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Abstract The size effect should be considered due to the large ratio of surface area to volume when the
characteristic length of a beam lies in the nanoscale. The size effect in the bending of a Timoshenko nanobeam
is investigated in this paper based on a recently developed elastic theory for nanomaterials, in which only
the bulk surface energy density and the surface relaxation parameter are involved as independent parameters
to characterize the surface property of nanomaterials. In contrast to the Euler nanobeams and the classical
Timoshenko beam, not only the size effect but also the shear deformation effect in Timoshenko nanobeams
is included. Closed-form solutions of the deflection and the effective elastic modulus for both a fixed–fixed
Timoshenko nanobeam and a cantilevered one are achieved. Comparing to the classical solution of Timoshenko
beams, the size effect is obviously significant in Timoshenko nanobeams. The shear deformation effect in
nanobeams cannot be neglected in contrast to the solution of Euler–Bernoulli nanobeams when the aspect ratio
of a nanobeam is relatively small. Furthermore, the size effect exhibits different influences on the bending
behavior of nanobeams with different boundary conditions. A nanobeam with a fixed–fixed boundary would
be stiffened, while a cantilevered one is softened by the size effect, compared to the classical solution. All the
findings are consistent with the existing experimental measurement. The results in this paper should be very
useful for the precision design of nanobeam-based devices.

1 Introduction

It iswell known that the classical beam theory includesEuler–Bernoulli andTimoshenko solutions, respectively.
The difference lies in the shear deformation effect considered in Timoshenko beams due to the relatively
small aspect ratio and neglected in Euler–Bernoulli beams. Both classical beam theories were established for
beams with macroscopic length scales.With the development of nanoscience and nanotechnology, a nanobeam
is adopted in many precise instruments. For example, nanobeams (nanowires) have found their potential
applications as one of the basic building blocks in flexible electronics [1], biological sensors [2], nano-electro-
mechanical systems (NEMS) [3], and reinforcing phases in advanced nanocomposites [4]. How to predict
accurately the mechanical behavior of nanobeams should be very important for the precise measurement in
nanoscales.

The static bending experiment has been widely used in order to investigate the bending behavior of
nanobeams. It was interestingly found that nanobeams possess size-dependent mechanical properties in con-
trast to beams with macroscopic scales. Such a phenomenon is usually called size effect or surface effect of
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nanomaterials, which is due to the large surface-to-volume ratio of nanomaterials [5]. Besides of the size effect
in nanobeams in contrast to macro-beams, the bending behavior of a nanobeam itself is also affected by the
boundary condition. The effective Young’s modulus of a nanobeam with a fixed–fixed boundary shows an
opposite size-dependent behavior to that of a cantilevered nanobeam. That is, the former increases while the
latter decreases with a reducing characteristic size [6–12]. It is very obvious that such interestingly experimen-
tal phenomena in nanoscale cannot be predicted by the classical beam model. A proper theory considering the
size effect (surface effect) in nanomaterials should be required.

Fortunately, several theoretical models have been well established for nanomaterials within the framework
of surface elasticity theory [13,14], for example, Dingreville et al. [15] formulated a framework by incor-
porating the surface free energy into the continuum theory of mechanics to demonstrate the size-dependent
overall elastic behavior of structural elements. Duan et al. [16] extended the surface elasticity theory to nano-
inhomogeneities taking into account the surface/interface stress effect. The size effect of nanobeams has also
been well investigated based on the above-improved surface elasticity theory [17–22], in which the predicted
effective elastic modulus depending on the characteristic size of nanobeams is consistent with the existing
experimental data and molecular dynamics (MD) results [19,23–25].

In most of the above theoretical models, nanobeams were treated as the Euler–Bernoulli case without
considering the shear deformation effect, which should be reasonable for a slender nanobeam with the aspect
ratio larger than 10. If the aspect ratio of a nanobeam is less than 10, i.e., a stubby one, the shear deformation
effect cannot be neglected, and a Timoshenko beammodel is more appropriate to predict the bending behaviors
[26–28]. The prediction shows a smaller effective elastic modulus for a Timoshenko nanobeam than that for
an Euler–Bernoulli one, which demonstrates that shear deformation could induce softening of a nanobeam.

In the existing theoretical analyses for both Euler–Bernoulli and Timoshenko nanobeams, surface elastic
constants, including surface elastic modulus and surface bending modulus, are required to serve as important
parameters to characterize the surface effect in nanobeams. Till now, the surface elastic constants can hardly be
measured by experiment, and the adopted values of surface elastic constants in existing theoretical literatures
are almost provided by MD simulations [19,29–31]. However, to determine surface elastic constants is still
a cumbersome and painstaking job, which may be inevitably affected by several numerical factors, such as
how to choose a proper atomic potential, how to choose the numerical model size, and how many atom layers
could be regarded as the surface of a nanobeam. Furthermore, theoretical analysis found that the stiffening and
softening behavior of nanobeams is closely related to the sign of surface elastic constants and surface residual
stress [17–19]. Therefore, how to determine surface elastic constants in the classical surface elasticity theory
is a key problem, which is worth focusing in the future.

Recently, a new elastic theory has been developed for nanomaterials by Chen and Yao [32], in which only
the surface energy density of bulkmaterials and the surface relaxation parameter of nanomaterials are involved.
The surface elastic constant in the classical surface elasticity theory is no longer involved. Both the surface
energy density of bulkmaterials and the surface relaxation parameter are easy to determinewith clearly physical
meanings. Such a new theory has been used to analyze the static bending, resonant vibration, and buckling of
Euler–Bernoulli nanobeams, the results of which agreewell with existing experimental measurements [33–35].

Considering the shear deformation, we further apply the new elastic theory to a Timoshenko nanobeam in
this paper. Closed-form solutions of the bending deflection and the effective elastic modulus of nanobeams
are achieved, which will be used to compare with the prediction of an Euler–Bernoulli nanobeam and the
classical solution of a Timoshenko beam. The stiffening and softening mechanisms of nanobeams in contrast
to classical beams will be further analyzed.

2 Brief introduction of the new theory for nanomaterials

The elastic theory developed by Chen and Yao [32] is based on the surface energy density of nanomaterials,
which can be further expressed by the surface energy density of corresponding bulk materials and the surface
relaxation parameter. Similar to the existing surface elastic models [36], the equilibrium equation and boundary
conditions can be written as

⎧
⎨

⎩

σ · ∇ + f = 0 (inV − S)
n · σ · n = p · n − γnn (onS)
(I − n ⊗ n) · σ · n = (I − n ⊗ n) · p − γ t (on S)

(1)

where σ is the bulk Cauchy stress tensor, and∇ is a gradient operator. n is the unit normal vector perpendicular
to the boundary surface S of a nano-solid; I is a unit tensor; f and p are the body force and external surface
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Fig. 1 Schematic of a surface unit cell in the initial (reference), relaxed, and current configurations, where the lattice lengths will
change with the relaxation behavior and the external load

traction, respectively. γn and γ t are the normal and tangential components of an additional surface-induced
traction vector, respectively, which characterizes the force disturbance at boundaries due to the surface effects.
V is the volume of a nano-solid, and S denotes the surface.

Based on an infinitesimal element, the virtual work method yields the relation between the surface-induced
traction and the surface energy density,

γ t = ∇sφ, γnn = φ

(
1

R1
+ 1

R2

)

n = φ (n · ∇s)n (2)

where ∇s is a surface gradient operator, φ is the surface energy density in the current configuration (relative to
the reference configuration as shown in Fig. 1), and R1 and R2 are the principal radii of curvature of a curved
surface.

Using the relation between the Eulerian surface energy density φ in the current configuration and the
Lagrangian surface energy density φ0 in the reference configuration,

φ = φ0

Js
, (3)

yields the final equilibrium equation and boundary condition,
⎧
⎨

⎩

σ · ∇ + f = 0 (inV − S)
n · σ · n = p · n − φ0 (n · ∇s)/Js (on S)

(I − n ⊗ n) · σ · n = (I − n ⊗ n) · p + φ0 (∇s Js)/J 2s − ∇sφ0/Js (on S)

(4)

where Js is a Jacobian determinant characterizing the surface deformation from the reference configuration to
the current one. Equation (3) can also be found in Nix and Gao [37] and Huang and Wang [38].

The Lagrangian surface energy density φ0 in the reference configuration can be further divided into a
structural part φstru

0 and a chemical part φchem
0 . The former is related to the surface strain energy induced by the

surface relaxation and the external loading, while the latter originates from the surface dangling-bond energy,
i.e.,

φ0 = φstru
0 + φchem

0 ,

φstru
0 = Eb

2 sin β

2∑

i=1

a0iηi

{[
3 + (λi + λiεsi )

−m − 3 (λi + λiεsi )
] ×

[
λ2i ε

2
si + (λi − 1)2 + 2λi (λi − 1) εsi

]

}

,

φchem
0 = φ0b

(

1 − D0

w1D

)

, η1 = a01/a02, η2 = a02/a01 (5)

where φ0b is the bulk surface energy density, D0 is a critical size (D0 = 3da for nanoparticles, nanowires,
and 2da for nano-films, where da is the atomic diameter). D is a characteristic scale of nanomaterials (e.g.,
thickness and diameter). w1 is a parameter governing the size-dependent behavior of φchem

0 . Eb is the bulk
Young’s modulus. a01, a02 represent the initial lattice lengths in the two principal directions on surface,
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Fig. 2 Bending model of a nanobeam with a global coordinate system (x, y, z). a A fixed–fixed nanobeam with a concentrated
force acting at the middle of the nanobeam; b a cantilevered nanobeam with a concentrated force acting at the free end; c cross
sections of the two kinds of nanobeams

respectively, as shown in Fig. 1. After spontaneous surface relaxation, the lattice lengths become ar1 and ar2,
and further become a1 and a2 in the current configuration when subjected to an external loading. λi = ari/a0i
denotes the surface relaxation parameter; εsi = (ai − ari )/ari is the surface strain induced only by the external
loading; m is a parameter describing the dependence of bond lengths on the binding energy (m = 4 for alloys
or compounds and m = 1 for pure metals). Detailed derivations of Eq. (5) can be found in the reference of
Chen and Yao [32].

As shown by Eqs. (4) and (5), the surface effect of a nano-solid can be characterized by two independent
parameters, i.e., the surface energy density of bulkmaterials and the surface relaxation parameter, both ofwhich
have clearly physical meanings and are very easy to determine by experiment and simple MD simulation.

3 Surface effect in a Timoshenko nanobeam

As shown in Fig. 2, the length of a nanobeam in the x direction is l, and the vertical deflection in the y direction
is v. The cross section of the nanobeam can be rectangular with a height h and a width b (b ≥ h), or circular
with a diameter d . Based on the new elastic theory, the static bending behavior of the nanobeam with two
kinds of boundary conditions will be investigated, i.e., a fixed–fixed beam and a cantilevered one. The shear
deformation effect is included in all the analyses.

3.1 The potential energy function of a bending Timoshenko nanobeam

The shear deformation effect on the beam’s deflection is taken into account in this paper. The deflection slope
dv/dx of the bending nanobeam can be decomposed into two parts, i.e., the rotation angle θ of the cross section
only due to pure bending and the additional slope α caused by shear deformation [39],

dv

dx
= θ + α, (6)

The axial and vertical displacements ux , uy , and the axial strain εx are expressed as

ux = −yθ, uy = v, εx = −dθ

dx
y. (7)
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Then, the bending moment M and the shear force V can be obtained,

M = −Eb Iz
dθ

dx
, V = kGbAα = kGbA

(
dv

dx
− θ

)

(8)

where Eb is the bulk Young’s modulus (Young’s modulus of bulk materials), Gb = Eb/[2(1 + ν)] is the bulk
shear modulus, and ν is the bulk Poisson’s ratio. Iz = ∫

A y2dA represents the inertia moment of the cross
section, A is the area of the cross section, and k denotes a shear coefficient depending on the shape of cross
section, where k = 5(1 + ν)/(6 + 5ν) for a rectangular cross section and k = 6(1 + ν)/(7 + 12ν + 4ν2) for
a circular one.

Combining Eqs. (6)–(8) yields the variation of bulk strain energy,

δU = −
∫ l

0
Mδ

(
dθ

dx

)

dx +
∫ l

0
V δ

(
dv

dx
− θ

)

dx

= −
∫ l

0

[

Eb Iz
d2θ

dx2
+ kGbA

(
dv

dx
− θ

)]

δθdx −
∫ l

0
kGbA

(
d2v

dx2
− dθ

dx

)

δvdx

+
[

Eb Iz
dθ

dx
δθ

]l

0
+

[

kGbA

(
dv

dx
− θ

)

δv

]l

0
. (9)

The variation of surface energy can be written as

δ� =
∫

Snw

γ · δudS =
∫ l

0
dx

∫

Cnw

(γxδux + γnδun) dC (10)

where Snw represents the lateral surface of nanobeams, Cnw is the perimeter of a rectangular or circular cross
section, δux = −yδθ and δun ≈ δv are the tangential and normal displacement components of δu, respectively.
γx and γn represent the tangential and normal components of surface-induced traction, which, according to
Eq. (2), can be formulated in terms of the Lagrangian surface energy density,

⎧
⎨

⎩

γx = dφ

dx = d
dx

(
φ0
Js

)
= 1

Js
dφ0
dx − φ0

J 2s

dJs
dx

γn = φκ ≈ d2
v

dx2 φ = φ0
Js
d2

v

dx2
(11)

where the curvature κ = −(n · ∇s) = d2v/dx2.
Similar to the existing literatures [18–21], a [100] axially oriented nanobeam with a symmetric lateral

surface is considered for simplicity, which has an equal atom spacing in both bond directions, e.g., the (001) or
(010) surface. The lateral surface of a circular nanobeam, which may consist of different crystal facets [6,40],
is assumed as a perfectly and isotropically cylindrical surface in the theoretical analysis [18,21,26]. Thus, the
Lagrangian surface energy density of such a nanobeam can be expressed as [33–35],

φ0 = φ0b

(

1 − 3da
4D

)

+
√
2Eba0
2

[

3 + 1

λ (1 + εx/2)
− 3

(

λ + λεx

2

)]

[
λ2ε2x

4
+ 2λ (λ − 1)

εx

2
+ (λ − 1)2

]

(12)

where λ denotes the surface relaxation parameter in both bond directions of (001) surface, a0 denotes the bulk
lattice constant. D can be taken as the diameter or height of nanobeams.

Combining Eqs. (11) and (12) and noting Js = λ2 (1 + εx/2)2, the axial surface-induced traction γx can
be finally written as

γx = 1

Js

dφ0

dx
− φ0

J 2s

dJs
dx

=
[

C0y + C1y
2 dθ

dx
+ C2y

3
(
dθ

dx

)2
]
d2θ

dx2
,

C0 = φ∗
0 (5 − 4λ) −

√
2Eba0A2 (3 − 2λ)

2
,

C1 = 2φ∗
0 + √

2Eba0A1 (3 − 2λ) − √
2Eba0A2 (3 − 2λ) ,
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C2 =
√
2Eba0A1 (7 − 4λ)

2
− √

2Eba0A2,

φ∗
0 = φ0b

(

1 − 3da
4D

)

+
√
2Eba0
2

(λ − 1)2 ,

A1 = 1 − 10 (λ − 1) − 17 (λ − 1)2

4
, A2 = (λ − 1) − 5 (λ − 1)2 , (13)

and the normal surface-induced traction γn can be expressed as

γn = φ0

Js

d2v

dx2
=

[

D0 + D1y
dθ

dx
+ D2y

2
(
dθ

dx

)2
]
d2v

dx2
,

D0 = φ∗
0 (3 − 2λ) , D1 = φ∗

0 −
√
2Eba0A2 (3 − 2λ)

2
,

D2 =
√
2Eba0A1 (3 − 2λ) − √

2Eba0A2

2
. (14)

Then, Eq. (10) becomes

δ� = −
∫ l

0

{[

C0 IS1 + C2 IS2

(
dθ

dx

)2
]
d2θ

dx2
δθ +

[

D0 IC1 + D2 IS1

(
dθ

dx

)2
]
d2v

dx2
δv

}

dx (15)

in which IS1 = ∫

CNW
y2dC , IS2 = ∫

CNW
y4dC , IC1 = − ∫

Cnw
n2wdC . Here, nw represents the vertical

component of the unit normal vector n, which is parallel to v. For the cross section of different shapes, we
have

Rectangular: Iz = bh3

12
, IS1 = bh2

2
+ h3

6
, IS2 = bh4

8
+ h5

40
, IC1 = 2b, A = bh

Circular: Iz = πd4

64
, IS1 = πd3

8
, IS2 = 3πd5

128
, IC1 = πd

2
, A = πd2

4
(16)

where the height h of a rectangular cross section and the diameter d of a circular one possess a nanometer
scale.

Combining Eqs. (9) and (15) leads to the variation of the potential energy function,

δ� = δU + δ� − δW

= −
∫ l

0

[

(Eb Iz + C0 IS1)
d2θ

dx2
+ kGbA

(
dv

dx
− θ

)]

δθdx

−
∫ l

0

[

(kGbA + D0 IC1)
d2v

dx2
− kGbA

dθ

dx

]

δvdx

+
[

Eb Iz
dθ

dx
δθ

]l

0
+

[

kGbA

(
dv

dx
− θ

)

δv

]l

0
− Fδvmax. (17)

3.2 Closed-form solution of a fixed–fixed Timoshenko nanobeam

A fixed–fixed nanobeam is shown in Fig. 2a, where two ends x = 0 and x = l are clamped and a concentrated
force F is applied at x = l/2. The maximum deflection at x = l/2 is denoted as vmax. Due to the symmetry
of the structure, only half of the nanobeam is considered. The variation of the potential energy in Eq. (17) can
be rewritten as
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δ� = −
∫ l/2

0

[

(Eb Iz + C0 IS1)
d2θ

dx2
+ kGbA

(
dv

dx
− θ

)]

δθdx

−
∫ l/2

0

[

(kGbA + D0 IC1)
d2v

dx2
− kGbA

dθ

dx

]

δvdx

+
[

Eb Iz
dθ

dx
δθ

]l/2

0
+

[

kGbA

(
dv

dx
− θ

)

δv

]l/2

0
− F

2
(δv)x=l/2 . (18)

Let δ� = 0, x = l x̂ , v (x) = lv̂
(
x̂
)
, and θ (x) = θ̂

(
x̂
)
. The normalized equilibrium equations and the

boundary conditions can be written as

⎧
⎨

⎩

(1 + χ1) χ3
d2 θ̂
dx̂2 +

(
dv̂

dx̂ − θ̂
)

= 0

(1 + χ2χ3)
d2

v̂

dx̂2 − dθ̂

dx̂ = 0
(19)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
dv̂

dx̂ − θ̂
)

x̂=1/2
= χ3χ4

v̂ (0) = 0
θ̂ (0) = 0
θ̂ (1/2) = 0

(20)

where χ1 = C0 IS1/(Eb Iz), χ2 = D0 IC1l2/(Eb Iz), χ3 = Eb Iz/
(
kGbAl2

)
, and χ4 = Fl2/(2Eb Iz). Among

them, χ1 and χ2 are two dimensionless parameters characterizing the surface effect. When the characteristic
size of a beam is large enough,χ1 andχ2 tend to zero. Then, Eq. (19) can be reduced to the classical Timoshenko
beam theory,

⎧
⎨

⎩

χ3
d2

θ̂

dx̂2 +
(
dv̂

dx̂ − θ̂
)

= 0

d2v̂
dx̂2 − dθ̂

dx̂ = 0
. (21)

Solving Eq. (19) with boundary conditions in Eq. (20) yields the closed-form solution of the deflection,

v̂
(
x̂
) = χ4 (1 + χ2χ3)

χ2
x̂ + χ4

ξχ2 cosh (ξ/4)
sinh

[
ξ

(
1/4 − x̂

)]

−χ4 tanh (ξ/4)

ξχ2
(0 < x̂ < 1/2) (22)

with the maximum deflection v̂max at x̂ = 1/2,

v̂max
(
x̂
) = v̂ (1/2) = χ4 (1 + χ2χ3)

2χ2
− 2χ4 tanh (ξ/4)

ξχ2
(23)

where ξ = √
χ2/[(1 + χ1) (1 + χ2χ3)].

For a nanobeam with a relatively large aspect ratio, the shear deformation can be neglected, i.e., χ3 = 0.
Then, Eq. (22) can be well degraded to the deflection of a fixed–fixed Euler–Bernoulli nanobeam [33].

Equating Eq. (23) with the classical Euler beam solution

v̂Ec
max = v̂Ec (1/2) = Fl3

192Eb Iz
= χ4

96
(24)

leads to the effective elastic modulus of a fixed–fixed Timoshenko nanobeam Eeff ,

Eeff

Eb
= χ2ξ

48 [(1 + χ2χ3) ξ − 4 tanh (ξ/4)]
. (25)

Without considering the shear deformation and surface effects, i.e., χ3 = 0, χ1 → 0 and χ2 → 0, Eq. (25)
can be well reduced to 1.
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3.3 Closed-form solution of a cantilevered Timoshenko nanobeam

For a cantilevered Timoshenko nanobeam as shown in Fig. 2b, the fixed end is at x = 0, and a concentrated
force F is applied at the other end x = l. The variation of the potential energy can be written as

δ� = δU + δ� − δW

= −
l∫

0

[

(Eb Iz + C0 IS1)
d2θ

dx2
+ kGbA

(
dv

dx
− θ

)]

δθdx

−
l∫

0

[

(kGbA + D0 IC1)
d2v

dx2
− kGbA

dθ

dx

]

δvdx

+
[

Eb Iz
dθ

dx
δθ

]l

0
+

[

kGbA

(
dv

dx
− θ

)

δv

]l

0
− F (δv)x=l . (26)

Let δ� = 0. The achieved equilibrium equation has the same form as that in Eq. (19), and the boundary
condition for a cantilevered Timoshenko nanobeam can be written as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
dv̂

dx̂ − θ̂
)

x̂=1
= 2χ3χ4

v̂ (0) = 0
θ̂ (0) = 0
dθ̂ (1)
dx̂ = 0

. (27)

Solving Eq. (19) with the boundary conditions in Eq. (27) yields the closed-form solution of the deflection
of a cantilevered Timoshenko nanowire,

v̂
(
x̂
) = 2χ4 (1 + χ2χ3)

χ2
cosh (ξ) x̂ + 2χ4

ξχ2
sinh

[
ξ

(
1 − x̂

)]

−2χ4 sinh (ξ)

ξχ2
(0 < x̂ < 1) (28)

with the maximum deflection v̂max at x̂ = 1,

v̂max
(
x̂
) = v̂ (1) = 2χ4 (1 + χ2χ3)

χ2
cosh (ξ) − 2χ4 sinh (ξ)

ξχ2
. (29)

Equating Eq. (29) with the classical solution

v̂Ec
max = v̂Ec (1) = Fl2

3Eb Iz
= 2

3
χ4 (30)

leads to the effective elastic modulus of a cantilevered nanobeam,

Eeff

Eb
= χ2ξ

3 [(1 + χ2χ3) ξ cosh (ξ) − sinh (ξ)]
. (31)

Without considering the shear deformation and surface effects, i.e., χ3 = 0, χ1 → 0 and χ2 → 0, the effective
elastic modulus can be well reduced to the bulk value Eb.

4 Results and discussion

The surface and shear deformation effect on the static bending behavior of a Timoshenko nanobeam are
analyzed in this Section. As a typical example, we consider silver and silicon nanobeams with (100) lateral
surfaces. The isotropic surface relaxation parameter λ can be empirically expressed as λ = 1− cr/D (cr > 0,
D = h or d) [41–43]. When the characteristic size D is large enough (D ≥ 5 nm), λ tends to be unity. Values
of cr and the other material parameters involved in our model are listed in Table 1 [11,44,45].
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Table 1 Material parameters involved in our model [44–46]

da (nm) a0 (nm) Eb (GPa) ν φ0b(001) (N/m) c1(001) (nm) τ0 (N/m) Es (N/m)

Ag 0.2889 0.418 78 0.37 1.2 0.016 0.89 1.22
Si 0.22 0.54 169 0.25 2.2 / / /

Fig. 3 Deflection of a silver nanobeamwith a fixed–fixed boundary, where theoretical predictions of different elastic theories with
or without surface effect are compared with the existing experimental results. a For a nanobeam with the length l = 1994nm,
the diameter d = 65.9nm and the concentrated force F = −62nN. b For a nanobeam with the length l = 1634nm, the diameter
d = 85.4nm and the concentrated force F = −81.7nN

4.1 The case of a fixed–fixed nanobeam

The deflection of a fixed–fixed Timoshenko silver (Ag) nanobeam is theoretically predicted as shown in
Fig. 3 and compared with the existing experimental measurement [40], where the result of an Euler–Bernoulli
nanobeam achieved by the same elastic theory [33] is also given for comparison, as well as the results obtained
by the surface elasticity model [18,27] and the classical elasticity theory [39] for Euler–Bernoulli and Timo-
shenkobeams.All thematerial parameters are taken from the experimentwork [40]. l = 1994nm,d = 65.9nm,
F = −62nN in Fig. 3a, and l = 1634nm, d = 85.4nm, F = −81.7 nN in Fig. 3b. The involved surface
elastic modulus Es in the surface elasticity model is taken as 1.22N/m [18].

From Fig. 3, one can see that all the theoretical results considering the surface effect agree well with
the experimental ones, while the classical one deviate from the experimental measurement, especially the
maximum deflection. Both the theoretical predictions and the experimental data demonstrate that the bending
stiffness of a fixed–fixed nanobeam can be effectively enhanced due to the surface effect. It is also found that
the deflections predicted by the Euler–Bernoulli and Timoshenko theories with the surface effect, respectively,
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Fig. 4 Normalized effective elastic modulus given by an existing experimentmeasurement or predicted by different elastic models
as a function of the diameter of a fixed–fixed silver nanobeam

almost coincide with each other since the aspect ratio of the nanobeam is relatively large (about 30) in Fig. 3a.
However, a noticeable difference between the Euler–Bernoulli and Timoshenko predictions for the nanobeam
in Fig. 3b can be found, which is due to a relatively small aspect ratio (about 19) in this case. Such a result
demonstrates that the shear deformation effect on the bending behavior of nanobeams becomesmore significant
with a reducing aspect ratio, which is also consistent with the macroscopic beam case.

The difference of the results with and without considering the shear deformation effect can be further found
in Fig. 4, where the normalized effective elastic modulus of a silver nanobeam varies with the diameter of the
circular nanobeam but with a fixed beam length l = 1000 nm. Experimental result and that predicted by the
classical Timoshenko beam theory are also given for comparison [8]. It is clearly shown that the normalized
effective elastic modulus Eeff decreases significantly with the increase in the nanobeam diameter not only for
the Euler–Bernoulli result with surface effect but also for the Timoshenko one with surface effect. Both results
agree with the experimental measurement [8]. However, when the diameter is relatively small, less than 40nm
in this case, both the Euler–Bernoulli result and the Timoshenko one with surface effect agree well with each
other but deviate significantly from the classical Timoshenko result, which denotes that only the surface effect
is obvious and the shear deformation effect can be neglected for nanobeams with a relatively large aspect ratio
but with a small diameter, l/d ≥ 25 in this case. As the diameter is larger than 40nm but less than 90nm, the
Timoshenko result including the surface effect deviates obviously from the Euler–Bernoulli one as well as the
classical Timoshenko result, which demonstrates that not only the surface effect but also the shear deformation
one should be considered for nanobeams with an intermediate aspect ratio as well as an intermediate diameter.
However, when the diameter is further larger than 90nm, both the Timoshenko result including surface effect
and the classical Timoshenko one are consistent well with each other as well as the experimental measurement
[8], but the Euler–Bernoulli result with surface effect deviates obviously from them. It denotes that the surface
effect can be neglected but the shear deformation effect should be included for nanobeamswith a relatively large
diameter but with a small aspect ratio. Each theoretical result agrees well with the experimental ones at each
adaptive region as shown in Fig. 4. Comparing the Euler–Bernoulli result with the Timoshenko one yields that
the shear deformation could decrease the effective stiffness of a stubby beam. In contrast to the bulk Young’s
modulus, the effective Young’s modulus predicted by the Timoshenko theory with surface effect is reduced
when the aspect ratio is relatively small, which also demonstrates a negative effect of shear deformation on
the overall stiffness. However, when the aspect ratio becomes large, the effective Young’s modulus predicted
by the Timoshenko theory with surface effect could be larger than the bulk one. Such a result leads to an
interesting fact that a fixed–fixed nanobeam with an increasing aspect ratio would experience a transition from
softening to stiffening due to competition between the surface effect and the shear deformation effect.

4.2 The case of a cantilevered nanobeam

Experimental measurement of the effective elastic modulus for a silicon cantilevered nanobeam with a rect-
angular cross section has been carried out by Sadeghian et al. [11], where the width of the nanobeam is
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Fig. 5 Normalized effective elastic modulus given by an existing experimentmeasurement or predicted by different elastic models
as a function of the height of a rectangular silicon cantilevered nanobeam

b = 8µm, the axial length is l = 10µm, and the height h varies from 40nm to 2µm. Theoretical predictions of
the effective elastic modulus by both the Euler–Bernoulli and Timoshenko theories are given in Fig. 5, where
the classical Timoshenko result and the experimental one are exhibited for comparison. It is obvious that the
cantilevered nanobeam shows a softening behavior in contrast to the stiffening one of a fixed–fixed nanobeam
when the characteristic length decreases, the height of the nanobeam in this case. Such a softening behavior of
a cantilevered nanobeam has also been observed in many other studies [10,11,23,46]. The deflection curvature
of a cantilevered nanobeam under a concentrated force at the free end should be responsible for the softening
behavior, which leads to the component of the surface-induced traction with the same direction as that of
the external load. In contrast, the component of the surface-induced traction in most parts of a fixed–fixed
bending nanobeam has an opposite direction to that of the external load, acting as a resistance to the external
load, which consequently leads to the stiffening behavior of a fixed–fixed nanobeam [18,33]. Comparing the
theoretical results with the experimental one as shown in Fig. 5 shows that surface effect would dominate when
the characteristic length of a cantilevered nanobeam is relatively small (a relatively small height corresponding
to a relatively large aspect ratio, since the axial length l is fixed), while the shear deformation effect would play
a dominant role when the aspect ratio is relatively small (a relatively large height corresponding to a relatively
large characteristic length, since the axial length l is fixed). The competition mechanism of the surface effect
and the shear deformation one is much similar to that for a fixed–fixed nanobeam except the softening and
stiffening phenomenon. It should be noted that all the effective elastic moduli in the present paper are achieved
by equating the maximum deflection considering surface effect with the one of a classical Euler–Bernoulli
beam, consistent also with the experimental work [11]. Therefore, in the case with a large enough height, only
the normalized result of an Euler beam will approach to 1, while the normalized result of a Timoshenko beam
cannot approach to 1 but to the normalized classical solution of a Timoshenko beam as shown in Fig. 5.

From Fig. 5, one can see that an obvious difference between the theoretical result and the experimental one
exists for the silicon nanobeam, especially at the small height region, though the varying trend of the effective
elastic modulus predicted theoretically is consistent with that measured experimentally. A few aspects may
be responsible for such a deviation. m = 1 is adopted for silicon materials in the theoretical prediction, but
such a value is more appropriate for a pure metal. The beam bending theory is used to analyze samples in
the experiment, which look more like a plate than a beam. Moreover, as mentioned by Sadeghian et al. [11],
the fabrication-induced defects and the native oxide layer within nanobeam samples may also have important
influences on the experimental measurements of stiffness, which, however, are not considered in the present
model.

5 Conclusions

The static bending behavior of nanobeams with different boundary conditions is investigated using the new
elastic theory for nanomaterials [32] and considering the shear deformation effect. Closed-form solutions of
the deflection and effective elastic modulus for nanobeams are obtained. A comparison has been carried out
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among the Euler–Bernoulli beam solution with surface effect, the Timoshenko beam solution with surface
effect, and the classical beam solution. It is found that the surface effect will dominate for both a fixed–fixed
Timoshenko nanobeam and a cantilevered one when the characteristic length is relatively small, while the
shear deformation effect will play a key role and the surface effect can be omitted when the characteristic
length is relatively large. Both the surface effect and the shear deformation one should be included when
the characteristic length is intermediate. The present result would provide a comprehensive understanding of
which effect should be included when predicting the bending behavior of a nanobeam as well as the stiffening
and softening mechanisms of a nanobeam. It should be useful for the design of nanobeam-based devices with
desired precision measurements.
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