
Viscous/inviscid Interacting Shear Flow Theory with 

Inferences and Their Applications to CFD 

        Z Gao1   Y.Q.Shen1  G.C.Zha2 

1. LHD, Institute of Mechanics, Chinese Academy of Sciences, 

100190, Beijing, PRC 

2. Dept.of Mechanical & Aerospace Engineering, University of Miami,  

FL 33124, USA 

Abstract: In the viscous/inviscid interacting shear flow(ISF) theory, 

interacting shear perturbed flow(ISPF) theory and interacting shear 

turbulent flow(ISTF) theory suggested by Gao, the ISF consists of 

viscous shear layer and neighboring outer inviscid flow, which interact 

each other. The motion laws, definition and governing equations of the 

above three flows are described in ISF’s optimal coordinates, which is a 

fitted dividing flow surface orthogonal coordinates. The scaling laws of 

velocity and length of ISF’s viscous layer are deduced the scaling laws 

imply the strength of viscous/inviscid flow interaction. The scaling laws 

of velocity and length of both ISPF’s viscous perturbed layer and ISTF’s 

viscous turbulent layer are also given. The equations governing ISF are 

the Parabolized Navier-Stokes(PNS) equations, which can be simplified 

further on the dividing surface. The resultant equations are defined as 

dividing flows surface criteria, whose two important special cases are 

wall-surface criteria for viscous and inviscid flows. The ISF’s optimal 

coordinates and length scaling law are used to design the grid. The small 

scale structures given by the scaling laws can be used to predict local 

sudden changes of heat flux etc., which are very important for hypersonic 

flows. The wall-surface criteria are used to validate NS numerical 

solutions for ISF and flow near walls. The wall-surface criteria method 

has several advantages over the commonly used grid convergence criteria. 

The applications of ISF theory indicates its effectiveness and further 

studies and development are needed. 
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Introduction  

   The boundary layer theory opened up a new era of fluid mechanics. 

From the 1930s to the 1960s, analyses and computations of high 

Reynolds number flows were based on the boundary layer theory, i.e. to 

compute firstly inviscid flow over body and then to compute viscous thin 

boundary layer flow with both the no-slip wall condition and the solution 

of inviscid flow on the wall surface as boundary conditions. In CFD era, 

the boundary layer theory still has important meaning, just as Schlicting 

and Gersten pointed out in their monograph[1]: “Numerical methods in 

computing flows at high Reynolds numbers only become efficient if the 

particular layered structure of the flow, as given by the asymptotic theory, 

is taken into account, as occur if a suitable grid is used for computation. 

Boundary-layer theory will therefore retain its fundamental place in the 

computation of high Reynolds number flows.” 

   From the 1960s to the 1990s, a new upsurge in studies and 

computations of parabolized Navier-Stokes(PNS) was in the making. For 

a steady supersonic flow over a body, PNS equations can be computed by 

space marching algorithm(SMA), that reduces the dimension number of 

computation. Especially, in the computation of high Reynolds number 

flows, only second-order normal derivatives of viscous terms in the NS 
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equations written in a fitted body orthogonal coordinates can be 

computed accurately, other viscous terms in the NS equations cannot be 

computed, then a NS computations is actually a computation of thin-layer 

NS, i.e. PNS computation. Therefore, for the computations for 

engineering purpose PNS has always fundamental meaning, just as 

Anderson pointed out in his monograph[2] “the PNS method is in very 

widespread use; indeed, it forms the basis of an industry-standard 

computer program, which is used by virtually all major aerodynamics 

laboratories and companies.” 

   However, it is not very clear what kind of basic flow is described by 

the PNS equations before the 1990s, there is no basic fluid theory 

corresponding PNS equations. The viscous/inviscid interacting shear 

flow(ISF) theory[3-5] furnishes complete answer to this subject. ISF 

consists of viscous shear flow and its neighboring outer inviscid flow, 

which interact on each other. The equations governing ISF are just PNS 

equations. ISF theory forms basic fluid theory for PNS equations and it 

also makes a breakthrough the classical boundary layer theory, in which 

there is no interacting between the boundary layer and its outer inviscid 

flow. Especially, ISF theory and its inferences also have some important 

applications to CFD, such as application of the ISF’s optimal coordinates 

to grid design, application of length scaling laws of ISF’s viscous layer to 

grid design, using small scale structure given by the scaling-laws to 
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compute sudden changes of several physical quantities, that are called 

“unknown-unknown” for hypersonic flow by Bertin and Cumming[6], 

applications of wall-surface-criteria for laminar flow, perturbed flow and 

turbulent flow to verify creditabilities of NS and RANS numerical 

solutions and to optimize turbulent models etc. Therefore, PNS equations 

and ISF theory are very useful for the computations of high Reynolds 

number flows.  

In a word, the comment of Schlichting and Gersten[1] on the place of 

boundary-layer theory in CFD is similar suitable to ISF theory, that is, the 

computation of high Reynolds number flows only become efficient if the 

thin layer and small scales structures in normal, streamwise even 

crosswise directions as given by the scaling-laws of ISF theory can be 

resolved by a suitable grids with locally refined in locations occurring 

small scale structures, only by which the sudden change phenomena of 

some physical quantities can be computed accurately. In the rapid 

development of the computation of high Reynolds number flows, we 

should pay great attention to integrating computation with fluid theories.   

1. Viscous/inviscid interacting shear flow(ISF) theory 

1.1 ISF theory for laminar flow[3-5]： Viscous/inviscid interacting shear 

flow (ISF) consists of viscous shear layer and neighboring outer inviscid 

flow, which interact on each other. The motion-law of ISF’s viscous layer 

is convection-diffusion competitive in its normal direction, while it is 
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convection-dominate in its streamwise direction. The mathematical 

definition of this motion-law is for a two-dimensional incompressible ISF 

                

2 2

2 2
, (1)

f f f f
u v

x x y y
    


   

?   

where the x  and y  are coordinate variables of a fitted 

dividing-flow-surface orthogonal coordinates, that is called ISF’s optimal 

coordinates, otherwise the definition formula(1) does not hold. There is 

always a dividing-flow-surface in ISF’s viscous layer[1], especially, the 

wall surface is a dividing-flow-surface of viscous flow close neighbor 

wall surface. u  and v  are velocity components in the x   and 

y  directions, respectively. ,f u v  and T , T  is the temperature, 

   if f u  and v , k   if f T ,   is the viscous 

coefficient, k  is the thermal conductivity. 

   Using the definition (1) to simplify full Navier-stokes(NS) equations, 

we can deduce the equations governing ISF, that is for two-dimension 

compressible flow 

2

2

0

(2)4

3
( ) ( )t t t

uu v
y

uvu u p
u

vt x y yuv v p
y

e e p u e p v
u T

u k
y y

  
 

  
  



 
      
                           
                       

 

              (3)p RT  
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Where 2 21 1
( )

1 2t

p
e u v

 
  


, u and v  are velocity components in the 

streamwise, i.e. x-direction and normal direction of the dividing flow 

surface, respectively, p  and   are the pressure and density, respectively. 

The equations(2) are just diffusion parabolized NS(DPNS) equations[6], 

that are also called usually parabolized NS(PNS) equations or 

thin-later(TL) NS(TLNS) equations, that were presented by several 

authors directed against several concrete flows between the late 1960s 

and the late 1970s. The PNS equations are used widely in flow 

simulations for engineering purpose[2,7]. 

   The ISF represents many typical flows, such as stagnation point flow, 

leading edge of a flat plate in a hypersonic flow, mixing layer flow with a 

strong transverse pressure gradient, flow along a streamwise corner, duct 

flow along the duct axis, viscous/inviscid interacting flow close neighbor 

wall surface etc. A further discussion is given in the next section. 

1.2 viscous/inviscid interacting shear perturbed flow(ISPF) theory[4,8] 

The ISPF as a result of perturbing ISF consists of viscous perturbed 

thin layer layer and its neighboring outer inviscid perturbed flow, 

describing which needs to use ISF’s optimal coordinates. For unperturbed 

flow variables, the motion law and mathematical definition of the viscous 

perturbed layer are consistent with those of ISF’s viscous layer. For 

perturbed flow, the motion-law and mathematical definition of viscous 

perturbed layer are similar to those of viscous unperturbed layer, then we 
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have for two-dimensional incompressible flow 

° ° ° °2 2

2 2
, (4)

f f f f
u v

x x y y
    


   

?  

where �  �,   f u v or T  , u and v  are perturbed velocity components , �T  

is the perturbed temperature, u  and v  are unperturbed velocity 

components, 's  definitions are given in the formula(1). Under the 

hypothesis of that both unperturbed variables u


 and the sum of u


 and 

perturbed variables u


 satisfy NS equations, we can deduce two sets of 

equations governing unperturbed and perturbed variables and use the 

formula(4) to simplify them and then we obtain ISPF equations governing 

unperturbed variables, that are consistent with those of the laminar ISF 

and other ISPF equations governing perturbed variables, that are 


  �





2

2

1
( ) ( ) (5)

0 (6)

u u
u u u u p

t y

divu




 
      

 



 
   

  

The equations(5) were presented by Herbert[9] in 1987 countering non 

parallel effects of the stability of boundary layer flow, that is only a case 

of various ISPF. Herbert called it parabolized stability equations(PSE). 

However, mathematical property of two-dimensional compressible PSE is 

consistent with that of DPNS equations, that is only parabolized 

diffusively. The name of PSE is incorrect, PSE ought to be substituted 

with diffusion parabolized stability equations(DPSE). 

1.3 viscous/inviscid interacting shear turbulent flow(ISTF) theory[4,10] 
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   The ISTF is similar to ISF. The ISTF consists of viscous turbulent 

layer and its neighboring outer inviscid turbulent flow. The viscous 

turbulent layer is convective-diffusion competitive in its normal direction 

and convection-dominate in its streamwise direction. If we describe 

incompressible turbulent flow by the Reynolds average NS(RANS) 

equations written in the ISF’s optimal coordinates, then the motion-law 

and mathematical definition of ISTF’s viscous turbulent layer are 

' ' ' ' ' '( ), ( ), ( )   (7)
f f f f f f

v v f u u f w w f
y y y x x x z z z

          
   

        
? ?     

where ( , , , )f u v w T , ,u v  and w  are time-average velocity component, 

,x y  and z  are the coordinates of the ISF’s optimal coordinates,T  is 

time-average temperature,    if ,f u v  and w , k   if f T ,   

and k  are vicious coefficient and thermal conductivity, respectively. 

   Using the definitions(7) we can simplify RANS equations and then 

obtain simplified RANS equations governing ISTF 

' '

' '

1
( ) ( ) ( ) (8.1)

( ) ( ) (8.2)

( ) 0 (8.3)

p

u
u u u p v u

t y y

T T
u T vT

t y c y

div u







  
     

  

  
    

  




   





 

where ( , , )u u v w
v

, pc  is the isobaric specific capacity. The ISTF 

equations(8) are the counterpart of ISF equations for laminar flow. The 

ISTF equations(8) contains unknowns ' 'vT  etc. for which some 
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additional equations or say turbulence models(such as the turbulence 

k   models) must be supplemented. The k   models 

corresponding ISTF equations are 

     

( ) [( ) ] ,

( ) [( ) ] (9)

t t
k

k

t t

k u
u k S

y p y y

u
u S

y p y y






 


  


  
    

  

  
    

  




 

where k  is the kinetic energy of the turbulent fluctuations, 

'2 '2 '21
( )

2
k u v w   ,   is the dissipation, t  is the turbulent 

viscous coefficient; t  is the turbulent shear stress, ' '
t u v   ; kp  

and p  are the turbulent Prandtl numbers; kS  and S  are the 

turbulent source terms, that contain empirical constants, C  is the 

empirical constants. 

2. Inference I: Scaling-laws of velocity and length of ISF’s viscous layer 

flow were given by Z.Gao[4,11]. The velocity and length scales of a 

three-dimensional incompressible flow can be expressed generally as 

( , , ; , , ) ( , , ; , , ) (10)yx u v wz
nn n n nn

p p p p p p e e e e e ex y z u v w R R R R R R     

where ( , , ) ( , , ) / ,  ( , , ) ( , , ) / , /x y z x y z L u v w u v w U R uL
p p p p p p e

    . Using 

the continuity equation and a hypothesis of that the variation of kinetic 

energy along the streamwise direction( i.e. the x-direction) in ISF’s 

viscous layer, is independent of eR , we can deduce  
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3 (1 ) 1 (1 )
( , , ; , , ) ( , , ; , , ),        (11)

2 2 2 2x y z u v w z w z w

q q
n n n n n n q n q n n n q

 
  

 

where the interacting parameter 1
ln / ln ,0

2
p

e
p

u
q R q

x
   ; If w  can be 

compared with u ,when 0q   ISF expresses the stagnation flow or the 

classical boundary-layer flow and its neighboring outer inviscid flow, 

between which there is no interaction; when 1

4
q   the ISF’s viscous 

layer is just the lower deck of the well-known Triple-deck theory[1], in 

this case ISF express flow in neighborhood of separation point or 

reattachment point or tail-edge point or leading edge point or small step , 

hump, dents and chinks on wall surface etc. when 1

2
q   the length scales 

and velocity scales of ISF’s viscous layer are the same in all directions, 

i.e. an isotropic viscous flow. Therefore, the interacting parameter q is 

essentially a measure of strength of viscous/inviscid interaction. In 

addition, if the effects of the Mach number or say compressibility are not 

neglected, we can deduce further the scaling-laws of the density and 

temperature, adding which to know scaling-laws.  

  ISF can express some typical flows mentioned above. The whole 

viscous/inviscid interacting flow in the neighborhood of wall surface is 

obviously a complex ISF, whose governing equations are DPNS 

equations written in a fitted body orthogonal coordinates, which is just a 

fitted dividing flow surface orthogonal coordinates or say the complex 

ISF’s optimal coordinates. The scaling laws of velocity and length of 
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ISPF’s viscous perturbed flow are consistent with those of ISF’s viscous 

flow[8]. 

   The scaling-laws of velocity and length of ISTF’s viscous turbulent 

flow are consistent with those of ISF’s viscous layer flow if in the latter’s 

scaling-laws   is substituted with an effective viscous coefficient eff , 

where eff t    , ' '
t

u
u v

y
 

 


 

3. Inference II : Dividing flow surface criteria[12,13] 

   In ISF’s viscous layer there is always a dividing flow surface[1], on 

which the normal velocity vanishes. The ISF equations, i.e. DPNS 

equations can be simplified further on the dividing flow surface and the 

resultant equations for a two-dimensional compressible flow are 

2

( ) 0, ( ) 0 (12)

( ) ( ) 0 (13)p

u p u p v
u

x x x y x x y

T p T u
c u u k

x x y y y

  

 

      
    

      
    

   
    

 

The resultant equations are called the dividing flow surface criteria, this is 

because that they can be used to verify creditability of numerical 

simulations for ISF. Two important special case of the dividing flow 

surface criteria are wall-surface criteria (WSC) for viscous flow and 

inviscid flow. This two WSC are respectively                                    
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2

( ) ( ) 0, ( ) ( ) 0 ( ) (14)

( ) ( ) 0 ( ) (15)

w w w w

w w

p u p v
WMC

x y y y y y

T u
k WEC

y y y

 



     
   

     
  

 
  

 

and 

     

( ) ( ) , ( ) 0 ( ) (16)

( ) ( ) 0 ( ) (17)

w w w

p w w

u p p
u WMC

x x y

T p
c u u WEC

x x





  
 

  
 

 
 

 

where WMC and WEC are wall momentum criteria and wall energy 

criteria, respectively. They can be used to verify creditability of numerical 

simulations for viscous flow or inviscid flow near wall surface. 

   The WSC for ISPF’s unperturbed variables are consistent with those 

of ISF. The WSC for ISPF’s perturbed variables are as follows[4,13] 

       

� 

�  �

2

2

2 2

[ ( )] 0 ( ) (18)

( ) [( ) ( ) ] 0 ( ) (19)

ww

w w

p u WMC
y

T u w
WEC

y y y y



 


  



   
  

   



 

The WSC(18) and (19) can be used to verify creditability of numerical 

results given by computing DPSE, i.e. PSE. 

   The WSC for ISTF’s Reynolds time average variables are as 

follows[4,13] 
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'
'

2 2 ' ' ' '

( ) ( ) ( )  (20)

( ) [ ( ) ( ) ] ( ) ( ) 0 ( ) (21)

w w

w p w w

u
p vu WMC

y y

T u w
k c vT vp WEC

y y y y y y



 

 
  

 

     
    

     

r
r

 

The WSC for the turbulence models(such as the k   turbulence 

models) are 

      

[( ) ] ( ) ( ) 0 (22)

[( ) ] ( ) ( ) 0 (23)

t t
w w k w

k

t t
w w w

k u
S

y p y y

u
c S

y p y x y
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   The WSC for the average variables can be used to verify creditability 

of RANS numerical solution for turbulence flow. The WSC for the 

turbulence models can be used to verify creditability of the turbulence 

models(equations) numerical solution and also to evaluate good and bad 

of different models and also to optimize the turbulence models and 

turbulent empirical constants from WSC’s angles. 

4. Some applications of ISF theory and inferences to CFD 

4.1 Application of ISF’s optimal coordinates to grid design  

   For computations of ISF and flow near wall surface, an optimal grid 

should be an orthogonal grid with grid-line paralleling with the 

coordinate axes of ISF’s optimal coordinates. One example is to compute 

two-dimensional incompressible mixing layer flow, refer to Fig.1-4. Four 

grid systems are used, one is an optimal orthogonal grid the other’s are 

the resultants of the optimal grid rotating anticlockwise 15 ,30   and 
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45 . The maximum gradients of velocity and temperature given by the 

latter are respectively about 40% and 50% of those given by the former 

grid. Thus errors influence the transit of momentum and energy across 

ISF’s viscous layer and also affect the flow in downstream. 

               
Fig.1 2-D mixing flow       Fig.2 Optimal and non-optimal grid lines 
 
 
 
 

 

 

Fig.3 Velocity distributions          Fig.4 Temperature distributions 

Therefore, in order to compute exactly various ISF occurring in flow 

field computed, we ought to use ISF’s optimal grid each individual, such 

as a base free ISF between base circulatory flow and outer inviscid flow 

and a complex free ISF between circulatory flow in separation region and 

outer inviscid flow and a complex viscous/inviscid interacting flow in the 

neighborhood of wall surface. Obviously, the three ISF’s optimal 

orthogonal grids are completely different. For the complex ISF in the 

neighborhood of wall surface, the complex ISF’s optimal coordinates are 

just fitted body orthogonal coordinates, having to use which in computing 
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flow over a body is well-known to all. 

4.2 Application of the length scaling-laws of ISF’s viscous layer to 

choose grid size  

   The grid size is responsible for accuracy of numerical simulations. 

For the direct numerical simulation of turbulent flows, Kolmogorov scale 

is an important reference scale to choosing grid size. However, for an 

ordinary computation of NS equations, there was no definite method or 

standard to choosing grid size in the past. Obviously, the length 

scaling-laws given by ISF’s theory would be a definite method to 

determine grid size, that have been proved tentatively by two sets of 

computation solving NS equations[14]. 

         
Fig. 5: SDC's computational           Fig. 6: HCEF's computational  

domain and pressure contour            domain and pressure contour 

      
Fig. 7: Surface pressure coefficient        Fig. 8: Surface Stanton number  

for Run 8 over HCEF                  for Run 8 over HCEF 

D
ow

nl
oa

de
d 

by
 G

ec
he

ng
 Z

ha
 o

n 
Ju

ne
 6

, 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

14
45

 



        
Fig. 9: Detail of Figure 3 around         Fig. 10: Detail of Figure 3 near  

separation point                       attachment point 

         
Fig. 11. Surface pressure coefficient          Fig. 12.Surface Stanton number 

for Run 28 over SDC                      for Run 28 over SDC 

An analysis for the numerical results of hypersonic flows over both an 

asymptotic hollows cylinder extended flare(HCEF) and a sharp double 

cone(SDC) shows[14] that in this two examples the better numerical 

solutions can be obtained(refer to Fig.5-12) when the grid sizes in both 

streamwise and normal directions are directly chosen as 1 /10  of the 

length scale with 1 / 4q   (see formula (10)and (11)), that can avoid 

refining repeatedly grid for seeking the best grid size. It should be 

emphasize on the importance of both ISF’s optimal coordinates and the 

length scaling-law of ISF’s viscous layer to grid design. Just as 

Schlichting and Gerstin pointed out in their monograph[12]: “Numerical 

methods in computing flows at high Reynolds numbers only become 

efficient if the particular layered structure of the flow, as given by the 

asymptotic theory, is taken into account, as occurs if a suitable grid is 

used for computation.” 
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   Obviously, ISF theory shows further that numerical computations of 

high Reynolds number flow only become efficient if the thin-layered 

structure in all directions, given by ISF theory, is taken into account, as 

occur if a suitable grid with grid-lines paralleling the coordinate axes of 

ISF’s optimal coordinates and with grid-refined locally according to the 

length scale of the small-scale structure in ISF’s viscous layer is used for 

computations. 

4.3 Application of small-scale-structure to predict sudden changes of 

heat flux etc. 

   The scaling laws of ISF’s viscous layer reveal that small-scale- 

structure generate certainly in ISF’s viscous layer flow, that will do 

induce sudden changes of several physical quantities like wall heat flux 

and pressure gradient etc. as an example, for the case of laminar ISF and 

Reynolds number 610eR  , the local wall heat flux is about 5.5 times if 

the interaction parameter 1 / 4q   and about 33 times if 1 / 2q   of 

wall heat flux given by the classical boundary-layer theory. 

   As far as I know that to date there no very convincing numerical 

results of using ISF’s scaling laws to compute sudden increase of local 

heating rates etc. However, we ought to pay highly attention to thus 

computations for sudden change phenomena. This is because that some 

flight accidents, such as the damage of the rocket-powered X-15 when its 

flight velocity reached Mach 6.7 in 1967 and the demise of the space 
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shuttle orbiter Columbia during its reentry from orbit in 2003. These 

accidents show that how severe the aerothermodynamic environment is 

for a vehicle that is traveling at hypersonic speeds and that how fragile 

the vehicles that fly through these environments can be. Analysis about 

mentioned above flight accidents making Bertin and Cummings[6] giving 

the following conclusions: These locally severe, critical heating rates or 

unexpected deviations to the force and moments acting on the vehicle 

often occur due to viscous/inviscid interactions. These critical 

environments are the result of “unknown-unknown” or “gotchas”. In fact, 

the scaling-laws of ISF’s viscous layer have illustrated the mechanism of 

the sudden change phenomena of heating rates etc. and offered a way to 

compute locally sudden change. 

4.4 Application of the wall-surface criteria to verify creditability of 

NS numerical solutions  

   The existence and uniqueness of the solution of NS equations have 

not been proved. So we have to face to an always confused problem--is it 

worth to trust the results from computer codes? If it does, how much can 

we trust it? Verification and validation of computing results become a 

very important work. The dividing flow surface criteria and wall surface 

criteria (WSC) are undoubtedly theoretical methods of verifying 

creditability of NS numerical solution. Z.Gao[11] proved that eleven 

well-known NS exact solutions for incompressible flow satisfy exactly 
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WSC and that both the solution of the classical boundary layer and its 

outer inviscid flow and the solutions of similar boundary layer with its 

outer inviscid flow satisfy WSC and that the local solution of ISF with 

1 / 4q  , i.e. the solution of Triple-deck theory[12] satisfies WSC. 

Therefore, NS numerical solutions also ought to satisfy WSC, which are 

proved numerically by some computations of two-dimensional 

incompressible stagnation flow, shock/boundary layer interacting flow, 

compression ramp and cylinder flare[15-17], refer to Fig,13-Fig.16. 
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Fig.13 WMC in shock-boundary         Fig.14 WEC in shock-boundary 

layer interacting flow                  layer interacting flow 
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  Fig.15 WMC in a viscous/inviscid       Fig.16 WEC in a viscous/inviscid 

interacting flow over ramp             interacting flow over ramp 

In a word, we can obtain NS grid independent solution by operation 

of NS numerical calculations satisfying progressively the wall surface 

criteria(WSC). Especially, this criteria can evaluate the departure of NS 

numerical solutions from NS true solution by just one time NS 

calculation on set of grid, which is an outstanding advantage of the WSC 
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method compared with the grid convergence analysis method in common 

use, based on that some people[5,15-17] suggested that the WSC method 

may be used as an ingenious substitute for the grid convergence analysis 

method and that the WSC method and ISF theory would be called Gao’s 

criteria and Gao’s ISF theory, respectively. 

4.5 Applications of WSC for turbulent flow to CFD 

   The wall surface criteria(WSC) for turbulent flow can be used to 

verify creditability of RANS numerical solutions for near wall turbulent 

flow. The WSC for turbulent models can be used to evaluated good and 

bad of turbulent models and to optimize turbulent model and turbulent 

experience constants from WSC’s angle, for example, an optimized 

Prandtl mixing length is given[13] 

1/2

5.75op

y
l

u




 
  
 

, 
0.4

4
c

p

y y y
l

y y


  
      (24) 

where 0.15 0.20cy   � ,   is thickness of boundary layer, pl  is 

Prandtl mixing length, opl  is optimized Prandtl mixing length, u  is the 

friction velocity. 

5. Conclusion 

The viscous/inviscid interacting shear flow(ISF) consists of viscous 

shear layer and its neighboring outer inviscid flow, which interact on each 

other. So ISF theory makes a breakthrough the classical boundary layer 

theory, that treat viscous thin shear layer without interaction with its outer 
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inviscid flow. The equations governing ISF are diffusion parabolized NS 

equations, i.e., PNS equations. Anderson[2] reviewed “The PNS method is 

in very widespread use; indeed, it forms the basis of an industry-standard 

computer program, which is used by virtually all major aerodynamics 

laboratories and companies.” The equations governing perturbed 

variables of ISPF are diffusion parabolized stability equations (DPSE), 

i.e., PSE. Herbert[18] pointed out that PSE method forms the basis of an 

industry-standard flow stability analysis. 

However, in early studies of PNS and PSE, it is not very clear what 

kind of basic flows are described by PNS and PSE, there are no basic 

fluid theories corresponding to PNS and PSE. The ISF and ISPF theories 

furnish complete answer to this question. Especially, ISF and ISPF 

theories and their inferences also have some important applications to 

CFD as mentioned in Sec.4. The known applications of ISF theory and its 

inferences to CFD are fruitful and creativeness. So study and computation 

in this aspect are worth notice, deepening and widening. 

References 

1. Schlichting H,Gersten K. Boundary-Layer Theory[M]. Springer-Verlag, Berlin 
2000 

2. Anderson JD Jr. Hypersonic and High-Temperature Gas Dynamics (2nd ed.) [M] 
AIAA Education Series 2006 

3. Z.Gao. Viscous/inviscid interacting shear flow theory. Acta Mechanica Sinica, 
1990,22(1):9-19(in Chinese) 

4. Z.Gao. Interacting shear flow(ISF) theory,diffusion parabolized NS equations and 
wall-surface criteria and the applications. Chinese Mechanics Abstracts, 
2007,21(3):13-22(in Chinese) 

5. Yong Yu. Gao’s interacting shear flow (ISF) theory and its inferences and their 

D
ow

nl
oa

de
d 

by
 G

ec
he

ng
 Z

ha
 o

n 
Ju

ne
 6

, 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

14
45

 



applications in CFD[J]. To be published in Jour.BIT 2013,22(1):10-20 
6. Z.Gao Hierarchial structure of simplifying Navier-Stokes equations and 

mathematical property of simplified Navier-stokes equations. Acta Mechanica 
Sinica,1988,20(2): 107-116(in Chinese) 

7. Rubin SG,Tannehill JC. Parabolized/reduced Navier-Stokes computational 
techniques[C]. Annu.Rev. Fluid Mech. 1992, 24:117-144 

8. Z.Gao. Invariability of convection-diffusion interacting scale structure. Acta 
Mechanica Sinica,1992,24(6):661-670(in Chinese) 

9. Herbert T, Bertoloti, FP. Stability analysis of non-parallel boundary layer bull. 
American Phys.soc.198732(8): 2097-2112 

10. Z.Gao. Two-dimensional viscous/inviscid interacting shear turbulent flow(ISTF) 
theory. Science in China Series A, 1992 22(6):605-615 

11. Z.Gao. Strong viscous layer flow theory with application to viscous flow 
computation. Acta Aerodynamica Sinica, 2001,19(4):420-426(in Chinese) 

12. Z.Gao. The wall-surface criteria with application to evaluate creditability of CFD 
simulation. Acta Aerodynamica Sinica, 2008,26(3):378- 393(in Chinese) 

13. Z.Gao. Can the wall-surface-criteria method for substitute the grid convergence 
analysis method in common use? In:Proc.of 2012 Summer Symposium, State 
Key Laboratory of High Temperature Gas Dynamics(pp. 113-122)2012.8 yanji 
Jilin 2012(in Chinese) 

14. Y.Yu, H.R.Zhang. A guidance to grid size design for CFD numerical simulation of 
hypersonic flows. Submitted to the 7th Asian-Pacific Conference on Aerospace 
Technology and Science. May.2013 Taiwan 

15. Y.Yu. New CFD validation method with application to verify computation of near 
wall flow[J]. Jour. Beijing Institute of Technology, 2010,19(3):259-263 

16. X.W.Xu Wall-surface criteria-a method of evaluating creditability of  CFD, 
analysis and application. Academic degree thesis, Beijing Institute of Technology, 
2012(in Chinese) 

17. Yong Yu. Gao’s interacting shear flow (ISF) theory and its inferences and their 
applications in CFD[J]. To be published in Jour.BIT 2013,22(2) 

18. Herbert T. Parabolized stability equations(PSE). Annu.Rev. Fluid 
Mech.1997,29:245-283 D

ow
nl

oa
de

d 
by

 G
ec

he
ng

 Z
ha

 o
n 

Ju
ne

 6
, 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

4-
14

45
 


