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a b s t r a c t

In order to characterize the deformation behavior accompanying damage of microstruc-
tures in micro-scale metallic materials, a new theoretical model is developed based on a
low order strain gradient plasticity theory. Not only the size effect induced by strain
gradient plasticity but also the one of microstructure damage induced by deformation is
considered. The feature of the new theory includes two aspects: the strain gradient is
taken as an internal variable to affect the tangential hardening modulus without the
introduction of high-order stress or high-order boundary condition; both the elastic
modulus and the involved intrinsic length are influenced by the microstructural damage.
Two commonly used samples with size effect in micro-scales, i.e., the thin wire torsion and
the ultra-thin beam bending, are re-analyzed with the new model. It is found that stiffness
of the micro-scale material is gradually reduced along with the increasing deformation and
the theoretical prediction is consistent well with the existing experimental data. All the
results demonstrate that the present theory should be a promising way for predicting the
mechanical behavior of a more complex system, for example, the micro-particle reinforced
metal matrix composite and the recent-hot-studied nano-crystallized gradient materials.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The miniaturization of electronic equipments and fabrication of advanced composites give rise to material systems with a

characteristic length on the order of micron or sub-micronmeter. Within such a scale range, a strong size effect of mechanical
behaviors has already been observed in many experiments. For examples, Fleck et al. (1994) found that in the micro-torsion
test, the scaled torsional strength of a thin copper wire increases almost three times as the diameter of thin wires decreases
from 170 mm to 12 mm. Such size-dependent behavior was also observed in recent micro-torsion tests for polycrystalline
copper and gold wires (Liu et al., 2013; Chen et al., 2015). Stolken and Evans (1998), Motz et al. (2008) and Zheng et al. (2016)
reported a significant increase of beam bending strength with a decreasing thickness of ultra-thin nickel beams. Kiener et al.
(2011) and Ryu et al. (2016) found that the yield strength and hardness of micropillars under compression and torsion
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increase with a deceasing diameter. Based on micro-forming tests of brass, Ran et al. (2013, Ran and Fu, 2014) verified that
ductile fracture is difficult to occur when the grain size of metallic material is relatively small. For different micro-particle
reinforced composites, Lloyd (1994), Sajjadi et al. (2011) and Liu et al. (2014) found an obvious improvement of flow
strength when the volume fraction of particles keeps unchanged but with a decreasing diameter. More experimental evi-
dences of size effect were provided by micro-indentation test, in which the material hardness was found to increase with a
reducing indentation depth (for examples, Nix and Gao, 1998; Choi et al., 2012; Li et al., 2015; Zhao et al., 2016).
Unfortunately, the classical plasticity theory fails to characterize the size dependent phenomena since no internal length scale

is involved in the constitutive relation. Based on the microscopic mechanism of plastic deformation and hardening (Cottrell,
1964; Ashby, 1970), strain gradient plasticity theories were developed, in which an intrinsic length scale of materials was
introduced. Such a kind of theory was very popular to account for the size effect in micro-scale metallic materials.
The strain gradient plasticity theory can be generally divided into two classes. The first one involves high-order stresses as the

work-conjugate to the strain gradient with high-order boundary conditions. Typical examples include Fleck et al. (1994), Fleck
and Hutchinson (1997), Gao et al. (1999), Hwang et al. (2003), Yi et al. (2010) and Guha et al. (2013). Another framework
retains the essential structure of the classical plasticity without any high-order stress, inwhich the strain gradient comes into
play through the incremental plastic hardening modulus or a yield criterion. Relevant works include Acharya and Bassani
(1995), Chen and Wang (2000, 2002a), Gao and Huang (2001), Abu Al-Rub and Voyiadjis (2006) and Askari et al. (2015).
With the strain gradient plasticity theories, size effect found in various micro-tests can be effectively predicted, such as the

thin wire torsion and ultrathin beam bending (Fleck et al., 1994; Chen and Wang, 2000, 2002a; Huang et al., 2000; Gao and
Huang, 2001; Mao et al., 2013; Bardella and Panteghini, 2015), the micro- and nano-indentation (Nix and Gao, 1998; Abu Al-
Rub and Voyiadjis, 2006; Chen et al., 2007; Ouyang et al., 2010; Ma et al., 2012), compression of micropillars (Kiener et al.,
2011; Zhang et al., 2014; Lin et al., 2016) as well as uniaxial compression and tension of particle-reinforced metal matrix
composites (PMMC) (Fleck and Hutchinson, 1997; Chen and Wang, 2002b; Aghababaei and Joshi, 2011; Azizi et al., 2013;
Legarth, 2015).
The strain gradient theories have also been successfully applied to study some other interesting issues at micro-scales. For

instances, finite element method (FEM) combining strain gradient plasticity theories have been implemented to explain the
cleavage fracture near the crack tip (Xia and Hutchinson, 1996; Chen and Wang, 2002c; Huang et al., 2014; Martinez-Paneda
et al., 2016; Martinez-Paneda and Niordson, 2016). Strain gradient theories were also used to analyze void size effect on the
stress distribution and void growth in porous solids (Liu et al., 2003; Wen et al., 2005; Monchiet and Bonnet, 2013).
Furthermore, strain gradient constitutive models were established for crystalline solids in order to reveal the grain size effect
on mechanical properties of single-, bi- and poly-crystals (Smyshlyaev and Fleck, 1996; Siddiq et al., 2007; Wu et al., 2012;
Xiao et al., 2015; Lyu et al., 2015). Acharya and Beaudoin et al. proposed a grain-size dependent hardening law for visco-
plastic poly-crystals, inwhich an intrinsic length scale was incorporated into the constitutive equation via a gradient measure
of lattice incompatibility (Acharya and Beaudoin, 2000; Beaudoin et al., 2000). Tang et al. (2004, 2005) subsequently
developed FEMmodels based on Acharya and Beaudoin's theory, which were applied to predict the crack tip fields in a single
crystal and the directional dependence of crack growth along interfaces in a bi-crystal.
Though plenty of works have been carried out in the field of strain gradient plasticity, few attentions have been paid to the in-

service damage caused by the material deformation. This issue has in fact been believed to be one of the main reasons
resulting in the deviation between the experimental data and the strain gradient theoretical predictions (Chen and Wang,
2002b; Jiang and Tohgo, 2011; Martinez-Paneda and Betegon, 2015), especially for micro-particle reinforced composites.
On the other hand, without considering the strain gradient effect, the classical continuum damagemechanics was found to be
failure in predicting size-dependent degradation in micro-test of thin metal film and PMMC (Yang et al., 2008; Scudino et al.,
2009; Liu et al., 2012). In view of these problems, a strain gradient theory considering the in-service damage effect simul-
taneously is needed.
Within the framework of nonlocal continuum theory (Eringen, 2002), a few of gradient-enhanced damage models were

proposed for ductile materials, in which not only an intrinsic length parameter via a second-order gradient of plastic strain
but also a strain-dependent damage variable is introduced in the constitutive relation (Voyiadjis and Dorgan, 2001; Engelen
et al., 2003; Lele and Anand, 2009; Sciarra, 2012; Placidi, 2016). Such kind of model can eliminate the spurious mesh-
dependency in numerical solutions, even though the high order terms in governing equations bring more cumbersome-
ness to the computational implementation. On the other hand, strain gradient plasticity theories were used to study the
problem of shear band localization (another kind of material damage during the loading process, also called as failure) (Zbib
and Aifantis, 1992; Shi et al., 2009; Chen et al., 2011; Zhu et al., 2016) and softening of a bar under a uniaxial tension (Engelen
et al., 2006; Borg, 2007). Such a damage behavior was characterized by a negative softening modulus in these works, which is
used to describe the softening stage after the strain hardening one. It is different from the in-service damage considered in the
present paper, which happens along with the deformation, even in the elastic stage due to the microstructure evolution.
However, determination of the intrinsic length parameter involved in the strain gradient plasticity theories is always a

debatable problem, which, instead of a constant, should be related to the plastic deformation and microstructure charac-
teristics (Nix and Gao, 1998; Abu Al-Rub and Voyiadjis, 2004; Voyiadjis and Abu Al-Rub, 2005; Faghihi and Voyiadjis, 2012).
Recently, Liu and Elsayed (2015) also found that better agreement between theoretical predictions and experimental data for
the thinwire torsion can be achievedwith a decreasing intrinsic length, which they suggestedmay be attributed to the ductile
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damage inside the micro-scale materials. How to formulate the intrinsic length parameter as a function of material damage
remains an open question.
The main aim of this paper is to establish a new framework of strain gradient theory with material damage taken into
consideration. Based on the continuum damage mechanics (Lemaitre, 1992), a strain-dependent damage variable is defined,
which is further introduced into the low-order strain gradient constitutive law proposed by Chen and Wang (2000) and the
formula of intrinsic length parameter given by Nix and Gao (1998). Size effect is induced by the strain gradient, while damage
effect is resulted from deformation. The key feature of the new theory is that both the instantaneous tangentmodulus and the
intrinsic length parameter will be influenced by the material damage parameter, while the strain gradient theory with
microstructure damage evolution still retains the essential framework of the incremental version of conventional J2 defor-
mation theory and obeys thermodynamic restrictions. The present constitutive relation considering both the size effect and
the damage one describes the material behaviors in the elastic and elastic-plastic stages, which is used to predict size effect in
thin wire torsion and ultrathin beam bending in this paper. Both results agree well with the experimental measurements.

2. Brief review of the C-W strain gradient theory

Inspired by Acharya and Bassani (1995), inwhich they suggested that the strain gradient in a plastic flow theory could serve as
an internal variable to increase the current tangential modulus, Chen andWang (2000) proposed a low-order strain gradient
theory retaining the essential structure of the incremental version of the conventional J2 deformation theory, but with a new
incremental hardening law,

_se ¼ A0ðεeÞ
�
1þ l2h2

ε
2
e

�a

_εe ¼ Bðεe; lhÞ _εe (1)

where the superposed dot denotes the material time derivative and A0ðεeÞ denotes the current tangential modulus. a is an

exponent. se
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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0
ij=2

q
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q
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0
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h
ð1Þ
ijk is the stretch gradient (Fleck and Hutchinson, 1997), ce is the effective rotation gradient. l1 and lcs are intrinsic length

scales for stretch and rotation gradients, respectively; cij and qi represent the rotation gradient tensor and rotation vector,
respectively;
The constitutive relation of the low-order strain gradient plasticity theory is in an incremental form (Chen and Wang, 2000).
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It shows that the C-W theory involves neither high-order stress nor extra boundary conditions, which has successfully
predicted size effect observed in several experiments, for examples, thin wire torsion, ultrathin beam bending, micro-
indentation of pure metals and film-substrate system, as well as cleavage fracture at crack tip. However, the effect of
micro-structural damage accompanying deformation can not be characterized by the original C-W theory.

3. A strain gradient theory considering the effect of micro-structural damage

3.1. The damage variable

The Cauchy stress sij satisfying the equilibrium equation s,Vþ f ¼ 0 in a damaged material is different from the stress bsij in
an undamaged body (Lemaitre, 1992). The two stresses can be linked by a damage parameter D,
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sij ¼ ð1� DÞbsij (5)
It shows that the introduced damage parameter characterizes a loss of load bearing capacity of the damaged material. In this
paper, an isotropic damage case is considered so that D is taken as a scalar (Lemaitre, 1992).
From a microscopic point of view, damage of a material is closely related to nucleation, coalescence and evolution of micro-
cracks and voids, which are induced by microstructural deformation. Therefore, the damage parameter can be phenome-
nologically taken as a function of the effective strain εe. Assuming microstructural damage initiating with deformation, an
empirical function has been proposed to describe the damage evolution (Engelen et al., 2003; Chen and Ghosh, 2012),

D ¼ εe

εec
(6)

where εec is defined as a critical effective strain for complete failure of materials. Therefore, the range ofD lies between 0 and 1
in the interval of 0 � εe � εec, which characterizes damage variation in the whole deformation process of a material.

3.2. A damage-dependent intrinsic length scale

The intrinsic length l in strain gradient plasticity theories was always taken as a constant (Fleck et al., 1994; Gao et al., 1999;
Chen and Wang, 2002a). However, many other studies suggested that the intrinsic length should change with the defor-
mation of microstructure (Nix and Gao, 1998; Abu Al-Rub and Voyiadjis, 2004; Voyiadjis and Abu Al-Rub, 2005). A recent
research further revealed that the intrinsic length of a material may be reduced by damage (Liu and Elsayed, 2015). A rela-
tionship between the damage variable and the intrinsic length scale should be established.
According to Nix and Gao (1998) and Gao and Huang (2001), the intrinsic length l of a perfectly elasto-plastic material can be
expressed as

l ¼ 18l2
�
m

sY

�2
b (7)

where l is an empirical constant usually on the order of 1; m is the elastic shear modulus and sY is the yield stress in the
absence of strain gradient; b is the Burgers vector.
As demonstrated by uniaxial-tension test for metallic materials (Lemaitre, 1995), damage can hardly affect the yield stress sY
since the elastic deformation is very small, while the Young's modulus should decrease by a factor of 1� D, i.e., E ¼ Eð1� DÞ. It
consequently leads to a damaged shear modulus m ¼ mð1� DÞ. As a result, the intrinsic length of a damaged material can be
obtained as

l ¼ 18l2
�
m

sY

�2

b ¼ ð1� DÞ2l (8)
Combining Eqs. (6) and (8) shows that the intrinsic length l for a damaged material decreases with increasing damage and
increasing plastic deformation, which is consistent with the suggestion proposed by Abu Al-Rub and Voyiadjis (2004) and Liu
and Elsayed (2015).

3.3. Strain gradient constitutive relation with damage effect

The incremental constitutive relation in Eq. (4) still holds for a damagedmaterial with the characteristic length scale inmicro-
or sub-micrometer. Damage effect on the Cauchy stress demonstrated in Eq. (5) also holds for the corresponding deviatoric
stress components, i.e.,

s0ij ¼ ð1� DÞbs0
ij (9)

where s0ij and bs0
ij denote the deviatoric stress components in the damaged and undamaged materials, respectively.

Then, we have

se ¼ ð1� DÞbse (10)
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where se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3s0ijs

0
ij=2

q
is the effective stresses in the damaged material and se ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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0
ij=2

q
is the one in the undamaged

material.
Replacing the intrinsic length l for an undamaged material with l for a damaged material in the incremental hardening law
proposed by Chen and Wang (2000) for strain gradient plasticity, we can re-write Eq. (1) as

_bse ¼ A0ðεeÞ
 
1þ l

2
h2

ε
2
e

!a

_εe ¼ B
�
εe; lh

�
_εe (11)

where l abides by Eq. (8).
Integrating Eq. (11) yields
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where b represents an integration variable ranging from 0 to εe.
The incremental form of Eq. (10) can be written as

_se ¼ ð1� DÞ _bse � _Dbse (13)
Substituting Eqs. (11) and (12) into Eq. (13) yields,
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db (15)
Equation (15) denotes the incremental hardening relation for a damaged material with the characteristic length in micro- or
sub-micro meters.
Comparing with the conventional J2 deformation theory, the present theory includes not only the effect of strain gradient
plasticity but also the effect of microstructural damage. Furthermore, the microstructural damage evolution influences not
only the instantaneous tangential hardening modulus but also the intrinsic length. The equilibrium equation still obeys the
classical framework of the conventional plasticity theory without additional boundary conditions in contrast to high-order
strain gradient plasticity theories (Fleck et al., 1994; Fleck and Hutchinson, 1997; Gao et al., 1999) and gradient-enhanced
damage theories (Voyiadjis and Dorgan, 2001; Engelen et al., 2003; Sciarra, 2012).

4. Comparison between theoretical predictions and experimental measurements

Cases of thin wire torsion and ultrathin beam bending are analyzed with the above theory. Only the mechanical behavior in
the hardening stage is studied since few experiments gave the measured results in the softening stage for the two structures.

4.1. Thin wire torsion

As shown in Fig. 1, a Cartesian coordinate system ðx1; x2; x3Þ and a cylindrical polar coordinate system ðr; q; x3Þ are attached to
a thinwirewith the longitudinal axis in the x3 direction. The center of the circular cross-section of the wire coincides with the
origin of ðx1; x2Þ or ðr; qÞ plane. The radius of the wire is a. k is the twist per unit length of the wire and taken to be positive
without loss of generality. The displacement field can be written as

u1 ¼ �kx2x3; u2 ¼ kx1x3; u3 ¼ 0 (16)
which yield the torsion-induced shear strains in the Cartesian coordinate system
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ε13 ¼ ε31 ¼ �1
2
kx2; ε23 ¼ ε32 ¼ 1

2
kx1 (17)
and the non-vanishing components of the rotation gradient tensor.

c11 ¼ c22 ¼ �1
2
k; c33 ¼ k (18)
Then the effective strain and the effective rotation gradient can be obtained as,

εe ¼ 1ffiffiffi
3

p kr; ce ¼ k (19)
For a thin wire under pure torsion, the stretch gradient in Eq. (2) equals zero according to Smyshlyaev and Fleck (1996),

h
ð1Þ
ijk h

ð1Þ
ijk ¼ 0 (20)
Combining Eqs. (2) (19) and (20) leads to h ¼ k.
According to Fleck et al. (1994) and Chen and Wang (2000), a simple power law is adopted to describe the constitutive
relationship between the effective stress se and effective strain εe for a perfectly elasto-plastic thin wire,

se ¼ AðεeÞ ¼ s0ε
N
e (21)

where s0 and N are material constants.
Then the relation for a damaged elasto-plastic thin wire can be obtained according to Eq. (14) as

_se ¼ f ðεeÞ_εe (22)
where

f ðεeÞ ¼ ½1� DðεeÞ�Ns0εN�1
e

�
1þ 3½1� DðεeÞ�l2

r2

�a

� dD
dεe

Zεe
0

Ns0b
N�1

�
1þ 3½1� DðbÞ�l2

r2

�a

db (23)
Integrating Eq. (22) results in se. The shear stresses in the wire under pure torsion are

t13 ¼ t31 ¼ 2ε13
3εe

se; t23 ¼ t32 ¼ 2ε23
3εe

se (24)
which can be further expressed in the cylindrical coordinate system as
Fig. 1. Schematic of a thin wire under torsion. Both a Cartesian coordinate system ðx1; x2; x3Þ and a polar one ðr; q; x3Þ are attached to the thin wire of radius a. Q is
the torque and k is the twist per unit length of the wire.
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tqz ¼
1ffiffiffi
3

p se ¼ 1ffiffiffi
3

p Z
εe

0
f ð2Þd2

(25)
The overall torque induced by tqz can be obtained,

Q ¼
Z2p
0

Za
0

tqzr
2drdq ¼ 1ffiffiffi

3
p

Z2p
0

Za
0

tqzr
2drdq ¼ 1ffiffiffi

3
p

Z2p
0

Za
0

r2
Zεe
0

f ð2Þd2drdq (26)

based on which the relation between the overall torque and surface strain εw ¼ ka can be established. Detailed analysis is
given in Section 5.

4.2. Ultrathin beam bending

Fig. 2 shows an ultrathin beam with its longitudinal axis in the x1 direction. Bending occurs in the ðx1; x2Þ plane. The model
can be regarded as a plane stress plate in the x2 direction due to the very thin thickness and a plane strain case in the out of
plane (x3) direction. k denotes the bending curvature. h and b are the beam's thickness and width, respectively. Due to the
small deformation in bending, the displacement field is

u1 ¼ kx1x2; u2 ¼ �k
�
x21 þ x22

�.
2; u3 ¼ 0 (27)
which lead to the non-zero strain components

ε11 ¼ �ε22 ¼ kx2 (28)
and the non-zero component of rotation gradient tensor.

c31 ¼ �k: (29)
Using Eqs. (28) and (29) leads to the effective strain and the effective rotation gradient,

εe ¼ 2ffiffiffi
3

p kjx2j; ce ¼
ffiffiffi
2
3

r
k (30)
The stretch gradient is (Chen and Wang, 2000)

h
ð1Þ
ijk h

ð1Þ
ijk ¼ 76

75
k2 (31)
Fig. 2. Schematic of a thin beam under bending, where ðx1; x2; x3Þ is a Cartesian coordinate system, h is the beam thickness and M is the bending moment.
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According to Smyshlyaev and Fleck (1996), lcs is much larger than l1, which results in a very small c1 in Eq. (2). Considering the

same order of magnitude of the stretch gradient hð1Þijk h
ð1Þ
ijk as the effective curvature c2e , we can omit the term of hð1Þijk h

ð1Þ
ijk for

simplicity, which leads to h ¼ ce. That is only the rotation gradient is considered for the beam bending behavior.
According to the tensile test of thin foil-beams (Stolken and Evans, 1998), a piecewise linear functionwas adopted to describe
the constitutive relationship between the effective stress and effective strain (Chen and Wang, 2000),�

se ¼ AðεeÞ ¼ bS0 þ bEpεe ε � ε0
se ¼ AðεeÞ ¼ Ee ε � ε0

(32)

where ε0 ¼
ffiffiffi
3

p
S0=ð2EÞ is the yield strain, and bS02

ffiffiffi
3

p
S0E=ð4E þ 3EpÞ, bEp ¼ 3EpE=ð4E þ 3EpÞ. Here, S0 is the yield strength, E

and Ep represent the Young's modulus and linear hardening modulus, respectively.
Substituting Eq. (32) into Eq. (15) leads to an incremental relation considering both effects of strain gradient and damage,8>>>>>>><>>>>>>>:
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Substituting Eq. (30) into Eq. (33) yields.8>>>>>>><>>>>>>>:

_se ¼ ½1� DðεeÞ�
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(34)
Integrating Eq. (34) can find se.
Substituting Eqs. (28) and (30) into the deviatoric stress component s0ij ¼ 2se

3εe
εij yields.

s011 ¼ �s022 ¼ signðx2Þffiffiffi
3

p se (35)
Considering the plane stress condition in the thickness direction and plane strain condition in the width direction leads to

s11 ¼ 2signðx2Þffiffiffi
3

p se; s33 ¼ 2signðx2Þffiffiffi
3

p se (36)
The moment acted on the thin beam can then be obtained as

M ¼ 2
Zh=2
0

s11bx2dx2 (37)

based on which the relation between the bending moment and surface strain εb ¼ kh=2 is established.

5. Results and discussion

5.1. Thin wire torsion

The coupling effect of size and damage in thin copper wire torsion is analyzed based on Eq. (26). According to Fleck et al.
(1994), the power exponent N in the hardening law is taken as 0.22 and the intrinsic length scale l in Eq. (8) is taken as
2:82mm for an undamaged copper wire (Chen andWang, 2000). The critical effective strain εec is taken as 30 corresponding to
D ¼ 1, which has the same order of magnitude as the fracture strain of metal wires (Dieter, 1986).
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Fig. 3 presents the torque versus surface strain for thin copper wires with diameters ranging from 12 mm to 170 mm, in which
the damage parameter abides by Eq. (6). Both the result predicted by C-W theory without damage effect and the experi-
mentally measured data in Fleck et al. (1994) are given for comparison. It is found that both the theoretical predictions with
andwithout damage effect agreewell with the experimental data, while the former is slightly smaller than the latter for a thin
wire with a fixed diameter and a given surface strain due to a reduction of the load bearing capacity resulted from damage.
The small deviation between the two kinds of theoretical predictions further demonstrates that microstructural damage of
the analyzed thin copper wire under torque is not very obvious in the involved strain range. It agrees with the fact that the
purity of the copper used in Fleck et al. (1994) is much high, leading to internal weak damage during the deformation process.

5.2. Ultrathin beam bending

Experimental test on the bending moment of ultrathin nickel beams with different thickness has been carried out by Stolken
and Evans (1998), in which the bending moment is influenced significantly by the beam thickness. The intrinsic length scale
for nickel beams was predicted to be l ¼ 3:3mm by the C-W strain gradient plasticity theory without damage effect (Chen and
Wang, 2000). The yield strength and hardening modulus for beams with different thickness are given in Table 1 according to
the tensile test of nickel foils (Stolken and Evans, 1998). Considering the microstructural damage effect during the beam
bending process, we analyze the bendingmoment based on Eq. (37), inwhich not only the size effect but also the damage one
is included. The damage function given in Eq. (6) is adopted, in which the critical effective strain εec is taken to be 0.5 without
loss of generality for an ultrathin bending beam.
The predicted bending moment as a function of the surface strain for nickel beams with different widths is shown in Fig. 4.
The experimental data as well as the result predicted by the C-W strain gradient plasticity theory without damage effect is
also given for comparison. It is found that both the theoretical predictions with and without microstructural damage effect
agree well with the experimental results. In contrast, the former one agree better with the experimental measurements than
the latter, which demonstrates that the microstructural damage is a little bit obvious in the beam bending experiment.
Another interesting finding in Fig. 4 is that the thinner the beam, the more significant the damage effect would become. It
suggests that a thicker beam with a larger bending rigidity exhibits a better resistance to the damage evolution.

5.3. Comparison between the present theory and the Aifantis's theory

Aifantis and Zbib et al. proposed a kind of gradient-dependent theory of plasticity (Aifantis, 1984, 1992; Zbib and Aifantis,
1992; Taylor et al., 2002), in which the yield function was formulated as

F ¼ t� k
�
g;V2g;Vg

�
¼ t�

h
k0ðgÞ � c1V

2g� c2Vg$g
i

(38)
where t is an effective stress (e.g., a von-Mises stress), g is the accumulated effective plastic strain, kðg;V2g;VgÞ is a flow stress
related to its classical counterpart k0ðgÞ (linear or exponential function of g) and the strain gradient terms, c1 and c2 are two
coefficients associated with the intrinsic length scale. The tangent modulus of a material can be expressed as
Fig. 3. Torque as a function of the surface strain for copper wires with different micro-meter diameters, in which the solid lines denote the C-W theoretical
predictions without damage effect (Chen and Wang, 2000), the dashed lines denote the theoretical results predicted by the present strain gradient theory with
damage effect, and the scattered symbols denote the experiment data given by Fleck et al. (1994).



Table 1
Material parameters of nickel foils with different thickness (Stolken and Evans, 1998).

Foil thickness(mm) Ʃ0(MPa) Ep(GPa)

12.5 56 1.15
25 75 1.30
50 103 1.05

Fig. 4. Non-dimensional bending moment versus the surface strain for ultrathin nickel beams with different thickness, where the solid lines denote the C-W
theoretical predictions without damage effect (Chen and Wang, 2000), the dashed lines denote the theoretical results predicted by the present strain gradient
theory with damage effect, and the scattered symbols denote the experiment data given by Stolken and Evans (1998).
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h ¼ dk
dg

¼ h0 � c01V
2g� c02Vg$Vg

h0 ¼ dk0
dg

; c01 ¼ dc1
dg

; c02 ¼ dc2
dg

(39)
The yield function in such a strain gradient theory can be regarded as a hardening law for a positive tangential modulus h, and
a softening one for a negative tangential modulus h. Usually, the mechanical behavior of most materials can be divided into
three stages, the elastic deformation, the elastic-plastic deformation and the last softening stage. Sometimes, the softening
region is also called as a damage stage, duringwhich shear bandswould happen. Strain gradient theories can also bewell used
to explain the behavior of shear bands when the tangential modulus takes a negative value at the softening stage, for ex-
amples, Aifantis (1992), Zbib and Aifantis (1992), Taylor et al. (2002), Chen et al. (2011).
In addition, Bammann and Aifantis proposed a physically-based gradient theory of continuum damage, in which the volume
fraction of voids (porosity) was used as ameasure of damage (Bammann and Aifantis,1989; Solanki and Bammann, 2010). The
intrinsic length scale of material was introduced into the elasto-plastic constitutive equations via a second-order gradient of
porosity, so that the coupling effect of size and damage was considered. However, the porosity is not easy to determine in
experiments (Yu and Feng, 1997).
Different from the strain gradient theories proposed by Aifantis and Zbib et al. (Aifantis, 1984, 1992; Zbib and Aifantis, 1992;
Taylor et al., 2002). and the gradient theory of continuum damage (Bammann and Aifantis, 1989; Solanki and Bammann,
2010), the present theory has several unique features. (i) It belongs to a low-order strain gradient theory without any
high-order gradient terms due to the introduction of incremental constitutive relation. The strain gradient can be looked as an
internal variable. (ii) The damage parameter as a function of the effective plastic strain is introduced into the strain gradient
hardening law to characterize the damage effect during thewhole deformation process, which depends on the effective strain
and the finally failure one as shown in Eq. (6). Such a definition of damage has been well adopted in the continuum damage
mechanics due to the measurable parameters and consistence with experimental results. (iii) Since the intrinsic length de-
pends on the material properties, it should depend on the damage parameter. An analytical relation between the intrinsic
length and the damage parameter is established in the present model, in contrast to a constant one in the existing strain
gradient theories. The instantaneous tangential modulus during deformation is also affected by the damage parameter due to
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the microstructure evolution. (iv) The present model can also be used to analyze the shear band problem only if the
constitutive relation of a material includes the softening stage with a negative shear modulus.

6. Conclusions

A strain gradient plasticity theory considering the damage effect is developed, which remains not only themain feature of the
low-order strain gradient theory proposed by Chen and Wang (2000) but also that of the continuum damage mechanics
(Lemaitre, 1992). As a result, no high-order stress or high-order boundary condition is involved. Not only the tangential
hardening modulus but also the intrinsic length involved in the strain gradient plasticity theory depends on the damage
parameter, both of which are reduced by the microstructural damage. The proposed theory is further used to analyze the
mechanical behaviors of thin wire torsion and ultrathin beam bending. Both the size effect and the damage-induced
degradation of material bearing capacity are predicted well, though the damage effect is not very obvious in the two cho-
sen tests. It is no doubt that the present theory should be very useful for understanding the decreasing hardening modulus
found in micro-particle reinforced metal matrix composites (Lloyd, 1994; Liu et al., 2012; 2014) as well as the mechanical
property of nano-crystalline gradient materials under external loading (Lu et al., 2000, 2009; Fang et al., 2011). Further study
on the coupling effect of size and microstructural damage evolution in composites is forthcoming as well as the prediction of
shear band width in metals.

Acknowledgments

The work reported here is supported by NSFC through Grants #11372317, #11532013, #11402270, and the BIT Creative
Research Plan.

References

Abu Al-Rub, R.K., Voyiadjis, G.Z., 2004. Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory
from micro- and nano-indentation experiments. Int. J. Plast. 20 (6), 1139e1182.

Abu Al-Rub, R.K., Voyiadjis, G.Z., 2006. A physically based gradient plasticity theory. Int. J. Plast. 22 (4), 654e684.
Acharya, A., Bassani, J.L., 1995. On Non-local Flow Theories that Preserve the Classical Structure of Incremental Boundary Value Problems (In: Micro-

mechanics of Plasticity and Damage of Multiphase Materials, IUTAM Symposium, Paris).
Acharya, A., Beaudoin, A.J., 2000. Grain-size effect in FCC viscoplasticpolycrystals at moderate strains. J. Mech. Phys. Solids 48 (10), 2213e2230.
Aghababaei, R., Joshi, S.P., 2011. Grain sizeeinclusion size interaction in metal matrix composites using mechanism-based gradient crystal plasticity, 48 (18),

2585e2594.
Aifantis, E.C., 1984. On the microstructural origin of certain inelastic models. ASME J. Eng. Mater. Technol. 106 (4), 326e330.
Aifantis, E.C., 1992. On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30 (10), 1279e1299.
Ashby, M.F., 1970. The deformation of plastically non-homogeneous alloys. Phil. Mag. 21 (170), 399e424.
Askari, H., Maughan, M.R., Abdolrahim, N., Sagapuram, D., Bahr, D.F., Zbib, H.M., 2015. A stochastic crystal plasticity framework for deformation of micro-

scale polycrystalline materials. Int. J. Plast. 68, 21e33.
Azizi, R., Legarth, B.N., Niordson, C.F., 2013. A new macroscopically anisotropic pressure dependent yield function for metal matrix composite based on

strain gradient plasticity for the microstructure. J. Mech. Phys. Solids 61 (4), 991e1009.
Bammann, D.J., Aifantis, E.C., 1989. A damage model for ductile metals. Nucl. Eng. Des. 116 (3), 355e362.
Bardella, L., Panteghini, A., 2015. Modelling the torsion of thin metal wires by distortion gradient plasticity. J. Mech. Phys. Solids 78, 467e492.
Beaudoin, A.J., Acharya, A., Chen, S.R., Korzekwa, D.A., Stout, M.G., 2000. Consideration of grain-size effect and kinetics in the plastic deformation of metal

polycrystals. Acta Mater. 48 (13), 3409e3423.
Borg, U., 2007. Strain gradient crystal plasticity effects on flow localization. Int. J. Plast. 23 (8), 1400e1416.
Chen, S.H., Wang, T.C., 2000. A new hardening law for strain gradient plasticity. Acta Mater. 48 (16), 3997e4005.
Chen, S.H., Wang, T.C., 2002a. A new deformation theory for strain gradient effects. Int. J. Plast. 18 (8), 971e995.
Chen, S.H., Wang, T.C., 2002b. Size effects in the particle-reinforced metal-matrix composites. Acta Mech. 157 (1), 113e127.
Chen, S.H., Wang, T.C., 2002c. Finite element solutions for plane strain mode I crack with strain gradient effects. Int. J. Solids Struct. 39 (5), 1241e1257.
Chen, S.H., Liu, L., Wang, T.C., 2007. Small scale, grain size and substrate effects in nano-indentation experiment of filmesubstrate systems. Int. J. Solids

Struct. 44 (13), 4492e4504.
Chen, S.H., Feng, B., Wei, Y.G., Wang, T.C., 2011. Prediction of the initial thickness of shear band localization based on a reduced strain gradient theory. Int. J.

Solids Struct. 48 (21), 3099e3111.
Chen, Y.L., Ghosh, S., 2012. Micromechanical analysis of strain rate-dependent deformation and failure in composite microstructures under dynamic loading

conditions. Int. J. Plast. 32e33, 218e247.
Chen, Y., Kraft, O., Walter, M., 2015. Size effects in thin coarse-grained gold microwires under tensile and torsional loading. Acta Mater. 87, 78e85.
Choi, I.C., Zhao, Y.K., Kim, Y.J., Yoo, B.G., Suh, J.Y., Ramamurty, U., Jang, J.I., 2012. Indentation size effect and shear transformation zone size in a bulk metallic

glass in two different structural states. Acta Mater. 60 (19), 6862e6868.
Cottrell, A.H., 1964. The Mechanical Properties of Matter. Wiley, New York, p. 277.
Dieter, G.E., 1986. Mechanica Metallurgy, third ed. McGraw-Hill Book Company, Inc., New York.
Eringen, A.C., 2002. Nonlocal Continuum Field Theories. Springer, New York.
Engelen, R.A.B., Geers, M.G.D., Baaijens, F.P.T., 2003. Nonlocal implicit gradient-enhanced elasto-plasticity for the modeling of softening behavior. Int. J. Plast.

19 (4), 403e433.
Engelen, R.A.B., Fleck, N.A., Peelings, R.H.J., Geers, M.G.D., 2006. An evaluation of higher-order plasticity theories for predicting size effects and localization.

Int. J. Solids Struct. 43 (7e8), 1857e1877.
Faghihi, D., Voyiadjis, G.Z., 2012. Determination of nanoindentation size effects and variable material intrinsic length scale for body-centered cubic metals.

Mech. Mater. 44, 189e211.
Fang, T.H., Li, W.L., Tao, N.R., Lu, K., 2011. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331 (6024), 1587e1590.
Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W., 1994. Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42 (2), 475e487.
Fleck, N.A., Hutchinson, J.W., 1997. Strain gradient plasticity. In: Hutchinson, J.W., Wu, T.Y. (Eds.), Advances in Applied Mechanics, vol. 33. Academic Press,

New York, pp. 295e361.
Gao, H.J., Huang, Y.G., Nix, W.D., Hutchinson, J.W., 1999. Mechanism-based strain gradient plasticityd I. Theory. J. Mech. Phys. Solids 47 (6), 1239e1263.

http://refhub.elsevier.com/S0749-6419(16)30267-4/sref1
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref1
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref1
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref2
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref2
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref3
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref3
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref4
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref4
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref5
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref5
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref5
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref5
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref6
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref6
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref7
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref7
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref8
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref8
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref9
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref9
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref9
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref10
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref10
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref10
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref11
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref11
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref12
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref12
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref13
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref13
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref13
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref14
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref14
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref15
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref15
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref16
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref16
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref17
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref17
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref18
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref18
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref19
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref19
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref19
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref19
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref20
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref20
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref20
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref21
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref21
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref21
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref21
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref22
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref22
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref23
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref23
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref23
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref24
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref25
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref26
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref27
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref27
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref27
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref28
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref28
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref28
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref28
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref29
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref29
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref29
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref30
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref30
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref31
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref31
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref32
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref32
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref32
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref33
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref33
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref33


H. Ban et al. / International Journal of Plasticity 95 (2017) 251e263262
Gao, H.J., Huang, Y.G., 2001. Taylor-based nonlocal theory of plasticity. Int. J. Solids Struct. 38 (15), 2615e2637.
Guha, S., Sangal, S., Basu, S., 2013. Finite Element studies on indentation size effect using a higher order strain gradient theory. Int. J. Solids Struct. 50 (6),

863e875.
Huang, Y.G., Gao, H.J., Nix, W.D., Hutchinson, J.W., 2000. Mechanism-based strain gradient plasticityd II. Analysis. J. Mech. Phys. Solids 48 (1), 99e128.
Huang, M.S., Tong, J., Li, Z.H., 2014. A study of fatigue crack tip characteristics using discrete dislocation dynamics. Int. J. Plast. 54, 229e246.
Hwang, K.C., Jiang, H., Huang, Y.G., Gao, H.J., 2003. Finite deformation analysis of mechanism-based strain gradient plasticity: torsion and crack tip field. Int.

J. Plast. 19 (2), 235e251.
Jiang, Y.P., Tohgo, K., 2011. An incremental damage theory for micropolar composites taking account of progressive debonding and particle size effect.

Comput. Mater. Sci. 50 (12), 3358e3364.
Kiener, D., Guruprasad, P.J., Keralavarma, S.M., Dehm, G., Benzerga, A.A., 2011. Work hardening in micropillar compression: In situ experiments and

modeling. Acta Mater. 59 (10), 3825e3840.
Legarth, B.N., 2015. Plasticity dependent damage evolution in composites with strain-gradient effects. Int. J. Solids Struct. 63, 1e10.
Lele, S.P., Anand, L., 2009. A large-deformation strain-gradient theory for isotropic viscoplastic materials. Int. J. Plast. 25 (3), 425e453.
Lemaitre, J., 1992. A Course on Damage Mechanics. Springer, Berlin.
Lemaitre, J., 1995. A continuous damage mechanics model for ductile fracture. ASME J. Eng. Mater. Technol. 107 (1), 83e89.
Li, J.H., Li, F.G., Ma, X.K., Wang, Q.R., Dong, J.Z., Yuan, Z.W., 2015. A strain-dependent ductile damage model and its application in the derivation of fracture

toughness by micro-indentation. Mater. Des. 67, 623e630.
Lin, P., Liu, Z.L., Zhuang, Z., 2016. Numerical study of the size-dependent deformation morphology in micropillar compressions by a dislocation-based crystal

plasticity model. Int. J. Plast. 87, 32e47.
Liu, B., Qiu, X., Huang, Y., Huang, K.C., Li, M., Liu, C., 2003. The size effect on void growth in ductile materials. J. Mech. Phys. Solids 51 (7), 1171e1187.
Liu, B., Huang, W.M., Huang, L., Wang, H.W., 2012. Size-dependent compression deformation behaviors of high particle content B4C/Al composites. Mater.

Sci. Eng. A 534 (1), 530e535.
Liu, B., Huang, W.M., Wang, H.W., Wang, M.L., Li, X.F., 2014. Study on the load partition behaviors of high particle content B4C/Al composites in compression.

J. Compos. Mater. 48 (3), 355e364.
Liu, D.B., He, Y.M., Dunstan, D.J., Zhang, B., Gan, Z.P., Hu, P., Ding, H.M., 2013. Toward a further understanding of size effects in the torsion of thin metal wires:

an experimental and theoretical assessment. Int. J. Plast. 41, 30e52.
Liu, J.X., Elsayed, T., 2015. A strain gradient plasticity theory with application to wire torsion. Int. J. Damage Mech. 24 (4), 512e528.
Lloyd, D.J., 1994. Particle reinforced aluminium and magnesiummatrix composites. Inter. Mater. Rev. 39 (1), 1e23.
Lu, L., Sui, M.L., Lu, K., 2000. Superplastic extensibility of nanocrystalline copper at room temperature. Science 287 (5457), 1463e1466.
Lu, K., Lu, L., Suresh, S., 2009. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324 (5925), 349e352.
Lyu, H., Taheri-Nassaj, N., Zbib, H.M., 2015. A multiscale gradient-dependent plasticity model for size effects. Philo. Mag. 96 (18), 1883e1908.
Ma, Z.S., Zhou, Y.C., Long, S.G., Lu, C., 2012. On the intrinsic hardness of a metallic film/substrate system: indentation size and substrate effects. Int. J. Plast.

34, 1e11.
Mao, Y.Q., Ai, S.G., Fang, D.N., Fu, Y.M., Chen, C.P., 2013. Elasto-plastic analysis of micro FGM beam basing on mechanism-based strain gradient plasticity

theory. Compos. Struct. 101, 168e179.
Martinez-Paneda, E., Betegon, C., 2015. Modeling damage and fracture within strain-gradient plasticity. Int. J. Solid Struct. 59, 208e215.
Martinez-Paneda, E., Niordson, C.F., Gangloff, R.P., 2016. Strain gradient plasticity-based modeling of hydrogen environment assisted cracking. Acta Mater.

117 (15), 321e332.
Martinez-Paneda, E., Niordson, C.F., 2016. On fracture in finite strain gradient plasticity. Int. J. Plast. 80, 154e167.
Monchiet, V., Bonnet, G., 2013. A Gurson-type model accounting for void size effects. Int. J. Plast. 50 (2), 320e327.
Motz, C., Weygand, D., Senger, J., Gumbsch, P., 2008. Micro-bending tests: a comparison between three-dimensional discrete dislocation dynamics sim-

ulations and experiments. Acta Mater. 56 (9), 1942e1955.
Nix, W.D., Gao, H.J., 1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46 (3), 411e425.
Ouyang, C.J., Li, Z.H., Huang, M.S., Fan, H.D., 2010. Cylindrical nano-indentation on metal film/elastic substrate system with discrete dislocation plasticity

analysis: a simple model for nano-indentation size effect. Int. J. Solids Struct. 47 (22e23), 3103e3114.
Placidi, L., 2016. A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Contin. Mech. Therm. 28

(1), 119e137.
Ran, J.Q., Fu, M.W., Chan, W.L., 2013. The influence of size effect on the ductile fracture in micro-scaled plastic deformation. Int. J. Plast. 41, 65e81.
Ran, J.Q., Fu, M.W., 2014. A hybrid model for analysis of ductile fracture in micro-scaled plastic deformation of multiphase alloys. Int. J. Plast. 61, 1e16.
Ryu, I.L.L., Cai, W., Nix, W.D., Gao, H.J., 2016. Anisotropic size-dependent plasticity in face-centered cubic micropillars under torsion. JOM 68 (1), 253e260.
Sajjadi, S.A., Ezatpour, H.R., Beygi, H., 2011. Microstructure and mechanical properties of AleAl2O3 micro and nanocomposites fabricated by stir casting.

Mater. Sci. Eng. A 528 (29e30), 8765e8771.
Sciarra, F.M.D., 2012. Hardening plasticity with nonlocal strain damage. Int. J. Plast. 34, 114e138.
Scudino, S., Liu, G., Prashanth, K.G., Bartusch, B., Surreddi, K.B., Murty, B.S., Eckert, J., 2009. Mechanical properties of Al-based metal matrix composites

reinforced with Zr-based glassy particles produced by powder metallurgy. Acta Mater. 57 (6), 2029e2039.
Siddiq, A., Schmauder, S., Huang, Y.G., 2007. Fracture of bicrystal metal/ceramic interfaces: a study via the mechanism-based strain gradient crystal

plasticity theory. Int. J. Plast. 23 (4), 665e689.
Shi, Z., Huang, Y.G., Song, J., Hwang, K.C., Li, M., 2009. Study of plastic shear localization via the flow theory of mechanism-based strain gradient plasticity.

ASCE J. Eng. Mech. 135 (3), 132e138.
Smyshlyaev, V.P., Fleck, N.A., 1996. The role of strain gradients in the grain size effect for polycrystals. J. Mech. Phys. Solids 44 (4), 465e495.
Solanki, K.N., Bammann, D.J., 2010. A thermodynamic framework for a gradient theory of continuum damage. Acta Mech. 213 (1), 27e38.
Stolken, J.S., Evans, A.G., 1998. A microbend test method for measuring the plasticity length scale. Acta. Mater. 46 (14), 5109e5115.
Tang, H., Choi, Y.S., Acharya, A., Saigal, S., 2004. Effects of lattice incompatibility induced hardening on the fracture behavior of ductile single crystals. J.

Mech. Phys. Solids 52 (12), 2841e2867.
Tang, H., Acharya, A., Saigal, S., 2005. Directional dependence of crack growth along the interface of a bicrystal with symmetric tilt boundary in the presence

of gradient effects. Mech. Mater. 37 (5), 593e606.
Taylor, M.B., Zbib, H.M., Khaleel, M.A., 2002. Damage and size effect during superplastic deformation. Int. J. Plast. 18 (3), 415e442.
Voyiadjis, G.Z., Dorgan, R.J., 2001. Gradient formulation in coupled damage-plasticity. Arch. Mech. 53 (4e5), 565e597.
Voyiadjis, G.Z., Abu Al-Rub, R.K., 2005. Gradient plasticity theory with a variable length scale parameter. Int. J. Solids Struct. 42 (14), 3998e4029.
Wen, J., Huang, Y.G., Huang, K.C., Liu, C., Li, M., 2005. The modified Gurson model accounting for the void size effect. Int. J. Plast. 21 (2), 381e395.
Wu, B., Liang, L.H., Ma, H.S., Wei, Y.G., 2012. A trans-scale model for size effects and intergranular fracture in nanocrystalline and ultra-fine polycrystalline

metals. Comput. Mater. Sci. 57, 2e7.
Xia, Z.C., Hutchinson, J.W., 1996. Crack tip fields in strain gradient plasticity. J. Mech. Phys. Solids 44 (10), 1621e1648.
Xiao, X.Z., Song, D.K., Xue, J.M., Chu, H.J., Duan, H.L., 2015. A size-dependent tensorial plasticity model for FCC single crystal with irradiation. Int. J. Plast. 65,

152e167.
Yang, Y., Yao, N., Soboyejo, W.O., Tarquinio, C., 2008. Deformation and fracture in micro-tensile tests of freestanding electrodeposited nickel thin films. Scr.

Mater. 58 (12), 1062e1065.
Yi, D.K., Wang, T.C., Xiao, Z.M., 2010. Strain gradient theory based on a new framework of non-local model. Acta Mech. 212 (1), 51e67.
Yu, S.W., Feng, X.Q., 1997. Damage Mechanics. Tsinghua University Press, Beijing.

http://refhub.elsevier.com/S0749-6419(16)30267-4/sref34
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref34
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref35
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref35
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref35
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref36
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref36
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref36
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref37
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref37
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref38
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref38
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref38
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref39
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref39
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref39
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref40
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref40
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref40
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref41
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref41
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref42
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref42
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref43
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref44
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref44
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref45
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref45
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref45
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref46
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref46
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref46
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref47
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref47
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref93
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref93
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref93
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref93
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref48
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref48
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref48
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref48
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref49
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref49
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref49
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref50
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref50
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref51
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref51
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref52
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref52
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref53
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref53
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref54
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref54
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref55
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref55
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref55
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref56
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref56
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref56
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref57
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref57
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref58
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref58
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref58
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref59
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref59
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref60
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref60
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref61
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref61
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref61
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref62
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref62
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref63
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref63
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref63
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref63
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref64
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref64
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref64
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref65
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref65
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref66
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref66
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref67
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref67
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref68
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref68
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref68
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref68
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref68
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref68
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref68
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref69
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref69
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref70
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref70
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref70
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref71
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref71
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref71
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref72
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref72
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref72
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref73
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref73
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref74
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref74
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref75
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref75
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref76
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref76
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref76
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref77
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref77
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref77
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref78
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref78
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref79
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref79
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref79
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref80
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref80
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref81
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref81
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref82
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref82
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref82
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref83
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref83
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref84
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref84
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref84
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref85
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref85
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref85
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref86
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref86
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref87


H. Ban et al. / International Journal of Plasticity 95 (2017) 251e263 263
Zbib, H.M., Aifantis, E.C., 1992. On the gradient-dependent theory of plasticity and shear banding. Acta Mech. 92 (1), 209e225.
Zhang, X., Aifantis, K.E., Ngan, A.H.W., 2014. Interpreting the stressestrain response of Al micropillars through gradient plasticity. Mater. Sci. Eng. A 591,

38e45.
Zhao, H.W., Zhong, Y.X., Ma, Z.C., 2016. Effects of indentation depth on micro hardness and scratch behavior of thin composite laminate. J. Alloy Compd. 680,

105e108.
Zheng, Q., Shimizu, T., Yang, M., 2016. Scale effect on springback behavior of pure titanium foils in microbending at elevated temperature. J. Mater. Process

Tech. 230, 233e243.
Zhu, C.Y., Harrington, T., Livescu, V., Gray III, G.T., Vecchio, K.S., 2016. Determination of geometrically necessary dislocations in large shear strain localization

in aluminum. Acta Mater. 118, 383e394.

http://refhub.elsevier.com/S0749-6419(16)30267-4/sref88
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref88
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref89
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref89
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref89
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref89
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref90
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref90
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref90
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref91
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref91
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref91
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref92
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref92
http://refhub.elsevier.com/S0749-6419(16)30267-4/sref92

	The coupling effect of size and damage in micro-scale metallic materials
	1. Introduction
	2. Brief review of the C-W strain gradient theory
	3. A strain gradient theory considering the effect of micro-structural damage
	3.1. The damage variable
	3.2. A damage-dependent intrinsic length scale
	3.3. Strain gradient constitutive relation with damage effect

	4. Comparison between theoretical predictions and experimental measurements
	4.1. Thin wire torsion
	4.2. Ultrathin beam bending

	5. Results and discussion
	5.1. Thin wire torsion
	5.2. Ultrathin beam bending
	5.3. Comparison between the present theory and the Aifantis's theory

	6. Conclusions
	Acknowledgments
	References


