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Theory on Bending in Cantilever
Beams With Adsorbed Islands
Traction between adsorbed islands and the substrate is commonly seen in both living and
material systems: deposited material gathers into islands at the early stage of polycrys-
talline film deposition and generates stress due to lattice mismatch, cells exert cellular
traction to extracellular matrix to probe their surrounding microenvironment in vivo, and
so on. The traction between these islands and the substrate can result in perceivable mac-
roscopic deformation in the substrate and may be measurable if the substrate is a cantile-
ver beam. However, currently broadly used Stoney equation is incapable of handling
such boundary condition. In this paper, we give the closed-form expression on the
resulted curvature in substrate beams by distributed tractions. Such a relationship could
be employed to monitor the stress evolution during thin film deposition, to quantify the
stress level of cell traction as cells adhere to cantilever beams, and other related mechan-
ical systems like charging–discharging induced stress in island-patterned electrode films.
Moreover, we found that follower traction induced by an array of islands could lead to
negative curvature. It shields light on the early stage compressive stress during polycrys-
talline film deposition. [DOI: 10.1115/1.4036819]
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1 Introduction

With enhanced capability in microfabrication, there are grow-
ing systems made of pattern islands on thin film substrates.
Indeed, during Volmer–Weber growth of films, adsorbed atoms
gather in distributed and isolated islands at the early stage. Such
islands are grain nucleus; their coalescence with neighbors and
further growth lead to the final rather flat film [1,2]. Due to lattice
mismatch, there exists traction between those islands and film
substrate, which results in bending of the substrate [3,4]. The film
stress is related with the curvature of the substrate by Stoney
equation [5]. The stress in the film could be monitored via the
multibeam optical stress sensor (MOSS) system and used as a
quality control parameter for film deposition [6,7]. Typical experi-
mental observation of stress revolution over the course of deposi-
tion shows three-stage process: initial compressive stress during
island growth, rapid increase in tensile stress in the film during
island coalescence, and finally, a steady stress state in fully post-
coalescence. Various studies have been conducted to explain this
three-stage process [8,9]. For instance, Cammarata et al. proposed
a surface stress model to describe the origin of compressive stress
prior to coalescence [10]. Bower and coworkers preformed finite
element calculation to investigate the stress evolution during the
growth of polycrystalline films and developed corresponding theo-
retical models to capture the stress evolution during different
stages of deposition [11–13]. To analysis the origin of thin film
stress and relate it to the feature and morphology of the growth
surface, Chason et al. grew patterned arrays of islands and meas-
ured the stress evolution [14,15].

Similar strategy is employed to battery stress control, a growing
field with enormous attention from different disciplines. During
charge and discharge, the significant volume change, taking
lithium-ion battery as an example, is responsible for the perform-
ance of the battery. Different from characterizing the mechanical
properties of materials, the mechanics of a battery in service is
hard to probe. Guduru and coworkers adopted the MOSS system
and measured the evolution of stress during charge–discharge
circles of a thin film battery for the first time [16]. Pharr et al.

[17], Bucci et al. [18], and Sethuraman et al. [19] also used this
technology to characterize other mechanical properties such as the
biaxial modulus, the flow stress, and fracture energy of thin film
electrodes. Furthermore, to avoid premature film and minimizing
the stress by volume expansion, island-patterned film battery was
designed [20,21]. There are many related mechanical analyses
related to the failure of such film batteries [22–24]. A closed-form
relationship between island stress and film bending curvature is
however missing.

Another typical example is the traction between cell and extrac-
ellular matrix. It mediates fundamental cell process, including cell
morphogenesis, focal adhesions, differentiation, and migration
[25–28]. To have a better understanding of how cellular traction
impacts these process, various methods have been suggested to
measure it over the past decades. The original idea to culture cells
on elastic material to extract cellular traction from the deforma-
tion of the substrate comes from Harris et al. [29]. Nevertheless, it
is a nonlinear process to identify cellular traction from the degree
of wrinkle of the substrate. This problem was subsequently solved
by using substrate that deformed but not buckled in response to
cellular traction [30]. Afterward, traction force microscopy was
developed to give a more accurate quantification of cellular trac-
tion [31]. With fluorescent beads embedded into the substrate, the
displacement field can be easily visualized and recorded. Then, it
is convenient to solve the inverse problem of elasticity theory to
calculate cellular traction. Another approach to determine cellular
traction is the use of multiple deformable posts [32]. Cells are
attached to arrays of closely spaced vertical posts and bend the
posts like vertical cantilevers, which gives a linear relationship
between traction forces and the deflection of posts. With these strat-
egies developed, the traction exerted by one cell can be determined
conveniently. In general, the cellular traction within one cell was
found to increase with the distance from the cell center [33–35]. A
systematic study by Rape et al. showed that cellular traction correlates
linearly with the distance from the center of the cell [28].

In this paper, we aim to construct the relationship between the
curvature of a cantilever beam and the tractions introduced by pat-
terned islands or the averaged stress introduced by many cells
residing on a substrate. We start from solving the elastic problem
with one island sitting on substrate beam and then generalize the
solution to the case of substrate with multi-islands, as illustrated
in Fig. 1. The closed-form relationship between the magnitude of
the traction and the curvature of the beam is supplied.
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2 Modeling and Analytical Solutions

For the purpose of validity and simplicity, we consider a canti-
lever beam subjected to periodic distributed traction on its upper
surface and the distribution of traction in each of the islands varies
linearly from one side of the island to the other, as shown in
Fig. 1.

2.1 Governing Equation of a Single Island. To drive the
basic equations, we consider a cantilever beam subjected to arbi-
trarily distributed tangential follower force as shown in Fig. 2(a).
The relations among traction force f ðxÞ, axial force N,shearing
force Q, and bending moment M can be obtained from the equilib-
rium of the element in Fig. 2(b).

Summing forces in the g direction gives

dQ

dx
¼ �N

dh
dx

(1)

Taking moments about point O1, we obtain

dM

dx
¼ Q� q xð Þe (2)

According to the classical beam theory [36], we have

dh
dx
¼ j (3)

EIj ¼ M (4)

Differentiating Eq. (2) with respect to x and combining with Eqs.
(1), (3), and (4), we can express the differential equation of the
beam in terms of curvature jðxÞ as

EIj00ðxÞ þ NjðxÞ þ q0ðxÞe ¼ 0 (5)

Note that qðxÞ ¼ sð2x� lÞ=l and N ¼
Ð l

x qðnÞdn, the governing
equation can now be formulated as

j00 xð Þ þ s
EIl

x l� xð Þj xð Þ þ 2se

EIl
¼ 0 (6)

The relevant boundary condition for a cantilever beam in Fig. 2
can be obtained from Eqs. (2) and (4)

j lð Þ ¼ 0 and j0 lð Þ ¼ � se

EI
(7)

2.2 Analytical Solutions. We now seek a solution of Eq. (6)
in the form [37]

jðxÞ ¼
X1
n¼0

anðl� xÞn (8)

Given the power series in Eq. (8), we have

2a2 þ
2se

EIl
þ 6a3 þ

s
EI

a0

� �
l� xð Þ þ

X1
n¼0

h
nþ 4ð Þ nþ 3ð Þanþ4

þ s
EI

anþ1 �
s

EIl
an

i
l� xð Þnþ2 ¼ 0

(9)

For Eq. (9) to be satisfied, the coefficient of each power of l� x
must be zero. From the first and second terms, we obtain

a2 ¼ �
se

EIl
and a3 ¼ �

s
6EI

a0 (10)

The third term in Eq. (9) gives the recurrence relation

anþ4 ¼
s

EIl

1

nþ 4ð Þ nþ 3ð Þ an � lanþ1ð Þ; with n ¼ 0; 1; 2:

(11)

Substituting the boundary condition in Eq. (7) into Eq. (8), we
obtain

Fig. 1 A cantilever beam with an array of islands bonded to its upper surface, where the
lengths of the beam and one island are L and l, respectively. N denotes the number of islands
and s denotes the length of the spacing between islands. s refers to the maximum of the traction
and EI refers to the flexural rigidity of the beam.

Fig. 2 (a) A cantilever beam subjected to tangential force f (x ), where the length of the beam is l and the
eccentricity of the tangential force is e. (b) An element cut from the beam with sides normal to the deflected
axis of the beam.
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a0 ¼ 0; a1 ¼
se

EI
(12)

Now, with the recurrence formula in Eq. (11) and the first four
coefficients, we are able to determine all the coefficients in Eq.
(8), i.e., the solution of Eq. (6) with boundary condition in Eq. (7).

2.3 Multi-Islands. Now, we consider a cantilever beam sub-
jected to multitraction. Observing that the governing equation of
each island is the same as written in Eq. (6), the difference
between each island lies in the boundary conditions. Hence, Eqs.
(10) and (11) are still valid and then all the coefficients a3, a4,

etc., depend on only two constants, a0 and a1, which can be deter-
mined by using the right-hand boundary condition of each island.
We introduce the dimensionless parameters �x ¼ x=l and �s ¼
sl3=EI and rewrite Eq. (8) in terms of a0 and a1

j xð Þ ¼ a0

X1
n¼0

An 1� �xð Þn þ a1l
X1
n¼0

Bn 1� �xð Þn

� sel

EI

X1
n¼0

Cn 1� �xð Þn (13)

where

A0 ¼ 1; A1 ¼ 0; A2 ¼ 0; A3 ¼ ��s=6; Anþ4 ¼
�s

nþ 4ð Þ nþ 3ð Þ An � Anþ1ð Þ

B0 ¼ 0; B1 ¼ 1; B2 ¼ 0; B3 ¼ 0; Bnþ4 ¼
�s

nþ 4ð Þ nþ 3ð Þ Bn � Bnþ1ð Þ

C0 ¼ 0; C1 ¼ 0; C2 ¼ 1; C3 ¼ 0; Cnþ4 ¼
�s

nþ 4ð Þ nþ 3ð Þ Cn � Cnþ1ð Þ

As shown in Figs. 1 and 3, we use the superscript to refer to the sort of the islands with “1” denoting the first island by the free end of
the cantilever beam and the superscripts “0” and l refer to the left-hand and right-hand boundaries of the island, respectively. From Eqs.
(2) and (4), we obtain the boundary conditions of the mth island labeled in Fig. 1 as

Ml
m ¼ EIjmðlÞ ¼ EIa0

Ql
m ¼ EIjm 0ðlÞ þ se ¼ �EIa1 þ se

M0
m ¼ EIjmð0Þ

Q0
m ¼ EIjm 0ð0Þ � se

(14)

From the first two equations in Eq. (14), we can use Ml
m and Ql

m instead of a0 and a1 in Eq. (13) and neglect higher order terms of �s

km xð Þ ¼ Mm
l

EI
1þ �s � 1� �xð Þ3

6
þ 1� �xð Þ4

12

" #" #
� Qm

l l

EI
1� �xð Þ þ �s � 1� �xð Þ4

12
þ 1� �xð Þ5

20

" #" #

þ sel

EI
1� �xð Þ � 1� �xð Þ2 þ �s � 1� �xð Þ4

12
þ 1� �xð Þ5

10
� 1� �xð Þ6

30

" #" #
(15)

Substituting Eq. (15) into the last two equations in Eq. (14) leads
to

M0
m ¼ 1� 1

12
�s

� �
Ml

m � 1� 1

30
�s

� �
Ql

ml� �s
60

sel

Q0
m ¼ �s

6

Ml
m

l
þ 1� 1

12
�s

� �
Ql

m þ �s
30

se

(16)

Considering the equilibrium of the spacing in Fig. 3(a), we have

Qmþ1
l ¼ Qm

0

Mmþ1
l ¼ Mm

0 � s � Qm
0

(17)

Combining Eq. (16) with Eq. (17), we have the recurrence formu-
lation between Qmþ1

l ;Mmþ1
l and Qm

l ;M
m
l

Fig. 3 Schematic of the mth element consists of island and spacing: (a) free-body diagram of spacing
between islands and (b) free-body diagram of the mth island
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Qmþ1
l ¼�s

6

Ml
m

l
þ 1� 1

12
�s

� �
Ql

mþ �s
30

se

Ml
mþ1¼ 1�2�q

12q
�s

� �
Ml

m� 1

q
�5�3q

60q
�s

� �
Ql

ml� 2�qð Þ�s
60q

sel

(18)

where q ¼ ðl=lþ sÞ denotes the coverage ratio of the islands on
the substrate.

For the island by the free end of the cantilever beam, we have
Ml

1 ¼ Ql
1 ¼ 0, i.e., the initial condition.

We notice that when ð�s=6qÞ � 1, Eq. (18) can be approxi-
mated as

Qmþ1
l ¼Mm

l

l

ffiffiffiffiffiffi
�sq
6

r
sin

ffiffiffiffiffiffi
�s

6q

r
þQm

l cos

ffiffiffiffiffiffi
�s

6q

r
þ se

5

ffiffiffiffiffiffi
�sq
6

r
sin

ffiffiffiffiffiffi
�s
6q

r

Mmþ1
l ¼Mm

l cos

ffiffiffiffiffiffi
�s
6q

r
�Qm

l lsin

ffiffiffiffiffiffi
�s
6q

r � ffiffiffiffiffiffi
�sq
6

r
þ sel

5
cos

ffiffiffiffiffiffi
�s

6q

r
�1

 !

(19)

Thus, we have

Mm
l ¼

sel

5
cos

ffiffiffiffiffiffi
�s
6q

r
m� 1ð Þ � 1

 !

Qm
l ¼

se

5

ffiffiffiffiffiffi
�sq
6

r
sin

ffiffiffiffiffiffi
�s

6q

r
m� 1ð Þ

(20)

Substituting Eq. (20) into Eq. (15), the curvature of the mth island
can be simplified as

km xð Þ ¼ sel

EI

1

5
cos

ffiffiffiffiffiffi
�s

6q

r
m� 1þ q 1� �xð Þ
� �

� 1

 !
þ �x 1� �xð Þ

" #

(21)

With the bending moment and shear force in Eq. (20), we can
obtain the curvature of the mth spacing. On combining with Eq.
(21), we are able to determine the curvature of an arbitrarily
selected point in the beam. By integrating the curvature twice
with respect to x, we then obtain the deflection of the beam. In the
case that the number of islands N is large, the overall curvature of
the beam can be deduced from Eqs. (20) and (21) as

j ¼ q
6
� 1

5

� �
sel

EI
(22)

Equation (22) connects the characteristics of the microscale
islands with macroscopically measurable parameter. It could be
used to determine the traction of adsorb islands (grains, cells, etc.)
to the substrate.

Table 1 Geometrical and material parameters used in the
simulations

Parameter Definition Value

E Young’s modulus 20 GPa
L Length of the beam 22:2 m
h Height of the beam 25 mm
l Length of the island 0:1 m
s Separation between the islands 0:1 m
s The maximum value of the traction 100 kN=m

Fig. 4 The curvature of the beam with patterned islands, where X denotes the coordinate
from the fixed end of the beam (see Fig. 1): (a) curvature along the beam with 111 islands, (b)
curvature within a period (with length 2pl

ffiffiffiffiffiffiffiffi
6=�s

p
q)), and (c) curvature within one island (with

length l)
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3 Numerical Verification and Analysis

3.1 Comparison With Numerical Solution. To verify that
the effect of the preceding approximation is small enough, we
compare our analytical solutions with numerical solution which
can be obtained by solving Eq. (6) numerically. We consider a
cantilever beam as shown in Fig. 1. The geometry parameters and
material parameters are listed in Table 1.

The results are graphed in nondimensional form EIjðXÞ=sel
versus X=L in Fig. 4. The solid lines are the analytical results
obtained from Eqs. (20) and (21), and the dots correspond to the
numerical results. Clearly, the analytical results are exactly con-
sistent with numerical results. Figure 4(a) shows that the curva-
ture varies periodically along the longitudinal axis of the beam
and the period equals to 2pl

ffiffiffiffiffiffiffiffiffiffi
6=�sq

p
which can also be obtained

from Eq. (21). The curvature distribution within a period and one
island is shown in Figs. 4(b) and 4(c), respectively. From the per-
spective of whole length, the curvature curve is similar to cosine
wave and within one island it is similar to para-curve which is
mainly determined by the linear distribution of traction within

the island. We can obtain from Fig. 4(a) that the maximum and
minimum values of curvature are sel=4EI and �2sel=5EI,
respectively.

In order to check the effects of the distribution of traction
within islands on the curvature curve, we also consider the beam
subjected to traction distribution within an island as
qðxÞ ¼ 16sðx=l� 1=2Þ3. By substituting this expression into Eq.
(5), we obtain the governing equations for this case and solve the
equations numerically. The curvature of the beam shows the same
cosinelike distribution as shown in Fig. 4(a) although the ampli-
tude of the curvature may change slightly. Regardless of the
detailed distribution of traction within an island, the difference is
very small as long as the resulted bending moment within an
island is the same.

It is worth noting that the average curvatures of the beam
shown in Fig. 4(a) are negative, which can also be obtained from
Eq. (22). It gives an implication about the initial compressive
stress measured during polycrystalline film deposition. Despite
the distribution of the traction between islands and substrate while
film deposition is far more different from linear distribution, it

Fig. 5 Nondimensional deflection curve of the beam: (a) the solid line stands for analyti-
cal solution and dots are FEM results, (b) q 5 0:5;N 5 4; 20; 100, ymax corresponds to the
maximal deflection of the beam when q 5 0:5;N 5 4, (c) N 5 1000; q 5 0:05;0:1;0:15, ymax is
the maximal deflection of the beam when q 5 0:15;N 5 1000, and (d) N decreases with
increase in q, ymax refers to the maximal deflection of the beam when q 5 0:5;N 5 4
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mainly affects the curvature distribution within the islands. Dur-
ing film deposition, the traction is concentrated near the island
edge; hence, the curvature is basically invariant within the island
[38]. When converting curvature to film stress using Stoney equa-
tion, the measured positive curvature is related to tensile stress
and negative curvature implies compressive stress. Nevertheless,
based on our analysis, the measured overall negative curvature
can be induced by positive traction (i.e., tensile stress) introduced
by an array of adsorbed islands. This can be explained as follows:
the beam will bend when subjected to traction and the follower
traction will induce a negative moment at the left-hand boundary
of the island. This negative moment will be passed on to left
neighboring island and gets accumulated. In the surface stress
model proposed by Cammarata et al. [10], the entire island is in
mechanical equilibrium. As a result of neglecting the effects
between the islands, the measured negative curvature is inter-
preted to be induced by compressive stress. In addition, observing
that our analysis begins from the island by the free end of the sub-
strate, the curvature of the substrate with a few or one island can
be inferred qualitatively from the right portion of Fig. 4(a). As the
number of islands decreases as a result of island coalescence, the
curvature becomes increasingly positive, which is in consistence
with the experiment results [8,39].

3.2 Theory Validation With Finite Element Method
(FEM). We further perform finite element simulations to validate
our analytical solutions. The parameters we investigated are given
following the definition in Table 1 except that the length of the
beam is reduced to L ¼ 0:8 m in consideration of convergence.

When simulating with ABAQUS, we choose the three-dimensional
solid element type C3D8I to investigate the bending of the beam.
Note that in our model, the traction between adsorbed island and
substrate is follower force which is always tangential to the surface.
Therefore, large deformation model (NLGEOM) should be checked
to enable follower traction. Besides, for comparison, we also simu-
late the case that the traction is nonfollower, i.e., the directions of
traction remain horizontal.

We obtain the discrete deflection of the beam from ABAQUS sim-
ulation and analytical deflection curve by integrating the curvature
obtained from Eqs. (20) and (21). The dimensionless deflection
y=ymax versus X=L diagram is plotted in Fig. 5(a), where ymax is
the analytical value of the defection by the free end of the beam.
As shown in Fig. 5(a), the analytical solution of deflection curve
is in good agreement with the FEM results of the model subjected
to follower traction and is much more less than the simulation
results of nonfollower traction, which demonstrates the validity of
our analytical solutions. In addition, we can see from Fig. 5(a)
that for both FEM results of follower traction and our analytical
results, the deflection of the beam near the fixed end is negative.
This negative deflection is induced by a negative moment, which
cannot be found for the case with nonfollower traction. Again, we
show that follower traction indeed generates negative moment in
the beam. While under the assumption of small deformation, the
nonfollower traction is balanced within one island. Hence, in our
model, follower traction cannot be simplified to nonfollower
traction.

We also investigate the analytical deflection curve with differ-
ent values of N and q. The magnitude of the traction s and beam
properties remains unchanged. From Fig. 5(b), we see that the
maximal deflection of the beam increases when the number of
islands N decreases and q remains constant. The deflection of the
beam is positively associated with the coverage ratio, when the
number of island is substantial, see Fig. 5(c). It may correspond to
the early stage of film deposition. We also consider the situation
when N decreases with increase in q (see Fig. 5(d)), a scenario of
island coalescence. It may imply that the deflection increases with
further deposition. In view of the magnitude of the traction
increase with the length of the islands, this effect can be included
by simply substituting the relationship into Eqs. (20) and (21).

4 Conclusion

Mechanical interactions between adsorbed islands and the sub-
strate are regulated by the traction on the shared interface. This
traction can induce stress in the islands and curvature in the sub-
strate. We investigated an array of adsorbed islands sitting on a
substrate beam and found out that the curvature varies periodi-
cally along the axis of the beam. The solution given here could
complement with the currently broadly used Stoney equation as it
is incapable of stress-measurement for films with adsorbed
islands. Indeed, Haftbaradaran et al. [40] supplied a correction
form of the Stoney equation for handling the stress introduced by
patterned electrode island. In their treatment, the authors consid-
ered interfacial sliding due to excessive shear traction at the inter-
face between islands and a cantilever beam. However, such a
treatment, while moving one-step forward in contrast to the
Stoney equation for stress evaluation in the film-patterned island
system, still assumes that the traction is a nonfollower force which
is in force and moment equilibrium within one island. Such sce-
nario could not give rise to negative curvature prior to coalescence
during polycrystalline film deposition. In reality, the traction is a
follower force. We demonstrate that even positive traction, i.e.,
tensile stress, can also introduce negative curvature for follower
tractions from the islands. Furthermore, we reveal that a simple
relationship lies between the magnitude of traction force and the
coverage ratio of the islands with the amplitude and period of the
curvature, which can be used to develop a new strategy to measure
cellular traction.

In short, we give the closed-form expression on the resulted
curvature in substrate beams by distributed tractions. Such a rela-
tionship could be employed to monitor the stress evolution during
thin film deposition, to quantify the stress level of cell traction as
cells adhere to cantilever beams and other related mechanical sys-
tems like charging–discharging induced stress in island-patterned
electrode films.
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