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It is well known that the numerical scheme is a key factor to the stability and accuracy of a 
Navier-Stokes solver. Recently, a new hybrid lattice Boltzmann numerical flux (HLBFS) is 
developed by Shu's group. It combines two different LBFS schemes by a switch function. It solves 
the Boltzmann equation instead of the Euler equation. In this article, the main object is to evaluate 
the ability of this HLBFS scheme by our in-house cell centered hybrid mesh based Navier-Stokes 
code. Its performance is examined by several widely-used bench-mark test cases. The comparisons 
on results between calculation and experiment are conducted. They show that the scheme can 
capture the shock wave as well as the resolving of boundary layer. 

Keywords: Hybrid lattice Boltzmann numerical flux; aerodynamic forces; hybrid mesh. 

1.   Introduction 

Computational fluid dynamics (CFD) has become an important tool in the engineering 
design. For example, the prediction of lift and drag plays an important role in the 
engineering design. There are many factors which affect the robustness of the calculation 
and the accuracy of the prediction. These factors include numerical convective schemes, 
methods for gradient calculation, the reconstruction methods and turbulence models etc. 
In this article, the attention is paid to numerical convective schemes. In fact, there are a 
lot of convective schemes developed so far. The upwind schemes can be grouped into 
flux vector splitting (FVS) and flux difference splitting (FDS). FVS (such as van Leer 
scheme1) is famous for their robustness and efficiently capturing of strong shock wave. 
However, their intrinsic artificial dissipations are too big. This tends to artificially 
broaden boundary layers. Another upwind type is FDS such as Roe scheme2. It can be 
expressed as the average flux plus a dissipation term. It cannot properly identify an 
expansion fan that contains a sonic point and therefore an entropy correction is needed to 
 
This is an Open Access article published by World Scientific Publishing Company. It is distributed under the 
terms of the Creative Commons Attribution 3.0 (CC-BY) License. Further distribution of this work is permitted, 
provided the original work is properly cited. 

1660152-1 

In
t. 

J.
 M

od
. P

hy
s.

 C
on

f.
 S

er
. 2

01
6.

42
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

H
IN

E
SE

 A
C

A
D

E
M

Y
 O

F 
SC

IE
N

C
E

S 
on

 0
5/

03
/1

7.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S2010194516601526


H. W. Zheng & C. Shu 
 
break up expansion shocks. Besides, it suffers from the carbuncle problem.  As compared 
to the traditional CFD schemes, the Boltzmann equation-based flux solver calculates the 
flux by solving the lattice Boltzmann equation. Recently, a new hybrid lattice Boltzmann 
numerical flux (HLBFS)3-4 is developed by Prof. Shu's group. It combines two different 
LBFS schemes by a switch function. It is not widely tested to show the aerodynamic 
performance especially the ability of resolving the boundary layer. Hence, in this article, 
it is to evaluate the ability of this HLBFS scheme by examining several widely-used 
bench-mark test cases. 
 

2.   Methodology 

2.1.   Governing equations 

The compressible flows are solved by the Farve-averaged Navier-Stokes equations 
0t

S

UdV dS
Ω

∂ + Φ =∫ ∫ , (1) 

with turbulent modeling equations (S-A or SST etc.) 

t
S

MdV dS SrcdV
Ω Ω

∂ + Ψ =∫ ∫ ∫ . (2) 

In Eq. (1), U is the state vector, and Φ is flux vector, 
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Here, ρ is the density, u  is the velocity, E is the total energy, P is the pressure, and [ ]τ  

is the stress tensor 

[ ] ( ) ( )[ ]2 I
3

T
L tur u u uτ µ µ  = + ∇ +∇ − ∇⋅  

  

. (4) 

2.2.   Numerical discretization 

Eqs. (1-2) can be discretized at cell c by the multi-stage Runge-Kutta schemes 
( ) ( )0 1Res , 1,..., 1i i

c c i cn

tU U i p
V

α −∆
= − = −  (5) 
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with the residue defined as 

 Res , ,c f f
f

U U n A



   . (6) 

Here, cV  is the volume of cell,  , ,f U U n   is the numerical flux and fA  denotes 

the area of the face f .  

There are a lot of schemes implemented in the PolySim code. For the HLBFS scheme, it 
combines two different LBFS schemes 

( ) ( ) ( )int int( , , ) 1c I erface II erface
f f i f iU U n f fα α− +Φ = − Φ + Φ
  



, (7) 

by applying a switch function 

tanh l r

l r

p p
C

p p
α

 −
=  + 

. (8) 

Here, the distribution function at the face is evaluated by 

( )
( )

int 0,                   scheme  I 
δ, δ        scheme  II 

eq
ierface

i eq
i i

f t for
f

f t forξ
=  − −

. (9) 

with the equilibrium function defined as 

( ) ( ) ( )
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=
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=

−
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=
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. (10) 

Here, d1 and d2 are two lattice velocities used in the D1Q4 model. 
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3.   Numerical Cases 

In order to evaluate the aerodynamic performance of this Hybrid lattice Boltzmann 
numerical flux, several test cases are examined. 

3.1.   Turbulent boundary layer flows over a flat plate 

Turbulent boundary layer flow over a flat plate at a low Mach number is a common 
bench mark test. It has been extensively investigated by Wieghardt and Tillman5. The 
mesh used in this study is shown in Fig. 1. It consists of 5500 brick (hex) cells and 1860 
prim cells. At the leading edge of the plate an additional part of mesh is used to buffer the 
incoming flow. Besides, clustered mesh points are generated before the leading edge (the 
beginning of the flat plate) to provide a uniform profile at the leading edge. Similarly, the 
grid was also clustered normally to the plate to resolve the boundary layer. The first cell 
height is small enough to capture the viscous sub-layer as well as the log layer. The 
upstream of the leading edge of the flat plate were treated as an in-viscid wall. The plate 
is a non-slip wall. The symmetric boundary condition is applied to the sidewalls. 

 

Fig. 1.  Hybrid mesh for turbulent boundary layer flows over a flat plate. 

The results are plotted in Fig. 2. It could be easily observed that the velocity profile 
agrees well with the wall laws. Besides, the skin friction profile is closed to the 
experimental one by Wieghardt and Tillman5. 

 

Fig. 2.  The velocity and skin friction profiles. 
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3.2.   Shock Wave Boundary Layer Interaction 

The study has been studied by Schulein et al.6 of German Aerospace Center (DLR). An 
oblique shock was created by a 10 degree oblique shock generator plate. This shock from 
tip of shock generator hits a long plate. After that, it interacts with the turbulent boundary 
layer developed over the flat plate. The length of this plate is 500 mm. For this simulation, 
the free stream conditions are M∞ = 5, T∞ = 68.3 K and p∞ = 4008.5 Pa. The hybrid mesh 
(Fig. 3) with hexahedral boundary layer cells are used in this study. The plate is an 
isothermal wall with T=300 K. The symmetric boundary condition is applied to the 
sidewalls. 

 

Fig. 3.  Hybrid mesh for shock wave boundary layer interaction 

The velocity profiles at different position are plotted in Fig. 4. It is clear that the velocity 
profile agrees well with the corresponding experimental one by Schulein et al6. 

 

Fig. 4.  Velocity profile at x=376mm and 449mm. 

4.   Conclusions  

The evaluation of the aerodynamic performance of hybrid lattice Boltzmann numerical 
flux is conducted. The two cases, turbulent boundary layer flows over a flat plate and the 
shock wave boundary layer interaction, are examined. The numerical results agree well 
with the experimental data. They show that the scheme can capture the shock wave as 
well as the resolving of boundary layer. 
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