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ABSTRACT 
 

Instrumented indentation is often used in the study of small-scale mechanical behavior of 
�soft� matters that exhibit viscoelastic behavior. A number of techniques have been used to 
obtain the viscoelastic properties from quasi-static or oscillatory indentations. This paper 
summarizes our recent findings from modeling indentation in linear viscoelastic solids. These 
results may help improve methods of measuring viscoelastic properties using instrumented 
indentation techniques.  
 
INTRODUCTION 
 

Instrumented indentation [1-13] can be performed in either quasi-static or oscillatory 
mode for measuring mechanical properties of �soft� matters, such as polymers, composites, and 
biomaterials, that are often viscoelastic. In the load- or displacement-controlled quasi-static 
mode, the load-displacement curves are recorded. One of the widely used methods, due to Oliver 
and Pharr [2], is to obtain the elastic modulus from the initial unloading slope, mdhdFS )/(= , at 

the maximum indenter displacement, mh , 
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where G  is the shear modulus, ν  is Poisson�s ratio, )1(2 ν+= GE  is Young�s modulus,  a  is 

the contact radius, and 2aA π=  is the contact area.   The contact radius, a , can be obtained from 
the contact depth, ch , and indenter geometry. Oliver and Pharr [2] proposed an equation for ch : 
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where mF  is the load at mh . The numerical value of ξ  is ( )( ) 727022 .π/π =−  and 43/  for a 
conical and paraboloid of revolution, respectively. Although Eqs. (1) and (2) were derived from 
solutions to elastic contact problems, they have been used for indentation in elastic-plastic solids 
and viscoelastic solids. One of our motivations was to evaluate whether Eqs. (1) and (2) could be 
used for indentation in linear viscoelastic solids and another was to improve the existing methods 
[14-18].  

 
In the oscillatory mode, a sinusoidal force is typically superimposed on a quasi-static load 

on the indenter [1,3,4,6,9,10,13]. The indentation displacement response and the out-of phase 
angle between the applied harmonic force and the assumed harmonic displacement may be 
recorded at a given excitation frequency or multiple frequencies. Several authors 
[1,3,4,6,9,10,13] have proposed analysis procedures for determining the complex Young�s 
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modulus, ( ) ( ) ( )ωωω '''* iEEE += , where )(' ωE  is the storage modulus and )('' ωE  is the loss 
modulus, from oscillatory indentations using the following equations: 
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where ν  is Poisson�s ratio, S  is contact stiffness, C  is damping coefficient, and A  is contact 
area between the indenter and the sample. For an ideal indenter with infinite system stiffness and 
zero mass, the contact stiffness and damping coefficient are given by φcos/ hFS ∆∆=  and 

φω sin/ hFC ∆∆= , where F∆  is the amplitude of sinusoidal force with angular frequency ω , 

h∆  is the amplitude of oscillatory displacement, and φ  is the phase angle of the displacement 
response. Thus, by measuring displacement amplitude and phase angle under harmonic 
oscillation, the reduced storage and loss modulus, ( )21/ ν−′E  and ( )2'' 1/ ν−E , can be obtained 
from  
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Recently, we showed that Eq. (4) is the result of linear approximation of oscillatory indentation. 
By performing a nonlinear analysis, we derived the corresponding set of equations without 
evoking the small amplitude oscillation assumption [19].  

 
Contact mechanics of linear viscoelastic bodies became an active area of research since 

the mid 1950s by the work of Lee [20], Radok [21], Lee and Radok [22], Hunter [23], Gramham 
[24,25], and Ting [26,27]. They have derived general equations for various contact conditions. 
For example, they have shown, for conical indentation in a linear viscoelastic solid with a 
constant Poisson�s ratio, the force, )(tF , is given by: 
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where )(tG  is the relaxation modulus which is related to the time-dependent Young�s modulus 

by ( )ν+= 1)(2)( tGtE  and θ  the half included angle of the indenter. When force is the 
independent variable, the displacement, )(th  is given by: 
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where )(tJ s  is the shear compliance. Eqs. (5) and (6) were derived based on the assumption of 
that the contact area is a monotonically increasing function of time. Under the same assumption, 
Ting and Gramham showed that the ratio of contact depth to indenter displacement is the same as 
that in the purely elastic case [24, 26],   
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thc .                                                                  (7) 

 



QUASI-STATIC INDENTATION 
 
Conical indentation in linear viscoelastic solids: initial unloading slopes without a holding-
period 

 
We have recently shown [15] that Eqs. (5)-(7) could be used to analyze initial unloading 

after a loading period with a non-decreasing function ( )th  or ( )tF . Specifically, the initial 
unloading slope is given by, using Eqs. (5)-(7),   
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for load-controlled indentation with an initial unloading rate dtdFvF /= , and  
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for displacement-controlled indentation with initial unloading displacement rate dtdhvh /= . 

Eqs. (7-9) have been validated using finite element calculations for fast unloading after loading 
with a monotonically increasing function ( )th  or ( )tF [14,15].  Under fast unloading the second 
terms in Eqs. (8) and (9) are negligible, these equations become the same as Eq. (1) with 
( ) ( )0/10 sJG =  in place of G . Thus, the �instantaneous� properties, ( )ν−1/)0(G  or 

( )21/)0( ν−E , can be obtained from either displacement- or load-controlled indentation 

measurements using Eqs. (7)-(9), provided that the unloading rate, hv  or Fv ,  is sufficiently fast. 
When unloading rates are sufficiently fast, the unloading slope is no longer a function of the 
unloading rate. Our finite element calculations suggested that �sufficiently fast� unloading could 
be achieved when the time duration of linear unloading was about 0.1 to 0.01 times the 
relaxation time of linear viscoelastic materials [15]. In practice, several indentation experiments 
with different unloading rates spanning several orders of magnitudes may be necessary to access 
whether unloading rates are fast enough. It is possible that required fast unloading is 
unachievable in practice. It is therefore convenient to develop techniques where an arbitrary 
unloading rate is sufficient to allow the determination of the instantaneous modulus. Methods of 
�load-hold-unload� discussed in the next section make such a measurement possible.   
 
Conical indentation in linear viscoelastic solids: initial unloading slopes with a holding-
period 
  

We consider a load profile consisting of a loading period where the force is given by a  
monotonically increasing function, a �hold-at-the-peak load� period with a constant force, and an 
unloading period with an initial unloading rate, dtdFvF /= .  We have shown [18], using Eq. 

(8), that  
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Thus, the instantaneous properties, ( ) ( ) ( )( )[ ]νν −=− 10/11/0 sJG , can be obtained from the 

measurement of initial unloading slope, dhdF / , the velocity of the indenter immediately before 
unloading, ( ) −= mttdtdh / , the rate of unloading, Fv , and the contact radius a . Eq. (10) was first 

suggested by Ngan and co-workers [12]. Eq. (10) shows that, under load-control, the �hold-at-
the-peak-load� method provides a convenient means to determine the instantaneous modulus. In 
particular, when the holding period is sufficiently long, the ratio of ( ) −= mttdtdh /  over Fv  becomes 

negligibly small as a result of creep. The instantaneous modulus can then be obtained directly 
from the unloading slope dhdF /  and the contact radius or depth.  
  

We have also proposed a �hold-at-the-maximum-displacement� method for indentation 
measurements when displacement is the independent variable [18]. We considered a 
displacement profile where the displacement is given by a monotonically increasing function, a 
hold period at a constant displacement, and an unloading period with an initial unloading rate, 

dtdhvh /= .  Using Eq. (9), we have shown [18] that  
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Eq. (11) shows that ( ) ( )ν−1/0G  can be obtained by measuring the initial unloading slope, 

dhdF / , the rate of force relaxation immediately before unloading, ( ) −= mttdtdF / , the rate of 

unloading, hv , and the contact radius a .  When the holding period is sufficiently long, the ratio 

of ( ) −= mttdtdF /  over hv  becomes negligibly small as a result of relaxation. The instantaneous 

modulus can be obtained directly from the unloading slope dhdF /  and the contact radius or 
depth.  
 

We found, using finite element calculations [15, 16,18], that the Oliver-Pharr equation for 
contact depth (Eq. (2)) often produces significant errors, whereas Eq. (8) is indeed a good 
approximation for the contact depth up to initial unloading for conical indentation. The reason 
that Eq. (2) is not applicable to indentation in viscoelastic solid becomes clear if we examine the 
two relationships used in deriving Eq. (2): π/2/ =hhc  and )//(2 dhdFFh =  for conical 
indentations. The first equation is identical to Eq. (7). However, the second equation, which 
comes from 2ChF =  where C  is a time-independent parameter, is, in general, not true for 
conical indentation in linear viscoelastic solids as can be seen from either Eq. (5) or (6) for the 
displacement- and load-controlled indentation, respectively. Thus, ( ) ( ) ( ) ( )νν −=− 1/021/0 2 GE  
can be obtained using Eqs. (10) or (11) together with Eq. (8) in �load-hold-unload� 
measurements.  
 



OSCILLATORY INDENTATION 
 
 In oscillatory indentation measurements, a harmonic force is superimposed on a quasi-
static force, i.e., 

( ) )sin()( tFtfFtF m ω∆+= ,                                             (12) 

where )(tf  is a monotonically non-decreasing function of time ( ) 1≤tf . Inserting Eq. (12) into 

(6) and using the definition of the storage and loss shear compliances, 
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 Eq. (13) shows that ( )th2  can be expressed as, 

( ) ( )φω −∆+= thtBth sin)( 2
2 ,                                             (14) 

where h2∆  is the "square" amplitude of harmonic displacement and φ  is the phase shift. Eq. (14) 

shows that the square of displacement, ( )th2 , is a sinusoidal function of time. This is different 

from the usual assumption that the displacement, ( )th , is a sinusoidal function of time based on 
which Eqs. (3-4) were derived. Comparing Eq. (14) with Eq. (13) and using the relationship 
between the complex modulus, *E , and the complex shear compliance, *J , i.e., 
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Eq. (16) shows that the storage and loss modulus can be obtained by measuring the square 
amplitude of displacement h2∆  and phase shift φ . The measurement of the contact area or the 
absolute position of the indenter is unnecessary, thus removing the difficulties associated with 
contact area measurement and thermal drift for both large and small amplitude oscillatory 
indentations.   
 
CONCLUSIONS 
 

We have provided an overview of our recent studies of indentation in linear viscoelastic 
solids. These studies established basic equations for several methods of obtaining viscoelastic 
properties using quasi-static and oscillatory indentations. Specifically, we showed that the 
instantaneous modulus, ( ) ( ) ( ) ( )νν −=− 1/021/0 2 GE , can be obtained using either the method of 
fast unloading or the method of load-hold-unload for both load- and displacement-controlled 
quasi-static measurements. We also derived equations for obtaining the storage and loss modulus 
from oscillatory indentation measurements without using the usual assumption of small 
amplitude oscillations. Although we focused our discussions on conical indentations in this 
overview, corresponding equations have been derived for quasi-static and oscillatory 



indentations in linear viscoelastic solids using spherical indenters [16,19]. We hope these results 
will help improve the current practices of using indentation to determine viscoelastic properties 
of �soft� materials, including polymers, composites, and biomaterials. 
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