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Abstract − An analytical approach to analyzing 
spacecraft formation-flying motion is proposed in this 
paper. Flight trajectory of spacecraft relative motion 
related to initial values is analytically described, and 
several mainly relative motion modes between 
formation and reference spacecrafts are significantly 
characterized. On the basis of analytics, furthermore, a 
new simplified formula is given to be applied to the 
formation-flying design. 
 

1. Introduction

In recent years formation-flying design with a group 
of spacecrafts to execute special missions has  become 
a most important research area1,2,3. While all 
disturbances among spacecrafts are neglected,  it can be 
simplified as the study of multiple two-body dynamics 
problem.  In fact, some research results about two-body 
motion for spacecraft rendezvous were presented4,5.
One of  them is so called  Hill’s approach6 (or 
Clohessy−Wiltshire equation) by which the relative 
motion equation of two spacecrafts is linearized and 
then the approximated solution is applied to the control 
design. Recently, Hill’s approach has been generalized 
to formation-flying design and many formation-flying 
models have been provided7,8,9.

The formation-flying problem, however, differs from 
rendezvous to a great extent. In formation-fly some 
stable relative geometric continuities should be kept 
during the whole mission life, but in the latter problem 
only a short control or operating activity (about 
5%∼ 10% of the orbit period) is needed to be 
considered. Therefore, it is absolutely necessary to 
more deeply analyze the precise characteristics of 
relative motion between spacecrafts . 

In this paper, the analytical solution of relative 
motion between the both of formation-flying and 
reference spacecrafts is directly established by means of 
geometrically mapping. And several typical behavior 
modes of relative motion trajectory under different orbit 
conditions are discussed in some detail.  Furthermore, a 
new simplified formula is derived by parametrical 
approximation on the basis of  this analytical solution. 

It can be much conveniently applied to the passive 
formation-flying design.  

 
2. Analytical Solution of Spacecraft

Relative Motion Equation

In multiple spacecraft formation-flying one key 
question is needed to definitely describe the relative 
motion trajectories between every formatting 
spacecraft fS and the reference spacecraftrS (may be 

virtual). If all influence forces among spacecrafts are 
neglected, the formation-flying design could be 
simplified as the study of the relative motion of 
multiple two-body, i.e., the relative motion of someone 
formatting spacecraft fS and reference spacecraft rS .

Assume that the reference spacecraft  rS runs in a 

circular orbit around Earth with radius of 0R , and the 

formation-fly spacecraft fS runs in an elliptical orbit 

also around Earth with ellipticity of e and average 
radius of fR , respectively. To Analyze the geometric 

relationship between fS and rS , two coordinate 

systems, i.e., the Earth-centric coordinate system 
OXYZ and the relative coordinate system oxyz , should 

be set  up firstly (see Fig.1). 
 In OXYZ , let  plane OXY be the same as the orbital 
plane of rS and axis OZ be the same as the direction 

of the normal line of reference orbital plane, axis OX
is the link direction from Earth-center O to the 
ascending-cross point of fS arriving at the orbital 

plane of rS , such that OY can be additionally 

determined by right-hand rule. 
 In relative motion coordinate system oxyz ,

furthermore, the origin o is defined as the  mass center 
of reference spacecraft rS , axis ox as the radius-

growing direction of reference spacecraft orbit, and let 
axis oy be the same as the flying direction of rS , then 

the third axis oz is also established by right-hand rule. 
 Now suppose that all disturbed forces are neglected, 
the relative motion equation between the formation-
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flying spacecraft fS and reference spacecraft rS in 

relative coordinate system oxyz can be familiarly 

written as follows: 
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Where, 32 / ff Rµω = and 32 / or Rµω = are the angular 

frequency of spacecraft fS and rS , respectively, and 

222
0 )( zyxRR +++= is the flying radius of  fS

at time t .
Let i∆ refer to the inclination difference of two 

orbital planes, and the perigee of fS be the placed 

angle 0Ω rotated along the flying direction from  OX

axis in the orbital plane of fS . In addition, let the 

initial phase of spacecraft between fS , rS and axis 

OX be 00 Ω+fθ and 0rθ , respectively, then the 

relative motion trajectory of two spacecrafts can be 
accurately determined under all of above definitions.  
 Theorem 1: The  analytical solution of relative 
motion equation (1) is described by the following: 

{
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Where both of θ and θr satisfies 
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 Proof: With the beginning, by arranging and 
calculating (2) and (3), the followings are discovered: 
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To consider whether or not θθ cos* rz = is one special 

solution of  (1), substitute *z and (4a) into  (1),  then 
we have: 
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In addition, by substituting formula (4b)—(4e) into the 
above equality, it is much clear that the right side of (5) 
equals to zero. With the similar procedure to mentioned 
above, it can be also simply tested and verified that  

θθ sinr , )cos( tr rωθθ + , )sin( tr rωθθ + ,

)cos( tr rωθθ − and )sin( tr rωθθ − are all the other five 

special solutions of (1). By using all these six special 
solutions and all initial parameters (such as 

0R , fR , e , i∆ , 0Ω , 0fθ and 0rθ ),  all correlative 

coefficients in (2) between three axis-variables and six 

Fig.1  The coordinate systems of  spacecraft relative motion 
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special solutions in oxyz can be explicitly obtained .  ∆
Clearly, the solution (2) of (1) given by theorem 1 is 

described by using the relevant  orbit and phase 
parameters of two spacecrafts. If necessary,  this 
solution can be rewritten as the explicit models with six 
initial values (such as 000000 ,,;,, zyxzyx &&& ) in oxyz .

According to (4a), we have: 

 2
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Let 0=θ in (3b) and (4d), and substitute (6a)-(6b) into 
(3b) and (4d), then we have: 
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For simplicity, define )/( 00rr θλ θθ
&= . Thus the 

following can be obtained by  (3a)-(3b) (4b) and 
(6a)-(6c): 
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Based on the above equality (7a), the relationship of  
ellipticity and different initial values is shown in Fig.2. 

Substituting θθ λθ 00rr &= into the solution (2), the 

orbital parameters ( i∆ , 0Ω , 0fθ , 0rθ ) corresponding to 

the relative initial values ),,( 000 zyx and ),,( 000 zyx &&&
can be solved.  Therefore, the following result is 
derived.  
 Corollary 1: The explicit solution of (1) with initial 
parameters ),,;,,( 000000 zyxzyx &&& is described as 

follows:  

{ }

















+=
−+−+

++−+=

−−−−+

++++=

θθλ
ωθωθ

ωθωθ
λ

ωθωθ

ωθωθ
λ

θ

θ

θ

sincos

)}sin()cos(

)sin()cos({
2

)}sin()cos(

)sin()cos({
2

65

24

13

042

31

vvz

tvtv

tvtvy

Rtvtv

tvtvx

rr

rr

rr

rr

(8a) 

where all corresponding coefficient iv , i =1,…,6 is 

given by the following: 
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Comparing the two expressions (8) and (2), it is 
evident that six coefficients in (8b) are not absolutely 
independent, and they are restricted with inclination 
difference i∆ of two orbital planes. Simply, the 

restrictions can be determined  as follows: 

iff
f

R
r

R
e

vvvvvv

∆





−=

+=++

4

4

0

2

22
6

2
5

2
4

2
2

2
3

2
1

sin)(1

)())((

ω
(9a) 

ff
f R

r

R
evvvv ω)(12

0

22
4

2
2

2
3

2
1 −=+++ (9b) 

 
3.  Relative Motion Analysis and Simplifications

As mentioned above, the analytical solution  (2) or 
(8) is an explicit description of (1) in a general way. 
While the orbit of fS satisfies some special conditions, 

therefore, this solution may  be summed up more 

Fig.2    relationship of ellipticity and initial values 
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(10a) 
 

(10b) 
 
(10c) 

simplified descriptions. 
 First of all, consider the case of initial values 

042 == vv , such that 065 == vv and 0=z , such that 

the following simplification is clearly obtained: 

{ }

{ }
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In such a way both of x and y is  characterized as a 

group of“high frequency”and big amplitude vibration. 
From (9) it is also known that this case is corresponded 
with that  fS flies in the direction being opposite of rS

(i. e., o180=∆ i ), so that  the two satellites  may 

rendezvous most fast with such groups of initial values.  
It should be pointed out, however, this case must be 
avoided as possible as we can because this rendezvous 
under a certain subset of initial conditions may be 
changed as a “enforced hard touch” differing from the 
common way expected.  
 Another extreme case is that 1v and 3v approximate 

to zero sufficiently.  Thus, the two orbital planes are so 
closed adequately and two spacecrafts flies in the so 
almost same direction that a “soft touch on” mode  will 
occur, therefore all responses of x and y are  slow 

enough and the part z is very closed to zero. In fact, if 

fS flies in a much low elliptic orbit (i.e. the 2nd order 

amount of ellipticity e may be neglected), this case 
will be resulted in under very closed inclination 
difference. On the basis of this, here a simplified 
description is represented for formation-flying design. 

 Theorem 210: If 2e and 2
i∆ are neglected, and 

rf ωω = , then the 1st-order approximate solution of  (1) 

is shown as follows 
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Proof: By neglecting the influences of 2e and 2
i∆ ,

the followings are obtained from (3a)-(3b): 
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By substituting these intermediate results and (6c) into 
the above equality, then the validity of (10a) is 
apparently proved. By the same logic procedure as 
mentioned above, the proofs of (10b) and (10c) are 
completed.                ∆

As well known, another interesting simplification 
dealing with relative motion is so called Hill′s
approach6 by which the approximated equation of (1) 
can be solved as follows under the linearization of R/1
at 0/1 R :
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Obviously, one main shortage is that there exists one 

unconvergent term in the part hy of (11).  In order to 

make  Hill′s solution (11) usable a strong constraint 
condition 02 00 =+ xy rω& has to be held. Second, due 

to the linearized approximation, another one condition, 
i. e. )( 2222 eozyx =++ has also to be needed . On 

the contrary, theorem 2 successfully avoids those being 
deficient in Hill′s approach, because of that (10) is 
derived by parametrically simplifying the analytical 
solution of (1) instead of itself of the relative motion 
equation (1). Therefore, the creditability of theorem 2  
after simplification is much better guaranteed than that 
of (11). In addition, theorem 2 can be applied to long-
distance formation flying because of no any additive 
constraint to initial values needed.   

To illustrate how to use theorem 2 to design a 
formation-flying, here a calculating instance for 
keeping the track of subsatellite point as a circle is 
introduced11 as follows. 

Example 1: Let the radius of the reference 
spacecraft be th same as 7,500km. For keeping all 
subsatellite point (i. e., the track mapping of the 
formation spacecraft on the plane zy − ) drops on a 

D
ow

nl
oa

de
d 

by
 C

H
IN

E
SE

 A
C

A
D

E
M

Y
 O

F 
SC

IE
N

C
E

S 
on

 M
ay

 2
6,

 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

00
2-

48
47

 



American Institute of Aeronautics and Astronautics 
5

circle, the correspondent initial values should satisfy the 
following11 by (10): 


















−=++++−

=

±=

−−=

00

2

0

2

000

2

00

0

0

0

0

0

0

00

2
)()(

))1(31(5.0

Rr
zRxyyx

y
z

y
z

r

R
yx

rrr

r

r

r

µµωωω

ω

ω

ω

&&&

&
m

&

&

Let 00 =y , then we have 00 =x& , 00 zy
r

ω=& , 00 =z& ,

and 0x is determined by using the fourth one of the 

above equality.  Thus three cases under different track 
radius (equals to 10km, 150km and 1000km, 
respectively) of subsatellite point are calculated and 
shown in Fig. 3 (see all real-lines). To compare the 
difference between the mentioned calculation and Hill’s 
approach, we can use one proposed  formula12 derived 
from Hill’s solution  (11)  to  get  another  three   groups 
 

(a) The track radius of subsatellite point =10km 

of initial values,  and all  tracks of subsatellite point are 
drawn in Fig 3 with dush-lines. 

Clearly, all tracks of subsatellite point calculated by 
means of theorem 2 are significantly closed to what 
designed no matter how the track radius changed.  
Unfortunately, the designs by  Hill’s approach indeed 
result in unconvergent effects, because the mapping 
tracks can not be periodically repeated. 

 

4. Conclusions

In this paper the relative motion between formation 
spacecraft and reference spacecraft orbit has been 
analytically described in detail.  Several response 
modes of spacecraft relative motion on this basis have 
been discussed. Furthermore, a new simplified formula 
better than Hill′s approach has been provided under low 
ellipticity of formation-orbitting and it can be more 
effectively applied to the spacecraft formation-flying 
design.    

 

(b) The track radius of subsatellite point =150km 

(c) The track radius of subsatellite point =1,000km 
 

Fig. 3   The calculated tracks of subsatellite point under three designated cases 
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