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Abstract — An analytical approach to analyzing It can be much conveniently applied to the passive

spacecraft formation-flying motion is proposed in thisformation-flying design.

paper. Flight trajectory of spacecraft relative motion

related to initial values is analytically described, and 2. Analytical Solution of Spacecraft

several mainly relative motion modes between Relative Motion Equation

formation and reference spacecrafts are significantly

characterized. On the basis of analytics, furthermore, a In multiple spacecraft formation-flying one key

new simplified formula is given to be applied to the question is needed to definitely describe the relative

formation-flying design. motion trajectories between every formatting
spacecraf; and the reference spacecrgft(may be

, virtual). If all influence forces among spacecrafts are
1. Introduction neglected, the formation-flying design could be

. , , ) simplified as the study of the relative motion of
In recent years formation-flying design with a group mjiple two-body, i.e., the relative motion of someone

of spacecrafts to execute special missions has becor{a@r ;
. . matting spacecraf§, and reference spacecrat .
a most important research atéad While all gsp f P &t

disturbances among spacecrafts are neglected, it can beAssume that the reference spacecr&truns in a
simplified as the study of multiple two-body dynamics circular orbit around Earth with radius &, and the
prolglem. In fact, some research results about tWO'bOd‘Pérmation-ﬂy spacecraftS,; runs in an elliptical orbit
motion for spacecraft rendezvous were preséfited ) o
One of them is so called Hills approactor @lso around Earth with ellipticity ot and average

ClohessyWiltshire equation) by which the relative radius ofR;, respectively. To Analyze the geometric

motion equation of two spacecrafts is linearized angelationship betweenS, and S, , two coordinate
then the approximated solution is applied to the control . . .
stems, i.e., the Earth-centric coordinate system

design. Recently, Hill's approach has been generalize . .
to formation-flying design and many formation-flying XYZ and the relative coordinate systayz, should

models have been providéd. be set up firstly (see Fig.1).

The formation-flying problem, however, differs from  In OXYZ, let planeOXY be the same as the orbital
rendezvous to a great extent. In formation-fly someplane ofS, and axisOZ be the same as the direction
stable relative geometric continuities should be kepbf the normal line of reference orbital plane, a®X
during the whole mission life, but in the latter problemijs the link direction from Earth-cente® to the
only a short control or operating activity (about
5%10% of the orbit period) is needed to be N
considered. Therefore, it is absolutely necessary t§l@ne of S, such thatOY can be additionally
more deeply analyze the precise characteristics odetermined by right-hand rule.
relative motion between spacecrafts . In relative motion coordinate systenoxyz |,

In this paper, the analytical solution of relative furthermore, the origiro is defined as the mass center

motion between the. bo_th of forme_ltion-flying and ¢ reference spacecrafb, , axis OX as the radius-
reference spacecrafts is directly established by means of . - .
geometrically mapping. And several typical behaviord"OWN9 direction of reference.spac-ecra.lft orbit, and let
modes of relative motion trajectory under different orbit®*iS 0y be the same as the flying direction §f, then
conditions are discussed in some detail. Furthermore,te third axisoz is also established by right-hand rule.
new simplified formula is derived by parametrical ~Now suppose that all disturbed forces are neglected,

approximation on the basis of this analytical solutionthe relative motion equation between the formation-

(]

ascending-cross point o, arriving at the orbital

1
American Institute of Aeronautics and Astronautics

Copyright © 2002 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2002-4847&domain=pdf&date_stamp=2012-06-25

Downloaded by CHINESE ACADEMY OF SCIENCES on May 26, 2017 | http://arc.aiaa.org | DOI: 10.2514/6.2002-4847

flying spacecraftS; and reference spacecra§ in 94010 (1-@2)%2
relative coordinate systenoxyz can be familiarly 61, (1+ecosh)?
written as follows: 1-¢2

r
=20,y (& ~ED)(R, +20 =0 ’

0 = w,t (3a)

=—————R, (3b)
1+ecos@ +6;,)

Proof: With the beginning, by arranging and

OV + 20, X — (@ —%)y =0 (1) calculating (2) and (3), the followings are discovered:
§+£Z=O , 4 =3.986x10° \/(X+RO)2+y2+ZZ ~lo (42)
R° G:L[uecosew ) (4b)

Where, w? = u/ R} and w? = u/ R® are the angular (1-e?)*? "

frequency of spacecrafs, and S, , respectively, and b=— Zewzf . [1+ecos@ +6,,)]°sin@+6,,) (4c)

Rz\/(R0 +x)2 +y? + 2 is the flying radius of S, e(i)_li )

attimet . fy = ———=sin@ +6,,) (4d)
Let A, refer to the inclination difference of two Vi-¢?

orbital planes, and the perigee 8f be the placed P = ew; R, [1+ecos@+0,,)]2cos@+6.,) (4e)

angle Q, rotated along the flying direction fronOX ’a-¢)’ " "

axis in the orbital plane of, . In addition, let the To consider whether or na =r, cosd is one special
initial phase of spacecraft betwe&), S, and axis solution of (1), substitute” and (4a) into (1), then
OX be 6,,+Q, and 6,, , respectively, then the W€ have:

relative motion trajectory of two spacecrafts can be Z + % 2’ =i, cos0-2f,0sin6-r,6sin6+
accurately determined under all of above definitions. d - (5)
Theorem 1: The analytical solution of relative +wf—2f2[1+ ecos(f +8,,)]? cos 6
motion equation (1) is described by the following: (1-e%)
o _r, In addition, by substituting formula (4b)4e€) into the
%% —3{(1-008Ai)0086’ Tt Qo+, +6,)+ above equdlity, it is much clear that the right side of (5)
+(1+COSA ) oSO -wt+0Q +8. -0 ) equals to zero. With the similar procedure to mentioned
E ( JcosPmat+Q,+ 6y rO)} R above, it can be also simply tested and verified that
w:%{- (1-cosA)sin@+wt+Q, +6,,+6,)+ @)  Tasiné . rycosb+at) , rpsin+et)
0

r, cos€ —a,t) and r,sin@ — . t) areall the other five
special solutions of (1). By using all these six special
solutions and al initial parameters (such as
R.R.e.,p ,Q,,6,, and &), al correlative

O +(+cosh,)sin@-wt+Q, +8,, -6}
0

0
=T SinA; sin@+Q, +6;,)

Where both of6 andr, satisfies coefficients in (2) between three axis-variables and six
Farmation Orbit
Apogee
Refernce Orbit 7 i \
Y
Perigee
X
Fig. € Coordinaie SySiems o spacecralt relaive motion
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special solutions iroxyz can be explicitly obtained A where all corresponding coefficient ,i =1,...,6 is
Clearly, the solution (2) of (1) given by theorem 1 isgiven by the following:

described by using the relevant orbit and phasg] o - R/, O £,

parameters of two spacecrafts. If necessary, thisy, ==y, -, —V1-€° (—)°w; dX, + R,)) + ()Y,

solution can be rewritten as the explicit models with sixO O To O fo

initial values (such ag,,¥,,2,; Xo» Yo,2Z,) iN OXyZ. B — R,
According to (4a), we have: S’Z =rvit2yl-e (?) @; (% + Ry)
0
ro =y (% +R)* +Yy5 +2 (62) 0 R o ¢
’ \/ ot R THrE Evaﬂo—cw,—\/1—e2<—f)2wfwo—(r—°)(xo+Ro)
r-o - XO(XO + RO) + yOyO + ZOZO (Gb) 0 O r0 O r0
2 2 2 R
\./(XO+RO) O . . %’4 = vy +2J1-€’ (_f)zwf Yo
Let 6 =0 in (3b) and (4d), and substitute (6a)-(6b) into Iy
(3b) and (4d), then we have: O R
0 R s =1-€” (—)w; 7
[ecosd, :(1—e2)E—f%1 0 o
. "o CONN RN fo),
@ 6 ZO r 0

0. efD:PB f H o
T “Hor (8b)

F implicity, define A, =r,/(8,r,) . Thus th . . o
orsimplicity, - define A, = r, /(o) us e Comparing the two expressions (8) and (2), it is

following can be obtained by (32)-(3b) (4b) and  gyigent that six coefficients in (8b) are not absolutely

(6a)-(6c): independent, and they are restricted with inclination
Yo, Tonz, o 2 difference A, of two orbital planes. Simply, the
e—\/(l R, ) +(Rf ) (wf R ) (7a) restrictions can be determined as follows:

(Vi +V5)(v5 +V5) = (Ve +V5)°

Vi-e? (2 E“ (9a)

R
1= w; R =[V1-e? (—D)w, R, H sin* A,
2 rO

R .
1+[(1-€%)(—) -1 cosd —1- €% (—°)sing R
" “iRy W2 +E + V2 4v2 =21- et (D R, (9b)
(7b) fo
o 232 a‘fRf 2 . . . . L g .
[V1-e Ay ( . )7d6 = w;t (7¢) 3. Relative Motion Analysis and Simplifications
0 0

Based on the above equality (7a), the relationship of As mentioned above, the analytical solution (2) or
ellipticity and different initial values is shown in Fig.2. (g) is an explicit description of (1) in a genera way.
Substituting r, =,r,A, into the solution (2), the While the orbit of S, satisfies some special conditions,
orbital parametersX; ,Q,,6,,,6,,) corresponding to therefore, this solution may be summed up more
the relative initial valuegx,, Y,,2,) and (X,, ¥o,Z,)
can be solved. Therefore, the following result is
derived.

Corollary 1: The explicit solution of (1) with initial
parameters (X,, Yo,Z; %o: Yo, Z,) IS described as
follows:

A
gx = 79{\/1 cos(f + w, t) + v, sin(fd +w, t) +

0
O +v,cos@-w,t)-v,sin(@-wt)-R,

A, : (8a)
oy = T{\/3 cos(@ + w, t) - v, sin(6 +w,t) +

o

+v, cos(@ - w,t) +v, sin(8 —w, )}
E,z = A, {v, cosé + v, sin 6}

m

Fig.2 relationship of elipticity and initial values
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simplified descriptions.

First of all, consider the case of initial values
v, =V, =0, such thatv, =v4; =0 and z = 0, such that
the following simplification is clearly obtained:

Ex = :—9{(xO +R,)cos(@ + w,t) + y, sin(6 + w,t)} - R,
0

Dy = ~{yo cos(@ + 1) = (% + Ro)sin(6 + w,t}

H

In such a way both ok andy is characterized as a
group ofhigh frequency”and big amplitude vibration.
From (9) it is also known that this case is corresponded
withthat S, fliesin the direction being opposite of S,

(i. e, A, =180 ), so that the two satellites may
rendezvous most fast with such groups of initial values.
It should be pointed out, however, this case must be
avoided as possible as we can because this rendezvous
under a certain subset of initial conditions may be
changed as a “enforced hard touch” differing from the
common way expected.

Another extreme case is that v, and v, approximate
to zero sufficiently. Thus, the two orbital planes are so
closed adequately and two spacecrafts flies in the so
almost same direction that a “ soft touch on” mode will
occur, therefore all responses of x and y are sSow
enough and the part z is very closed to zero. In fact, if
S; fliesin a much low dlliptic orbit (i.e. the 2" order

amount of ellipticity e may be neglected), this case
will be resulted in under very closed inclination
difference. On the basis of this, here a simplified
description is represented for formation-flying design.

Theorem 2% If € and A? are neglected, and
@, =, , then the 1°-order approximate solution of (1)
is shown asfollows

Yo fo Dyo 3,1
X=X +-20 +> - +
"2 EZ,ROE“ 2w 2 wR,

%

+Zsinwt +0(€?) (10a)
Y=Yo~ 2—X°-3E— %/+B—+3(R°-l)yotposwt+
+ Yo Lo singt +o(€?) (10b)

wr
z = z,cosmwt +%sinw,t +0(€°) (10c)

Proof: By neglecting the influences & and A7 ,
the followings are obtained from (3a)-(3b):
0 - w,t = 2esina,t + 8,,) —sind, o} + o(€?)

r
£ =1+ecosd,, —ecos@ +6,,) +o(e?)
r.O

4

such that
X = r—f’{(xo +R))cos@-at) - ysin@ -t} - R,

= xo + (% +Ry)cosh,, +2ey,singy, —

_{e(xo +R,)cosd, , + 2ey, sing, f coswt +

+{e(x0 +R,)sing, , — 2ey, cosd, Q}sma)t +0(€%)
From (8a), moreover, we have:

X, = ew, (X, + R,)sind,, — 2ew, y, cosd, , + o(e*)

By substituting these intermediate results and (6c) into
the above equality, then the validity of (10a) is
apparently proved. By the same logic procedure as

mentioned above, the proofs of (10b) and (10c) are
completed. A

As well known, another interesting simplification
dealing with relative motion is so called Hll
approach by which the approximated equation of (1)
can be solved as follows under the linearizatiod/d®
atl/Ry:

th(t)—(4xo+ yO) (3x0+::°)coswt+%smwt

O r d
2Xo 4y
(0 = (%~ o 2%y 2% - 5 costt +(6x, + “snat= )

B - (6w %, + 3y05t
EZh(t) = z,coswit +%sinwrt

T

Obviously, one main shortage is that there exists one
unconvergent term in the payt, of (11). In order to

make Hills solution (11) usable a strong constraint
condition y, +2a, X, =0 has to be held. Second, due
to the linearized approximation, another one condition,
i. e. x* +y® +2z* =0(e*) has also to be needed . On

the contrary, theorem 2 successfully avoids those being
deficient in Hills approach, because of that (10) is
derived by parametrically simplifying the analytical
solution of (1) instead of itself of the relative motion
equation (1). Therefore, the creditability of theorem 2
after simplification is much better guaranteed than that
of (11). In addition, theorem 2 can be applied to long-
distance formation flying because of no any additive
constraint to initial values needed.

To illustrate how to use theorem 2 to design a
formation-flying, here a calculating instance for
keeping the track of subsatellite point as a circle is
introduced* as follows.

Example 1: Let the radius of the reference
spacecraft be th same as 7,500km. For keeping all
subsatellite point (i. e., the track mapping of the
formation spacecraft on the plane—2) drops on a
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circle, the correspondent initial values should satisfy thef initial values, and all tracks of subsatellite point are

following'! by (10):

. =050y, (1- 32— 1)
0 I

0

drawn in Fig 3 with dush-lines.

Clearly, al tracks of subsatellite point calculated by
means of theorem 2 are significantly closed to what
designed no matter how the track radius changed.

E{% =ty, Unfortunately, the designs by Hill’s approach indeed
o . result in unconvergent effects, because the mapping
O =3 tracks can not be periodically repeated.

0’  w

0

%(Xo —WY) (Y, tw X twR) + 2K
rO

H
R, 4. Conclusions
Let y, =0, then we havex, =0, y, =, z,, 2z, =0,

r=o?

In this paper the relative motion between formation
and Xo is determined by USing the fourth one of theSpacecraft and reference Spacecraft orbit has been
above equality. Thus three cases under different tracénalytically described in detail.  Several response
radius (equals to 10km, 150km and 1000km,modes of spacecraft relative motion on this basis have
respectively) of subsatellite point are calculated andbeen discussed. Furthermore, a new simplified formula
shown in Fig. 3 (see all real-lines). To compare thebetter than Hill's approach has been provided under low

difference between the mentioned calculatiod Hill's
approach, we can use one proposed formulal? derived
from Hill’ssolution (11) to get another three groups

15 T T T T .
z —. By Theorem 2
----- By Hill's Approach

-15 -10 -5 0 5 10 15

ellipticity of formation-orbitting and it can be more
effectively applied to the spacecraft formation-flying
design.

2m = = : T T T T
= —— By Theorem 2
_____ By Hill's Approach

=200
-200 150 -100 -50 1] a0 100 150 200

(a) Thetrack radius of subsatellite point =10km (b) Thetrack radius or subsatellite pornt =150km
00 : . i .
) R H}'Thenrﬂ,m'}
----- By Hill's Approach
00 T T T T e T commmetem]
o0 |° ’ \x;' |
Y 5 %
.I s
0 k= Il \,/ ll |
SR |
N A ¥
b ot “ : |
010 - et |
00 ¥
00 i 1 i P L .
4000 -3000 -2000 S1000 1000 2000 3000 4000

{C) The track radius of subsatellite point =1,000km

Fig. 3 The calculated tracks of subsatellite point under three designated cases
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