel (SFT) are essentially 
cylindrical body. Multi-mode vortex-induced vibration (VIV) of these flexible bodies frequently happens in non-
uniform flow due to structural flexibility and non-uniform distribution of fluid velocity. One of the challenging issues 
of multi-mode VIV is about mode competition. And the mechanism and its quantitively measurement of mode 
competition, in terms of excitation region and length of potentially participating modes along with modal weights, 
become more complicated than single-mode VIV.  

In this study, mode competition and multi-mode VIV of flexible body in lineally sheared current is explored 
based on our numerical simulations which combine finite element approach with a hydrodynamic model so as to carry 
out nonlinearly simultaneously dynamic response in time domain. Our numerical results show that multi-mode VIV 
may occur both in non-uniform and uniform fluid profiles. In sheared current, as the towing speed (or the maximum 
speed) increases, because more modes with higher modal order number participate into the dynamic response, the 
average RMS displacement just change a little while the average RMS stress progressively rises. Moreover, there are 
different dominant frequencies distributing along cylinder span, and the length of the first dominant frequency gets 
smaller due to larger shearing parameter along with more intense competition between all participating modes. 
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1. Introduction 

Most of the floating tunnel and supporting tendon or cable of submerged floating tunnel (SFT) are likely to be 
cylindrical body which is essentially slender and flexible. Moreover, the shedding mode or frequency of wake vortex 
may vary, or even be grouped in cells, along cylinder span due to span-wise coupling of vortices[1-2]. Therefore, 
multi-mode vortex-induced vibration (VIV) of these flexible bodies frequently occurs in non-uniform current due to 
structural flexibility and non-uniform distribution of fluid velocity. One of the challenging issues of multi-mode VIV 
is about mode competition. And, the mechanism and its quantitively measurement of mode competition, in terms of 
excitation region and length of potentially participating modes along with modal weights, become more complicated 
than single-mode VIV.  

In recent years, increasing researches about multi-mode VIV have been reported[3-13]. Based on large-scale tests 
performed at Hanotangen outside Bergen of Norway [4], Lie and Kaasen[5] studied if and under which circumstances 
the VIV would be single-mode or multi-mode. They found that, for case of well-defined shear flow, in general the 
response was irregular (i.e. broad-banded) and that the degree of irregularity increases with the flow speed. No 
occurrences of single-mode (lock-in) were seen. In some tests distinct spectral peaks could be seen, corresponding to 
a certain dominant mode. Huera-Huarte et al.[8] provided the force distribution based on measured displacement of a 
vertical tension cylinder in a stepped current by employing an indirect technique that uses experimental data and finite 
element method. His experimental data demonstrated a correlation between the mean drag and the transverse response 
along a cylinder undergoing multi-mode vibration. Huang et al.[9] used measurement data of long flexible cable 
models undergoing multi-mode VIV in uniform current to study the drag amplification taking into account of the 
spatial variation of vibration amplitude along cable span. 

Still, there are some problems remain interesting. For examples, multi-mode VIV was mostly found in non-uniform 
fluid profile, does it also occur in uniform flow? Further, in shear flow, as the shearing intensity changes, what will 
happen to the VIV of slender cylinder, in terms of displacement, stress and/or participating mode? In this study, multi-
mode VIV of flexible cylinder in different shear fluid profiles, i.e. shear flows with different shearing intensities, is 
examined based on our numerical simulations which combine a hydrodynamic model with finite element method to 
carry out nonlinearly simultaneously dynamic response in time domain. The effects of towing speed on displacement, 
stress and participating mode (or frequency) distribution along cylinder’s span are studied. 

2. Numerical simulation based on hydrodynamic model and FEM 

The governing equation of a cylindrical body, generally regarded as a tensioned Euler beam, undergoing VIV can 
be written as 

2 4 2

2 4 2
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where ( , )y z t  is the structural displacement, m and  are the structural mass and damping per unit length; EI and T

are the bending stiffness and axial tension. ( , )f z t  is the hydrodynamic force per unit length consisting of the vortex-

induced lift force ( , )Lf z t  and fluid drag force ( , )Ff z t . For a body undergoing both the drag force and vortex-induced 

lift force, to get the theoretical solution of its dynamic response is pretty difficult. Thus a numerical approach based 
on finite element method and the hydrodynamic model is employed here. 

2.1. Structure model based on FEM 

The cylinder is uniformly divided into N elements which are two-node Euler beam element. For 
representativeness and simplicity, only one translation displacement iy , 1,2, , 1i N  (N+1 is the total number of 
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nodes), and one rotation i , 1,2, , 1i N , of per node, are considered. The displacement function of the beam 
element is written as 

2 2
0 1

1 1
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where  is the internal coordinate of beam element, 1( ) / ,    0 1z z L . el  and L are the element length and 
overall cylinder’s length respectively. The element mass matrix eM , stiffness matrix eK  and geometry stiffness matrix 

e
tK  are respectively:  
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where 
0 1 0 1
1 1 2 2 is the element deformation function. Coefficient matrices 2 2d dxB , d dxB

and D=EI.
Then the governing equation of the cylinder with multi-degree of freedom can be written as follow

MY CY + KY F    (3)

M, C and K are the structural mass, damping and stiffness matrix respectively, which are assembled by the 
corresponding element matrices. Y and F are the displacement and load vector of the nodes.  

For case of small structural damping, the Rayleigh damping can be used and is written as a linear combination of 
mass matrix M and stiffness matrix K as follows 

a bC= M+ K    (4) 

where a and b are positive constants of which values can be determined by experiments, or approximately, the natural 
frequencies of structure as follows:  

1 2 1 2 2 1 2 2 1 1
2 2 2 2
2 1 2 1

2 ( ) 2( )
,    a b   (5)

Where 
j
, and 

j
 ( 1,2j ) are respectively damping ratio and natural frequency of mode j. Generally, the value of 

structural modal damping ratio is 3 percent, or 1 2 0.03 .
The vortex-induced lift force ( , )vf z t  and the drag force ( , )ff z t  exerted by the ambient fluid are applied at the 

nodes respectively in the excitation and damping region along the cylinder length. The element load in terms of 

element node is
e

e T

l
q dF  . Element mass are equally divided at two nodes of each beam element. 

2.2. Hydrodynamic model considering the interaction between structural and fluid dynamics 

The fluid drag force ( , )Ff z t  can be expressed by virtue of the Morison equation, i.e. 
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where f  and V are the density and velocity of fluid respectively, and D is the diameter of the cylinder. DC and AC

are the drag and added mass coefficients respectively, of which the values are 1.0AC  and 1.1DC  for a flexible 
cylinder with large aspect ratio. 

The expression of vortex-induced lift force Lf  is more complicated because VIV has always been a challenging 

issue concerning the interaction between fluid and structural dynamics. Initially, vortex-induced lift force per unit 

length of structure is written, somewhat similarly with the Morison’s equation, as 2(1 / 2)L f Lf U C D  where the lift 

coefficient LC  is a constant value ranging from 0.5 to 1.2. Recently, with increasing amount of experimental 

observations in laboratories or large-scale fields[4,5,14] along with CFD simulations, new approaches of lift force 

during lock-in were proposed, which are more accurate and reasonable because coupling between structural and fluid 

dynamics were taken into accounts[3,15,16]. Sarpkaya[15] experimentally measured the Fourier average of 

hydrodynamic force over many cycles of vibration. He decomposed the lift force into two parts, the drag part and the 

inertia part, which are respectively related to the velocity and acceleration of the vibrating cylinder. He pointed out 

that for practical Reynolds numbers, the nonlinear expression with respect to structural motion is able to capture the 

hydrodynamic feature better than the linear expression. Vandiver and Li[16] suggested that a piecewise parabola 

function of structural amplitude could be used for industrial model of lift force to calculate structural displacement by 

using modal superposition model.  

Here, the third-order polynomial of the structure velocity originally suggested by Chen[3] is used to model the lift 
coefficient so as to take account of nonlinear interaction between structural and fluid dynamics, i.e. 

2 3
0 1 2 3( , ) sin( ) ( , ) ( , ) ( , ))L f L f f ff z t p C t p C y z t p C y z t p C y z t      (7)

where 2(1 / 2)f fp D V . The values of coefficients 0LC , 1C , 2C  and 3C  can be derived by fitting experimental data. 

Chen[20] gave an approach to calculate the coefficients’ values by fitting experimental data. Observing Eq. (7), we 
may say it is able to capture, to some extents, features of VIV. For examples, the feature of self-excitation is 
represented by the first term

0 sin( )f Lp C t , a sinusoidal excitation force, together with the second term, 
1 ( , )fp C y z t ,

which increases as response increases ( 1C is required to be positive); the feature of self-limitation, i.e. structural 

response never rises infinitely, but begins to drop when its value reaches to a certain number ( max 1.5y  or 2.0) is 

represented by the nonlinear terms with higher orders of structural motion in Eq.(7), 2
2 ( , )f C y z t or 3

3 ( , )f C y z t  (at 

least one of the coefficients 2C  and 3C  is negative). And, this model, in some way, automatically captures the span 

coherence behavior of a flexible cylinder’s VIV because the lift force is non-uniform owing to the axially varying 
amplitude of cylinder’s response. 

2.3. Mode competition and dynamic response of the coupling system 

When it comes to the mechanism of multi-mode participation or mode competition, it is still somewhat unclear. 
Jaiswal and Vandiver[10] used the concepts of ‘‘time sharing’’ to describe the ‘‘mode switching’’ along the time 
coordinate for a shear velocity profile, while Tognarelli et al.[11] called it ‘‘space sharing’’. Violette et al.[16] 
performed a linear stability approach to identify the mode switching of two excited modes in cable VIV. He 
theoretically explained this behavior based on the linear stability approach, regarding different modes can be excited 
at different and coincident time instants. Marcollo and Hinwood[12] experimentally examined the area where a 
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cylinder’s VIV can vary from single mode lock-in to multimodal. He found an interesting and unexpected mechanism 
of multi-mode vibration, that higher frequency mode’s damping region may provide a power-in effect to support other 
mode’s response. Zhang et al.[13] studied multi-mode vibration of mooring-line, and his results showed that the 
unstable zone significantly grows and a small excitation can induce large dynamic response for a multi-mode coupled 
system. Srinil[7] studied multi-mode interactions of VIV in uniform current by using semi-empirical wake oscillator 
model. He thought multi-mode lock-in, switching, sharing and interaction features take place both in response time 
histories (for a given flow velocity) and amplitude diagrams (with increasing flow velocity).  In amplitude diagrams, 
multiple modal responses overlap in specific velocity ranges. The lock-in band width is found to be mode-dependent.  

As for the excitation region along cylinder length in which vortex-induced lift force is loaded, for case of single-
mode VIV, the modal excitation location can be simply determined as long as the modal reduced velocity 

z, ) ( )rn nV n V z Df  at location z along the cylinder length falls into the range of lock-in velocity, i.e. 4 ) 12rnV z .

However, for case of multi-mode vibration, at location z, there may exist multiple participating modes of which the 
modal reduced velocities all satisfy 4 ) 12rnV z . In other words, overlap between adjacent excitation regions may 

occur if several modes simultaneously participate in the vibration. What’s more, for case of shear flow, the overlap is 
more complicated due to the non-uniform distribution of the reduced velocity along cylinder length. 

To eliminate the overlap, we use the modal competition to measure excitation region so that the mode being more 
powerful would be more likely to participate into the vibration, or even, finally would become the dominant mode. 
Analyzing the modal data of VIV tests[5, 21], we would assume that there are competitions between all potentially 
participating modes. In other words, the mode that holds more power would be more likely to participate into the 
vibration and, even, finally to become the dominant mode. For example, VIV experiments implied that with the change 
of reduced velocity from 4 to 12 the participating modes varied from mode 20 to 10. Moreover, appearance of a new 
excitation mode is usually accompanied by disappearance of previously existing modes. Or, the new excitation mode 
with increasingly large power could overcome the previous one with decreasing power until it disappears in overall 
dynamic response (see the Figs. 9, 15 and 16 there in the paper by Chaplin et al.[21].  

And, based on the large-scale tests in shear flow[4,5], we noted that the modal weights of all participating modes 
distribute unequally and, often, there are a few modes (e.g. around 1~3 modes) mainly dominating the vibration 
response (or with higher values of modal weight). Thereby, we may say that the weight of one participating mode 
should be related to the modal energy of this mode [Chen et al., 2016], which is written as:  

2 2 2 2 21
[ ( ) ( ) ] ( ) ( ) ( ) ( )

2
n n

n L n h n s n

L L L L

P C DV z z dz r z z dz r z z dz   (8)

where ( )hr z  and ( )sr z  are the hydrodynamic and structural damping respectively. nL is the modal excitation length 

according to the reduced velocity. ( )n z is the modal shape. Since the location of excitation force is one of important 

factors that influence modal excitation energy, i.e. the excitation force applied at anti-node of this mode would give a 
much larger response displacement than the force at the node. Thus, modal shape ( )n z , representing the location of 

force, is involved in the integration of Eq. (8). It is assumed that the original length of excitation region for participating
modes should shrink, in a way of inversely proportional to its modal energy, till the overlap disappears, i.e.

1 1n n n nL L P P .   

Additionally, the rule to select the modes that are most likely to participate into the dynamic response is assumed 
as follows: the first six modes which have the largest values of modal energy are selected as participating modes; or, 
if the modal energy is 85 percent lower than the first mode, those modes will be neglected. 

Finally, based on the structural and hydrodynamic models presented above, a nonlinear simultaneously dynamic 
response can be analyzed. Regarding the nonlinear load and central mass in terms of element nodes, direct numerical 
integration is used to solve the dynamic governing equation, Eq.(3). The fundamental structural displacement is solved 
at discrete times with a fixed integration times step t  ( min 50t T , m inT is the minimum natural period of all 

participating modes). By using a Newmark-Beta representation for the velocity and the displacement at discrete times 
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2[( ) ]t t t t t t ty y y t y y t    

, the dynamic equation can be solved by Newmark-Beta direct integration method so as to effectively and 
economically run the dynamic analysis.  

The initial condition is that both the initial displacement and velocity are zero. The boundary conditions at the two 
pinned ends of the cylinder are: 

2 2 2 2

(0, ) 0 ( , ) 0

(0, ) 0 ( , ) 0

x t x L t

x t z x L t z
   (9)

3. Multi-mode VIV responses and its discussions 

3.1. Verification and comparison of multi-mode and single-mode VIV in uniform and non-uniform currents 
respectively

Our numerical results of both multi-mode and single-mode VIV are compared with the experimental results, i.e. a 
flexible cylinder in uniform flow by Trim et al.[22] and a flexible cable in non-uniform flow by Huse et al.[4].  

For the flexible cylinder in uniform flow (see Fig.1), two dynamic responses, i.e. the single-mode vibration 
involving only the mode 3 and the multi-mode vibration involving the modes 3 and 4, are carried out. The numerical 
results, plotted as the RMS of displacement along cylinder length and the temporal-spatial evolution of displacement, 
are shown in Fig. 1a and 1b respectively. Generally speaking, the displacement of multi-mode agrees with the 
experiment better than the single-mode. 

In Fig.1a, the dominant mode of either multi-mode or single-mode response are consistent with the experimental 
mode (mode 3). However, if comparing the RMS displacement, there are differences between the two dynamic 
responses. For example, the span-averaged RMS displacements (scaled by the diameter of the cylinder as the non-
dimensional y/D) are respectively 0.36 (multi-mode) and 0.34 (single-mode) compared with 0.39 of the experiment. 
The averaged-value of the 3 peaks are respectively 0.48 (multi-mode) and 0.54 (single-mode) compared with 0.50 of 
the experiment. The average values of the two troughs of single-mode is just 0.0068 that is much lower than the 
experimental value 0.32 while the multi-mode value is 0.26. That is to say for single-mode VIV the RMS displacement 
near the peaks is approximately close to the experiments, whereas the displacements at other positions, especially near 
the two troughs, distinctly diverge from the experiments. If comparing the phase, there is no significant difference 
between the two cases, e.g. the offset of peak (or trough) location from the experiment for the two cases are around 
7-10%. 

Observing the temporal-spatial evolutions of the displacement, in Fig.1b, slight travelling wave is seen in multi-
mode VIV, similarly, no evident node can be seen there in the solid line in Fig.1a, and that is consistent with the 
experiment.  
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Fig.1 Multi-mode and single-mode VIV of a flexible cylinder in uniform fluid profile, based on our numerical simulations against the 
experimental results  (a) The RMS displacements (b) The temporal-spatial evolution of displacement  

For case of flexible cylinder in non-uniform flow, we chose the large-scale field experiments [10] of which the 
aspect ratio is quite large (3000) as our example model to explore its multi-mode VIV. The VIV responses at ten 
towing speeds were simulated by our FEM simulations. Here selected results, at two typical towing speeds of 0.54m/s 
and 1.14m/s, are presented.  

The RMS displacement along the cylinder’s length is plotted against the experiments in respectively Fig. 2a (at 
towing speed 0.54m/s) and Fig. 2c (at towing speed 1.14m/s), as a comparison, the single-mode VIV of the dominant 
mode is plotted as dot lines there too.  

Similarly with the case of uniform flow, it is seen that the response, in term of displacement and dominant mode, 
of the multi-mode VIV agree with the experiments much better than the single-mode VIV. Taking the speed of 0.54m/s 
as an example, the span-averaged RMS displacements are respectively 0.0073m (multi-mode) and 0.0065m (single-
mode) compared to 0.0075m of the experiment. The averaged values of the peak-displacements are respectively 
0.0090m (multi-mode) and 0.0091m (single-mode) compared to 0.0088m of the experiment. We note that the trough-
averaged values 0.0055m (multi-mode) and 0.0033m (single-mode) somewhat divert from the experiment value 
0.0068m by 19.1% and 51.4% respectively. The reason why such apparent difference might be there were more and 
random modes participated into the response during experiments but selected modes are involved in our numerical 
simulation. 

Considering then the dominating mode and phase, the dominating mode of multi-mode VIV is consistent with the 
experiment, for example, at towing speed 0.54m/s, the dominating modes of the presented model and experiment are 
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mode 11 while the dominant mode of single-mode VIV, mode 13, is a little different from the experiment. If comparing 
the phase, the offset of peak (or trough) location of multi-mode from the experiment are around 7.01 % (or 11.40%) 
respectively.

Considering last the wave type. Observing the evolution of displacement versus time and cylinder span, or the 
temporal-spatial displacement plot, see Fig.2b and 2d, the response is a mix of standing wave and travelling wave. 
Standing wave dominates the two regions which are closer to top or bottom ends. Because in these two regions, it is 
easier for the excited wave to meet the reflected wave propagating from the end and then to form a standing wave 
before it declines to small value or zero.  

Travelling wave becomes more obvious at higher towing speed (1.14m.s). As we know, the damping effect is faster 
for the modes with higher modal order than lower order. Thus the modal dynamic response of those higher-order 
modes declines faster. Or, the vibration excited by higher frequency near top-end may decline rapidly into a pretty 
little, even zero, value before it reaches the cylinder’s bottom end, and then, to reflect backward. Owing to pretty 
small, or even zero, reflected wave to meet with the approaching wave, the vibration wave would be characterized as 
travelling wave.  

a         b  

c         d  

Fig.2 Multi-mode and single-mode VIV of a flexible cylinder in non-uniform fluid profile respectively at the towing speed 0.54m/s and 1.14m/s 

(a)  RMS displacement at towing speed 0.54m/s  (b) The temporal-spatial evolution of displacement of the multi-mode VIV at towing speed 

0.54m/s. (c) RMS displacement at towing speed 1.14m/s  (d)The temporal-spatial evolution of displacement of multi-mode VIV at towing speed 

1.14m/s   
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3.2. Discussions on multi-mode VIV and frequency distribution at different fluid speeds 

The time histories and temporal power spectral density (PSD) of the points with the maximum RMS displacement 
are plotted in Fig. 3. Both cases exhibit vibrations at multiple frequencies but the structural responses differ in the 
participating mode: as the towing speed increases from 0.54 to 1.14 m/s, the highest modal order increases from 16 to 
24, while the band width of mainly excited frequencies broadens, i.e. from 0.99Hz ~3.29Hz (mode 5 ~mode 16) to 
0.50Hz~6.29Hz (mode 2 ~mode 24).  

a    b  

c    d

Fig.3  Displacement time history and frequency spectrum of the point with the maximum RMS displacement. (a) Time history at towing speed 
0.54m/s.  (b) Frequency spectrum at towing speed 0.54m/s. (c) Time history at towing speed 1.14m/s.  (d) Frequency spectrum at towing speed 
1.14m/s 

Interestingly, more and/or higher-order participating modes do not necessarily mean larger displacement, see Fig.4a. 
The span-averaged RMS displacement is around 0.0078m, e.g. 0.0073m for 0.54m/s towing speed compared with 
0.0080m for speed 1.14m/s. As towing speed increases, there are two changes: different modes participate into (or 
drop out of) dynamic response and the excitation region for a certain mode change too. Thus, these two changes might 
be responsible for the uncertainty, or slight change rather than gradual rise (or drop), of displacement amplitude.  

However, as the towing speed increases, the stress obviously rises, see Fig.4b. New modes with higher-order 
number are excited while the towing speed increases, of which the modal curvatures, or the modal stress get larger. 
What’s more, the higher level of stress is with higher frequencies owing to higher-order number of participating modes. 
This will inevitably impact the fatigue performance of structure, which should be a serious concern of SFT’s safety 
assessment.  
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a              b  

Fig.4  Effects of towing speed on vortex-induced vibration response (a)  Average RMS displacement versus towing speed(b)  Average RMS stress 

versus towing speed 

The distributions of dominant frequencies along structure length are presented in Fig.5. Several participating 
frequencies can be identified by distinguishing the frequencies with larger peak value of displacement power spectrum  
at different points along structure length. Among those peak frequencies, the two frequencies which have the largest 
two value of dominant length along cylinder span are respectively named the first-dominant and second-dominant 
frequency, the rest frequencies are named other-dominant frequency. 

Comparing the results of the two speeds (Fig.5a and 5b), it is noted that the distributions along cylinder span, in 
terms of the band width and length of dominant frequencies, varies as the towing speeds rises. Generally speaking, 
for case of lower speed 0.54m/s, Fig.5a, the first-dominant frequency has the value of 2.30Hz, the frequency of 11th 
mode, which is also demonstrated in the RMS displacement of Fig. 3a. The first-dominant region ranges from the 
depth 0.5m to 89.0m. The second-dominant frequency of 1.63Hz, being same with natural frequency of mode 8 of the 
cylinder, scatters at some points among the first-dominant region, as well other frequencies. This phenomena of multi-
frequency dominance along cylinder span was also reported by Lucor et al.[2] and Bourguet et al.[23]. They pointed 
out that it is because of the shedding cells of vertex which have different shapes and frequencies in the wake filed 
behind the cylinder undergoing VIV. Here, from our view of structural dynamics, it might because of the multiple 
modes that simultaneously participate into the response and their nonlinear interactions between each other.    

For case of speed 1.14m/s, Fig.5b, the band width of dominant frequencies gets wider and the first and second-
dominant frequencies are respectively 4.76 and 3.31Hz which are the natural frequencies of modes 15 and 20. And, 
what’s more, the first-dominant region, 0.5m-78.5m, gets smaller while the second and other dominant frequencies 
share more region along the cylinder span. It is partly because there are more participating modes, ranging from modes 
2-26 compared with modes 3-15 of 0.54m/s speed, into the dynamic response as the towing speed gets larger, in others 
word, the shear intensity, max min( )V V L  , get larger. In that case, the modal competition gets fiercer, and it’s harder 

for a dominant mode to occupy most cylinder span or they have to share dominant region somewhat.   
a        b  

Fig.5  Distributions of dominant frequencies along the cylinder span. (a)  At towing speed 0.54m/s; (b)  At towing speed 1.14m/s
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4. Conclusions 

Multi-mode VIV of long flexible cylinder in shear fluid profile is explored, which happens not only in non-uniform 
flow but also in uniform flow. Our numerical results show that more and higher-order modes take part in the dynamic 
response as the towing speed increases. And, the average displacement slightly changes while the stress progressively 
increases, approximately linear, with the increase of towing speed. High-level of stress at higher frequency could be 
a concern owing to fatigue problem. There are different dominant frequencies distribute along cylinder span, and the 
length of the first dominant frequency gets smaller due to larger shear parameter along with more intense competition 
between participating modes. 

VIV, as a nonlinearly coupling of structural and fluid dynamics, presents some interesting and complicated 
phenomena such as self-limited, self-excitation, jump of displacement between different branches and the hysteresis 
in lock-in region. It is still difficult for the prediction approach to capture all these VIV’s traits, particularly the 
nonlinear jump or irregularities of VIV[14,15,23]. Therefore, further studies on better prediction model and deeper 
insight of multi-mode VIV remain to be done. 
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