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Abstract Geometric phases have natural manifestations in
large deformations of geometrically exact rods. The primary
concerns of this article are the physical implications and
observable consequences of geometric phases arising from
the deformed patterns exhibited by a rod subjected to end
moments. Thismechanical problem is classical andhas a long
tradition dating back to Kirchhoff. However, the perspective
fromgeometric phases seems to gomore deeply into relations
between local strain states and global geometry of shapes,
and infuses genuinely new insights and better understand-
ing, which enable one to describe this kind of deformation in
a neat and elegant way. On the other hand, visual represen-
tations of these deformations provide beautiful illustrations
of geometric phases and render the meaning of the abstract
concept of holonomy more direct and transparent.

Keywords Geometric exact rod · Geometric phase ·
Rotation group · Kirchhoff analogy

1 Introduction

Since Berry’s introduction of the adiabatic geometrical
phase, a large amount of research has appeared on the theo-
retical foundations, physical applications, and experimental
manifestations of geometric phases. In quantum mechanics,
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Berry [1] has first shown that when the Hamiltonian H(λ),
which depends on a set of parameters λ = (λ1, λ2, . . .),
undergoes adiabatic evolution along a closed curve γ in the
parameter space, then the state vector corresponding to this
quantum system evolves into a vector which agrees with the
initial vector only up to a phase factor eiφ . This phase φ can
have observable consequences, and contains, in addition to
the usual dynamics phase, a purely geometric part, which
depends only on the geometry of the closed curve γ . Soon
after this discovery, Hannay [2] and Berry [3] have shown
that, under a closed adiabatic loop in the space of classically
integrable Hamiltonians, the angle variables pick up extra
phases in addition to the time integral of the instantaneous
frequencies. This classical analogue of the Berry’s quantum
phase, calledHannay angles, can be explained by the fact that
the action-angle variables (I,ϕ) are parameter-dependent so
that canonical transformation to these coordinates produces
an additional term in the Hamiltonian.

The fact that the geometric phase has important observ-
able consequences in physics is not the only reason why it
has attracted so much attention. The geometric phase is also
one of the most beautiful examples of what Wigner once
called the unreasonable effectiveness of mathematics in the
natural science. In geometry, when an orthonormal frame
returns after traversing a closed path to its original posi-
tion, but rotated, the rotation is referred to as holonomy.
This is a unifying mathematical concept that underlies the
occurrence of geometric phases in natural phenomena. In
the quantum case, immediately after Berry’s introduction of
the adiabatic geometric phase, Berry [1,3] and Simon [4]
noticed that it could be interpreted as the holonomy of a
fiber bundle and that Berry’s gauge potential played the role
of a connection on this fiber bundle. For the classical adia-
batic angles, Golin et al. [5] andMontgometry [6] defined an
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Ehresmann connection by averaging, which they called the
Hannay–Berry connection, and have shown that the Hannay
angles are the holonomy of this connection on a Poisson fiber
bundle associated with the given problem. In fact, the study
of geometric phases can be put into the framework of con-
nections on bundles and reduction of Hamiltonian systems
with symmetry. Various other holonomy phenomena can be
shown to be instances of the reconstruction procedure for the
dynamics of a given Hamiltonian system from the induced
system on the reduced phase space. It was this relation to the
beautiful mathematics of fiber bundles and symmetry that
caused the geometric phase to become a fashion in math-
ematical physics. A detailed presentation of reduction and
reconstruction can be found in Marsden [7] and Marsden et
al. [8].

The idea of geometric phases, like group theory, has now
become part of the lingua franca in quantummechanics, with
applications in fields ranging from chemistry to condensed
matter physics. Yet its inherent universality has not been
widely appreciated in the theory of elasticity. The present
work is our initial attempt to unravel effects of geometric
phases arising in the nonlinear rod theory. To do this, we first
concentrate on the equilibrium states exhibited by an arbi-
trarily long rod, deformed by external moments applied at
one of its ends. The physical model we consider here is a
simple boundary value problem; however, the deformed pat-
terns produced by it are rather complex. To understand the
situations here, we exploit the Kirchhoff kinetic analogy: the
equations governing equilibrium states are formally equiv-
alent to the Euler equations describing the motion of rigid
body pivoted at a fixed point (see Love [9], more modern
treatment can be found in Refs. [10,11]). This remarkable
feature immediately implies that the distribution of a stress
field is periodic. During a period of stress, the configuration
acquires a rotation around the direction of external moment
with a nontrivial angle α∗, a manifestation of holonomy,
and this is the phenomenon of interest here. The under-
lying geometry of this phase can be understood in terms
of the rigid-body phase [8], and its physical implications
on the deformed configuration allow us to break the rod
down to find its underlying parts. Then the whole deformed
rod can be build up through affine transformation of each
individual part. In fact, this kind of description can be con-
sidered as the generalization of the Poinsot’s description of
the rigid-body motion to the larger deformations of rods.
Therefore, when this problem that is not ordinarily associ-
ated with geometric phases is phased in terms of them, the
result we arrive at is a clear understanding of the structure
of this problem, and an elegant expression of its solution.
On the other hand, the physical consequences of geomet-
ric phases on rods reveal the abstract topological concept
holonomy through vivid and intuitive visual deformation
shapes.

The corresponding rigid-body phase formula based on the
theory of connections and the formula for holonomy in terms
of curvature was given by Montgomery [12] and Marsden et
al. [8]. Its interesting history and practical applications in
control theory can be referred to in Ref. [13] and references
therein.

The concept that has emerged as central is the geomet-
ric phase, which is subtle and can be difficult to grasp on
the first encounter. The simple model studied here help us
to demystify it by describing how it lies at the heart of
beautiful patterns exhibited by the rod deformation. With
the increasing separation between daily experience and the
more theoretical branches of physics, it would be comforting
to understand phenomena that contains deep physical ideas
and leads to effects which can be readily realized.

This paper is organized as follows. In Sect. 2, we outline
the basic geometric exact rod theory. The main concerns of
this paper are given in Sect. 3. First, in this part, the occur-
rence and consequences of geometric phases in the spatial
shapes exhibited by rods are analyzed in detail. The phase
α∗ arising here, is analogous to cyclic adiabatic evolutions
of quantum systems, and separates naturally into the obvious
dynamical change (the integral of the strain component along
the direction of end moment), and an additional geometric
change (the solid angle subtended by a curve traced on a
sphere by the direction of the material moment). Section 4
is devoted to elaborate theoretical and numerical factors on
how observable consequences of the geometric phases might
be extracted from deformed shapes of rods. In Appendix,
the phase formula is ascertained mathematically by an argu-
ment similar to the one taken up by Montgomery [12], but
the details in this proof have been improved considerably in
order to obtain more geometric insights into this relation.

2 Geometric exact rod theory

We come to a brief exposition of the fundamental mathe-
matical formalism of this nonlinear rod model. Only those
aspects of the theory relevant to the subsequent developments
are addressed. The reader could refer to Simo [14] and Simo
et al. [15] for further mathematical and physical contents of
the geometric exact rod model.

Let {ei }i=1,2,3 be the orthonormal basis vectors in a iner-
tial framewith origin O .We consider a rodwith initial length
L . The arc-length parameter s for the center-line is employed
as a material coordinate, i.e., a parameter whose value at a
material point is constant in time, which we take to vary over
the interval [0, L]. A plane cross-section A (s) of the rod,
initially perpendicular to the line of centroids, is assumed to
remain plane after deformation, but, taking account of shear
deformation, needs not be perpendicular to the deformed
center-line.
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Let an orthonormal frame {d1, d2, d3} attached to a typi-
cal section with origin placed at the centroid be chosen such
that d1 and d2 are directed along the principal axes of the
section and d3 is normal to the cross section A at all times.
A simplification of the model comes from the assumption
that d3 is tangent to the center-line at reference configura-
tion. Motivated by a terminology widely used in rigid body
mechanics, {di }i=1,2,3 should be referred as the body frame.

The basis of the mathematical formalism of geometric
exact rod theory lies in the fact that any configuration can be
described, at a given moment, by a definite map

Φ: s ∈ [0, L] �→ (ϕ(s),Λ(s)) ∈ R
3 × SO(3), (1)

with the vector function ϕ(s) indicating the current position
of the line of centroids and the orthogonal matrix field Λ(s)
specifying the orientation of the body frame relative to the
fixed basis {ei }i=1,2,3 such that

di = Λei . (2)

Formally, the abstract configuration space of a rod is the
infinite dimensional non-linear manifold

Q := {Φ � (ϕ,Λ) : [0, L] �→ R
3 × SO(3)} . (3)

As a convention, the reference configuration is denoted by
Φ0 = (ϕ0,Λ0).

The geometry of a deformed rod is encapsulated in the
frame invariant material strain measures

Γ = ΛTϕ′ − ΛT
0ϕ′

0 and Ω̂ = ΛTΛ′ − ΛT
0Λ′

0 . (4)

From now on, primes (·)′ are used to mark the spatial
derivatives along the center-line, that is with respect to the
arc-length parameter s. Here, a superposed hat ˆ(·) denotes the
skew-symmetric matrix (in so(3)) associated with a vector
(in R3). In matrix notation, we have the relations

ξ =
⎡
⎣

ξ1
ξ2
ξ3

⎤
⎦ �→ ξ̂ =

⎡
⎣

0 −ξ3 ξ2
ξ3 0 −ξ1

−ξ2 ξ1 0

⎤
⎦ , (5)

which follows from the intrinsic definition

ξ̂a = ξ × a for all a ∈ R
3. (6)

Physically, Γ1 and Γ2 are shear in the d1 and d2 directions
and Γ3 is extension in the d3 direction; Ω1 and Ω2 represent
bending in the (d2, d3) and (d3, d1) planes, respectively, and
Ω3 is torsion of the rod, or the twist rate.

In what follows, for the purpose of this work, our attention
is limited to rods that are naturally straight and untwisted in

the undistorted and, hence, stress-free configurations. Then
the body frame {dk}k=1,2,3 can be chosen to be independent
of s and coincide with the standard basis in R

3, i.e., Λ0(s)
equals to the 3×3 identity matrix I3. This immediately leads
toΛT

0Λ′
0 = 0, and according to the definition rotational strain

measure (4), one can write the derivative ofΛ in terms of the
vector Ω

Λ′ = ΛΩ̂ . (7)

As a direct consequence of it, the derivative of vector field
di in the body frame may then take the form

d ′
i = ω × di for i ∈ [1, 2, 3], (8)

with

ω := ΛΩ = Ω1d1 + Ω2d2 + Ω3d3. (9)

The vector ω(s) is the spatial rotational strain measure, sig-
nifying the rate of rotation per unit length along the rod.
Following Kirchhoff and Love [9], the interpretation of
Eq. (8) is that the body frame rotates with rotation veloc-
ity ω, the arc-length s along the center-line plays the role of
time-like coordinates.

After the above geometric descriptions, we turn to the
mechanics of this rodmodel. Stresses acting across the mate-
rial cross-section A (s) are reduced to a resultant force n(s)
and moment m(s) exerted on the side s− by the mate-
rial on the side s+. Balancing of forces and moments for
infinitesimal rod elements immediately yields the following
coordinates free equilibrium equations

n′ + n̄ = 0,

m′ + ϕ′ × n + m̄ = 0,
(10)

where n̄ and m̄ are the prescribed forces and torque per unit
of reference arc length.

In order to close the system (10), additional information
relating the local forces and moments (stress) to the elastic
deformations of the body (strain) need to be introduced. If
the rod is made of hyperelastic material, there exists a scalar
valued stored energy function W (Γi ,Ωi , s) characterizing
the elastic property of the medium and dependent upon the
strains and arc-length, with the property that the components
of stress Ni := n·di andMi := M ·di satisfy the constitutive
relations

Ni = ∂W (Γk,Ωk)

∂Γi
and Mi = ∂W (Γk,Ωk)

∂Ωi
. (11)

The triples N ≡ (N1, N2, N3) and M ≡ (M1, M2, M3) can
also be interpreted as a material description of stress defined
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by pulling back the stress resultants (n,m) to the reference
configuration with the orthogonal transformation Λ

N = ΛTn and M = ΛTm . (12)

Traditionally, the components M1 and M2 of M are called
the bending moments and M3 the torsion moment, and com-
ponents of N are called the shear and extension forces.

A standard approximation in rod theory is to assume the
body to be linear elastic, then the stored energy function is
provided by the quadratic form

W (Γ , K ) = 1

2
Γ · CNΓ + 1

2
Ω · CMΩ,

with

CN= diag(GA1,GA2, E A) and CM= diag(E I 1, E I 2,GJ ),

whereGA1 andGA2 denote, respectively, the shear stiffness
along the axes d1 and d2, E A is the axial stiffness along d3,
E I 1 and E I 2 are the principal bending stiffness relative to
axes d1 and d2, respectively, and GJ is the Saint-Venant
torsional stiffness along d3. The constitutive relations can be
expressed in terms of linear equations

N = CNΓ , M = CMΩ . (13)

From this point on, we assume that the rod is made of linear
elastic material and has uniform properties, both geometrical
and mechanical, along its length. Mathematically, by virtue
of this homogeneity, the stored energy function, and hence,
the moduli (constants of proportionality) occurring in the
linear constitutive Eq. (13) do not vary along the rod.

This completes the basic theory of rod needed for subse-
quent developments.

3 Geometric phase

The main concern of this paper arises from a particular
boundary value problem of Eq. (10). Let us now consider
a rod with straight reference configurations clamped at one
end (s = 0) and free at the other (s = L),

ϕ(0) = 0 and Λ(0) = Λ̃ . (14)

Both applied distributed force and moment vanish, n̄ = m̄ =
0. The only external loads are couples applied at the free end
and enter the problem as boundary conditions,

n(L) = 0 and m(L) = m̃ . (15)

In what follows, we shall investigate the deformation of the
rod under such conditions through geometric reasoningwith-
out the necessity of actually solving the differential equation.
It will become clear that the complexity of rod shapes of spa-
tial equilibrium states is fundamentally of geometric origin.

The equilibrium Eq. (10) for rods loaded only at their
ends are simply expressed in terms of the internal force and
moment vectors:

n = const, m′ + ϕ′ × n = 0 . (16)

In view of the boundary condition (15), the contact force n
vanishes: n = 0. The linear constitutive equation of strain
measure (4) yields Γ = 0. Hence, the rod under considera-
tion does not suffer extension and shear effect. This implies
that a normal vector of each cross-section d3 is tangent to
the center line and the parameter s can also be interpreted as
the arc-length along the rod in any deformed configuration.
Therefore, taking account of the boundary condition (14),
the position ϕ of the center-line can be determined simply
by the integral

ϕ =
∫ s

0
d3 ds . (17)

Moreover, on account of n = 0, the second equation in
Eq. (16) yields the fact that the internal moment m is a con-
stant vector along the center-line

m(s) = m̃ for all s ∈ [0, L] . (18)

Since rotation leaves the space metric invariant, all the pos-
sible material moments M = ΛTm are vectors with constant
norm M := ‖m‖

M2
1 + M2

2 + M2
3 = M2 . (19)

Therefore, the distribution of stresses along the rod becomes
easier to understand, if we study it in a sphereS 2 with radius
M through the map

φm:SO(3) �→ S 2, φm: Λ �→ ΛTm . (20)

Accordingly, when the vector M(s) varies along the center-
line, its terminus moves along a curve on the sphere s �→
M(s) = ΛT(s)m ∈ S 2. After taking the derivative ofM(s),
and with the help of Eq. (7), we find

M ′ = (ΛΩ̂)Tm = −Ω̂M .

This relation clearly has the same form of the famous Euler
equation for the free motion of a rigid body (see Arnol’d
[16])
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M ′ = M × Ω . (21)

Further simplification comes from the observation that
W (Γ ,Ω), the elastic energy function per unit length of the
rod is another conserved quantity of the system. In our case,
the functionW just depends on the strainΩ vector, or equiv-
alently, the stress M

W = 1

2
Ω · CMΩ = 1

2
M · C−1

M M . (22)

By taking the derivative ofW along the center line, we obtain

W ′ = Ω · M ′ = Ω · (M × Ω) = 0 .

Hence, the quantity W keeps constant, and its value can be
determined at position s = 0

W = 1

2
m ·

(
ΛC−1

M ΛT
) ∣∣

s=0m. (23)

The conservation of W restricts the vector field M(s) lying
on the intersection of the sphere defined by Eq. (19) with the
ellipsoid given by

M2
1

E I 1
+ M2

2

E I 2
+ M2

3

GJ
= 2W . (24)

From these geometric considerations,we can alreadydraw
some conclusions concerning the deformation. First of all,
we notice that, for a typical value of W , the orbit of moment
vector M along the center line of the rod describes a closed
curve on the sphereS 2. The distribution of M must be peri-
odic; during one period Sσ , it returns to its original position

M(s + Sσ ) = M(s) . (25)

We call this period Sσ the stress-period.
Next, we study the change of rotation field after one stress

period Sσ . Generally, it can not be expected that the rotation
field will repeat itself. In fact, the periodic variation of M
leads to the following relation

m = Rm, where R := Λ(s + Sσ )ΛT(s) . (26)

From the above equation, we can infer that the matrix R is a
rotation about the direction of m through an angle α∗

R = exp(α∗μ) , (27)

where the map exp : R3 �→ SO(3) is the exponential map
defined on SO(3) group, and μ = m/M is the normalization
of the spatial moment m.

The physical consequence of Eqs. (25) and (27) can be
understood as follows. Let the configuration of a rod be given

byΦ ∈ Q. We divide this rod into several segments and each
of them is contained in a range

Ik = [(k − 1)Sσ , kSσ ], k = 1, 2, . . . , n .

The configuration Φ[k] of k-th segment is the restriction of
Φ on the sub-interval Ik such that

Φ[k](t) = Φ((k − 1)Sσ + t) for t ∈ [0, Sσ ]. (28)

According to Eq. (25), all of these segments share identical
distribution of stress M, or of the strain Ω . It is evident from
physics arguments that each segment must exhibit a same
deformation, since in the local coordinate system (given by
themoving frame), the same internal stress is exerted on their
corresponding rod elements.

The same conclusion may also be drawn mathematically.
According to the classical theory of differential geometry,
the shape of center lines is determined by the curvature and
torsion function κ , τg (see Spivak [17]). However, they can
be directly related to the strain vector Ω . To demonstrate
this, we need first to understand the relation between the
Serret–Frenet Frame {n, b, t} and the directors di . As we
have mentioned earlier, the tangent vector t is to coincide
with d3, and it is evident that the principal normal n and
binormal b lie on the d1, d2 plane. Since

t ′ = Ω × t = Ω2d1 − Ω1d2 ,

from the Serret–Frenet equation t ′ = κn, we have

κ =
√

Ω2
1 + Ω2

2 , n = cos(ψ)d1 + sin(ψ)d2 , (29)

where the angle ψ is introduced via

(Ω1, Ω2) = (−κ sinψ, κ cosψ) . (30)

Taking account of the definition b := t × n, the binormal b
can also be expressed in terms of (d1, d2)

b = − sin(ψ)d1 + cos(ψ)d2 . (31)

With relations (29) and (31) in hand, we notice that the strain
ω takes the form

ω = κb + τ t, (32)

where τ := Ω3 is the elastic twist. By using this expression,
after taking the derivative of b in Eq. (31), we observe that

b′ = −ψ ′n + ω × b = −(ψ ′ + τ)n . (33)
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In view of the definition τg given by the Serret–Frenet equa-
tion b′ = −τgn, the geometric torsion function can bewritten
as the sum

τg = ψ ′ + τ , (34)

where the derivativeψ ′ is called the twist of Love [9]. Finally,
we can conclude that the local geometry of the center-line is
totally described by the strain vector Ω . Since each segment
has a same distribution ofΩ , theymust share an identical cur-
vature and torsion function κ and τg . Accordingly, a cyclical
pattern has taken shape in the center-line as a result of this
periodical variation of the strain vector Ω .

Let us ascertain the relation between configuration Φ[1]
and Φ[2]. For the rotational part, it is evidently from Eq. (27)
that

Λ[2] = RΛ[1] .

With help of Eqs. (17) and (28), we find that

ϕ[2](t) =
∫ t+Sσ

Sσ

d3 ds +
∫ Sσ

0
d3 ds = Rϕ[1](t) + u ,

where the constant translation u is used to denote the position
of the center-line defined by the integral

ϕ(Sσ ) =
∫ Sσ

0
d3 ds . (35)

Therefore, the configurationΦ[2] can be obtained through the
rigid motion consisting of the rotation R and the translation
u

(
ϕ[2],Λ[2]

) = (
Rϕ[1] + u, RΛ[1]

)
. (36)

This rule can be generalized at once to the case of Φ[k] and
Φ[k+1]
(
ϕ[k+1],Λ[k+1]

) = (
Rϕ[k] + u, RΛ[k]

)
. (37)

In consequence of this equation, we can obtain the configu-
ration of k-th segment via (k − 1) times supposition of rigid
motion (R, u) on the first segment. Abstractly, since (R, u)

is an element of a special Euclidean group SE(3), we can
conclude that

Φ[k] = (R, u)(k−1) · Φ[1] , (38)

where the power (R, u)(k−1) is defined via the product of the
SE(3) group

(A, a)(B, b) = (AB, Ab + a) . (39)

To sum up, these segments differed from each other by an
affine transformation (a rigid-body motion), and the whole
deformed pattern can be inferred from the knowledge of any
one of them. It is interesting to compare this description of
deformation with the Poinsot’s description of the rigid-body
motion (see Arnol’d [16]). The former could be considered
as a generalization of the latter to the geometrically exact
rod.

At this stage, it remains to determine the rotation R and
the translation u. For the rotation matrix R, since its axis is
already known in the direction of m, the only thing remains
to investigate is how much does it rotate.

It is remarkable that the angle α∗ of the rotation R about
the axism after one stress period Sσ , can be expressed explic-
itly by the phase formula

α∗ =
(
2WSσ

M
− A

)
mod 2π . (40)

The influence of topology on large deformations of a rod
can be directly observed from this concise and informative
expression. The part 2WSσ /M is called the dynamic phase,
since it is totally determined by the mechanical property of
this system, that is the energy per unit length W and the
magnitude M of the moment m. We notice that the value
2W/M can be expressed in the form

2W

M
= ω · m

M
,

which can be interpreted as the rate of rotation about the
direction of m. Its occurrence in Eq. (40), as we expect, rep-
resents the local strain state of the rod. However, the non-
obvious part is the signed solid angle A enclosed by the
closed orbit of the moment vector M along the rod, which
clearly results from the global geometric property of the
stress distribution. Hence, A is called the geometric phase.

The beauty of geometry underlying the relation (40) could
be efficiently appreciated in terms of reduction and recon-
struction (see Masden and Weinstein [18] and Masden [7]
for more detailed treatments). First, we can picture the rota-
tion and material moment fields as tracing out a path in the
cotangent bundle M := T ∗SO(3) of the rotation group:

s �→ (Λ(s), M(s)) ∈ M .

The left translation of the same group gives a Poisson action
onM . The conservation of spatial momentm defines a level
set Mm of the momentum map J : M �→ g∗. The mani-
fold Mm is diffeomorphic to the group SO(3) itself and is
right-invariant cross-sections of the cotangent bundle. The
stationary subgroup S 1 ∈ SO(3), the circle, consists of
rotations with respect to the direction μ of the vector m.
The actions of elements different from the identity of S 1
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onMm have no fixed point and leave this level set invariant.
The reduced phase space is obtained from Mm by factoring
by the action of the group S 1, and can be identified with
the momentum sphereS 2 in R3of Euclidean radius ‖m‖ as
defined in Eq. (20). Clearly, this sphere is the base space of
the unit circle bundle

πm : Mm �→ Mm/S 1 	 S 2 , (41)

with each fiber diffeomorphic to the group S 1. This reduc-
tion process provides a simple frame work to reveal the
geometry of the original fields (Λ(s), M(s)) lying on the
level setMm.

The material moment fields M(s) obtained by intersect-
ing the energy ellipsoids with the angular momentum sphere
give closed loops on the reduced space S 2 . After the field
M(s) completes one period Sσ in the base space, the orig-
inal field (Λ(Sσ ), M(Sσ )) fails to return to its initial value
(Λ(0), M(0)). However, since they are sitting on the same
fiber π−1

m (M(0)), their relation can be determined by the
action of the total phase α∗ ∈ S 1, as has been expressed by
Eq. (27)

Λ(Sσ ) = exp(α∗μ) · Λ(0) .

The geometric structure of the principal S 1–bundle (Eq.
(41)) allows us to decompose the total phase α∗ into its
geometric and dynamic part as expressed in Eq. (40). The
canonical one form θ of the cotangent bundle M induces
a natural connection one-form γ = 1

‖m‖θ on the principal
bundle

πm:Mm �→ S 2.

With this connection, there can be introduced an unique par-
allel translation along the path M(s) inS 2

p : s �→ (Λp, M) ∈ Mm,

p(0) 	 (Λp(0), M(0)) = (Λ(0), M(0)),

such that the tangent vector ṗ(s) to p(s) is horizontal, i.e.,
γ ( ṗ(s)) = 0, and that, for every s, this parallel translation
p(s) shares the same fiber with the real physical field

πm(p(s)) = πm(Λ(s), M(s)) = M(s).

SinceM(s) is a closed curve inS 2, by parallel translating
all the element at the fiberπ−1

m (M(0)) alongM(s), we obtain
a map from π−1

m (M(0)) onto itself. From the uniqueness
and smooth dependence on initial conditions, it follows that
this map is a diffeomorphism, which is called the holonomy
of the path M(s). The difference between p(Sσ ) and p(0)
gives rise to the geometric phase αg appearing in the second

term of Eq. (40). This group element αg ∈ S 1 defines the
holonomy along the path M(s), and can be computed from
the well-known result

αg = the holonomy of the connection γ = −A , (42)

where A is the solid angle subtended by the curve M(s).
For the dynamic phase that appeared in the first termof Eq.

(40), we observe that, at each point s, the parallel translated
curve p(s) and the original fields (Λ(s), M(s)) lie on the
same fiber; therefore, there is some curve in the structure
group s �→ αd(s) ∈ S 1 such that the original field can be
reconstructed from its action on the parallel translation p(s)

(Λ(s), M(s)) = exp(αd(s)μ) · p(s) .

The dynamic phase results from the difference between the
true trajectory and the parallel translation at Sσ

αd(Sσ ) = 2WSσ

‖m‖ . (43)

Adirect derivationofEqs. (42) and (43) basedon the essential
knowledge of connections andholonomyonfiber bundles has
been provided by Marsden et al. [8]. However, as has been
shown by Montgomery [12], the phase formula (Eq. (40))
can also be proved in an elementary manner by making use
of the Stokes theorem. This proof will be discussed from a
more geometric perspective in Appendix.

In view of the Kirchhoff kinetic analogy, the inherent
geometry of the phase formula (Eq. (40)) is essentially the
same as phases for the rigid body dynamics [8]. However,
their physical content are quite different. The holonomy
phenomena manifested in the spatial shapes of deformation
seems to be more transparent than it in the time evolutions
of a rigid body.

4 Observable consequences

In this section, several concrete examples are selected in
order to illustrate the physical observable consequences of
geometric phases. The first part are concerning transversely
symmetric rods. By transversely symmetric it is meant that
the constitutive relations (13) for the moment are symmet-
ric to rotations about the axis d3. We will find that simple
solutions can be derived for this particular case, and their
corresponding mechanical phenomena are easier to under-
stand. In this nice example, the phase formula (40) reduces
to the familiar phase shift phenomenon occurring in a sys-
tem consisting of two independent harmonic oscillators. In
the second part, we will deal with the general case. Instead
of deriving analytic solutions, the energy-momentums con-
serving numerical algorithms, which reflect the fundamental
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symmetry underlying these models, is adopted. We will
observe that rules revealed in Sect. 3 are also implicit in those
complex spatially equilibrium states resulting from numeri-
cal simulations.

4.1 Theoretical analysis of symmetric cases

Let us focus our attentions upon the case where I1 = I2 = I
and let c = GJ/E I . The rods have identical bending
stiffness in every direction, and the equation governing equi-
librium states formally is equivalent to the free motion of
spinning top. Abstract descriptions discussed in the previ-
ous part have simple explicit expressions in this case, which
can serve as illustrations for our general theoretical study.
To facilitate our discussion, the z-axis of the inertial frame
ez is taken in the direction of the constant angular momen-
tum m, i.e., ez = m/M . We assume that the rod has circular
cross-section, and in this particular case the Poisson’s ratio
ν equals to 1

c − 1. Following normal convention, let ν vary
in the range (0, 1

2 ).
First of all, we note that, from the constitutive relations

M1 = E IΩ1 and M2 = E IΩ2, the spatial rotational strain
ω can be written as

ω = m
E I

+ Ω3(1 − c)t , (44)

where t := d3 is the tangent of the center-curve, the com-
ponent Ω3 is the twist or torsion angle. With help of this
expression, we can write the derivative of t along the center-
line in the form

t ′ = ω × t = M

EI
(ez × t) . (45)

Two important facts concerning the behavior of t can be
drawn immediately. First, the z-component tz is a constant,
for t ′z = ez · t ′ = 0. This condition also results in constant tor-
sion angle, Ω3 = constant. Second, the complex expression
tx + i ty satisfies equation

(tx + i ty)
′ = 2π i

Sh
(tx + i ty) , (46)

where Sh = 2πEI/M . So tx+i ty = A exp(2π i s/Sh), where
A is a complex constant depending on the value of t at the
clamped end.

These equations tells us that the tangent t rotates uni-
formly about the direction of m with the rate Ωh , and the
line itself is a twisted helix. Without loss of generality, we
may assume the vector t(0) at the clamped end takes the form

t(0) = [sin θ, 0, cos θ ] ,

where θ is the inclined angle of t with ez direction. Therefore,
the vector t(s) describes a right circular cone of constant
angle θ in space

t =
[
sin(θ) cos

(
2πs

Sh

)
, sin(θ) sin

(
2πs

Sh

)
, cos(θ)

]
.

(47)

The parametrization of the center-line can be gotten by taking
integration

ϕ(s) =
[
ρ sin

(
2πs

Sh

)
, ρ

(
1 − cos

(
2πs

Sh

))
, ζ

2πs

Sh

]
,

(48)

which is a helix, parameterized by the arc-length s, turning
around a cylinder of radius � = Sh sin(θ)/(2π), whose cen-
tral axis points to the z-axis. The loop-to-loop distance of the
helix is ζ = Sh cos(θ)/(2π), and the length of the curve per
turn is Sh .

Next, we need to calculate the distribution of stress M. To
do so, we expand the Euler Eq. (21) into component forms

M ′
1 + GJ − E I 2

GJ · E I 2
M3M2 = 0 ,

M ′
2 + E I 1 − GJ

GJ · E I 1
M3M1 = 0 ,

M ′
3 = 0 .

(49)

In the symmetric case, we find the moment of twist M3 =
m · d3 = M cos θ is a constant. We can write the first two
equations as

(M1 + iM2)
′ = −2π i

Sσ

(M1 + iM2) , (50)

where Sσ = 2π/(Ω3(1 − c)) = Sh/(ν cos θ). This result
shows that the bendingmomentMb = M1d1+M2d2, rotates
about the axis d3, remaining a constant magnitude. Since the
torsion moment M3 keeps constant, we conclude that the
vector M rotates uniformly with period Sσ .

The dynamic and geometric phase could take the explicit
forms in this particular case (noticing the sign of this signed
solid angle):

2WSσ

M
= 2πSσ

Sh

(
1 + ν cos2 θ

)
,

A = −2π(1 − cos θ) .

There are two distinguished periodic patterns: one is evi-
dently the helical shape of the center line; the other concerns
the periodic variation ofM . Each of themyields a phase func-
tion, one for ϕ1(s) = 2πs/Sh , the other for ϕ2(s) = 2πs/Sσ .
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Fig. 1 (Color online) Periodic pattern in symmetric case: two periodic
patterns appearing in this case. One of them is the obviously helical
shape. The other is periodic variation of M. a The phase shift 2πSσ /Sh
is, modulo 2π, the α∗ defined in phase formula. b Blue points signify
the separator of each segment divided according to the period of stress

The phase shift ϕ1(Sσ ) during one period of ϕ2 may be
viewed as a manifestation of the phase formula (40), and
modulo 2π, we have

2π
Sσ

Sh
= 2π

ν cos θ
=

(
2WSσ

M
− A

)
mod 2π . (51)

In Fig. 1a, two oscillations are presented to illustrate this
phase shift behavior. One of them represents the distribution
of x-component of tangent t , the other for the component
M1. Since we are just interested in the comparison of phase,
unit amplitude are assumed for both cases.

When a point travels along the center-line, a length of Sσ , it
will find the same situation repeated except the cross-section
at this position has turned through an angle 2π/(ν cos θ)

around the m axis. A second movement will be exactly like
the first (see Fig. 1b).

4.2 Numerical simulations of general cases

To appreciate the physical implications of our theoretical
results in general cases, let us now proceed to the numer-
ical solutions of the equilibriums. The problem mentioned
at the beginning of Sect. 3 is apparently a boundary value
problem. At first glance, it seems necessary to use finite ele-
ment methods to obtain the equilibrium solutions. However,

spatial deformation patterns concerned with here are exhib-
ited by infinitely or arbitrary long rod. With the increase of
the rod’s length, the dimension of tangent stiffness matrices
constructed from sufficiently refined mesh tend to be consid-
erably large, and the cost to invert them become expensive.
On the another hand, if the initial guess is not sufficiently
close to the solution, typical iterative solvers for nonlinear
equations could fail to converge. Since the deformed shapes
under our study are very complex, a reasonable initial guess
cannot be easily obtained. Therefore, solving this problem
by finite element methods is clearly not the wise approach.

Fortunately, a Kirchhoff kinetic analogy leads to a well-
defined initial value problem. To solve this problem, the only
relevant equations are

Λ′ = ΛΩ and JΩ ′ = JΩ × Ω, (52)

which is the classical Euler’s equation describing the rota-
tion dynamics. To get a neat expression, the symbol J is
introduced to represent the elastic modulus CM . The initial
value ofΛ is obviously imposed by the boundary value at the
clamped end (see Eq. (14)). The invariance of the moment
vector m immediately yields the initial value of Ω

Ω(0) = J
−1ΛT(0)m .

To sum up, the ordinary differential equations (52) together
with the initial data

Λ(0) = Λ0 and Ω(0) = J
−1ΛT

0m (53)

comprise a initial value problem.
The numerical method adopted here is the single time

stepping algorithms, advocated by Simo and Wong [19], for
the orthogonal group which conserves energy and momen-
tum. More specifically, we regard an algorithm as a map
Fh : SO(3) × R

3 �→ SO(3) × R
3, which depends smoothly

on the time step h, such that

(Λn+1,Ωn+1) = Fh(Λn,Ωn) .

The energy and momentum vector are also regarded as func-
tions defined on the manifold SO(3) × R

3:

W (Λ,Ω) = 1

2
Ω · JΩ and m(Λ,Ω) = Λ · JΩ . (54)

An algorithm is said to conserve the energy and momentum,
ifW ◦ Fh = W and m ◦ Fh = m. This condition tells us that
the following relations are guaranteed to hold at each step sn

W (Λn+1,Ωn+1) = W (Λn,Ωn) ,

m(Λn+1,Ωn+1) = m(Λn,Ωn) .
(55)
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Accordingly, the discrete sequence of material moment
(angular momentum in the body) {Mn = JΩn}n=1,2... lies
on the intersection of the sphere with radius M = ‖m‖ and
the surface of constant energy. This algorithm is singularity-
free and integrates the dynamics exactly up to a time
reparametrization. The detailed constructions are referred to
in Ref. [19].

With discrete solutions {Λn}n=1,2... in hand, the geom-
etry of the center line could be constructed through direct
numerical quadrature of the rod’s axis t

ϕ(sn) =
∫ sn

0
t ds =

n−1∑
k=1

1

2
(tk+1 + tk)(sk+1 − sk) , (56)

where the vector tk can be identified with the third column
of the matrix Λ, i.e., tk = Λke3.

Let us proceed to use the energy-momentum conserving
algorithm to illustrate deformation patterns of the rod under
the type of boundary condition specified by the Eqs. (14)
and (15). The numerical constants used in the simulations
are given as follows

m = (0, 0, 2π), (E I 1, E I 2, GJ ) = (1, r, 2),

where the parameter r represents the ratio E I 2/E I 1. The
initial conditions are specified by the inclined angle θ0, i.e.,
the angle between the initial tangent t0 and the direction of
external moment m

Λ0 =
⎡
⎣

cos(θ0) 0 sin(θ0)
0 1 0

− sin(θ0) 0 cos(θ0)

⎤
⎦ , Ω0 =

⎡
⎣

−2π sin(θ0)
0

π cos(θ0)

⎤
⎦ .

The energy constant, in view of Eq. (22), can be written in
terms of θ0

W (θ0) = π2
(
1 + sin2 θ0

)
, (57)

and the semi-axes of the energy ellipsoid (24) are respectively√
2W (θ0),

√
2rW (θ0), and

√
4W (θ0). The length of rod L is

insignificant here, it just needs to be large enough to contain
several periods for each solution.

Let us fix the initial inclined angle θ0 to be π/6, and exam-
ine the way in which the deformed state of the rod changes
as r varies. For r = 1, the simulation recovers the symmetric
case and produces a helical shape as discussed in the previous
part, (see Eq. (48)). For other values of r , a sample of results
is presented below. In all of these simulations, the time-step
size is h = 0.01.

First, several orbits of the material moment M are exhib-
ited in Fig. 2. A distinguished value r� := M2/(2W ) of the
parameter r should be noticed here. For the case θ0 = π/6
considered here, r� = 1.6.When r is smaller then r�, paths of

Fig. 2 The orbit of moment referred to the body frame

Fig. 3 Typical shapes of center-lines. a r = 0.5. b r = 0.6. c r = 0.9.
d r = 1.4

the terminus of M is a closed curve round the d3 axis. When
r increases, the curve become larger, and when it reaches the
point r�, the intersection of the sphere of constant angular
momentum magnitude M with the elliptical energy surface
consists of two great circles on the sphere going through the
M2-axis. However, the vector M moves from the initial posi-
tion M0 asymptotically to the M2-axis. The orbit is a part of
the great circle, and the variation of M is not periodic. When
r increases further, closed paths again appear, but nowaround
the −d1 axis.

In Fig. 3, several typical deformed shapes are listed. A
clear idea of the nature of geometric phases can be extracted
by investigating the geometry of these configurations. Let
us consider the change of the tangent t of the center-line
during one stress period Sσ . To study the orbit of t in space,
we use the Euler angles φ1, θ , ψ between the body frame
d1, d2, d3, and the axes ex , ey , ez of the fixed system of
coordinates, taking the ez-axis in the direction of the constant
vectorm. The conventions adopted here follow the ones used
by Landau and Lifshitz [20] and Arnol’d [16].
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Since the polar angle and azimuth of the axis ez with
respect to d1, d2, d3 are respectively, θ and π

2 − ψ , the
components of M, i.e., the components of m along the axes
d1, d2, d3, can be expressed in terms of θ and ψ

M1 = M sin θ sinψ, M2 = M sin θ cosψ, M3 = M cos θ.

Hence,

cos θ = M3

M
, tanψ = M1

M2
.

The periodicity of M immediately implies the angles θ and
ψ are periodic functions with stress-period Sσ .

The position of the tangent vector t is determined by its
polar angle and azimuth referring to the fixed coordinates
axes ex , ey , ez . They are respectively θ and φ := φ1 − π

2 . As
mentioned above, the inclination θ of the t to the vertical is a
periodic function with period Sσ . However, the variation of
azimuth φ of the tangent does not follow the similar periodic
pattern, and after a period Sσ , it varies by an angle given by
the phase formula (40)

φ(Sσ ) =
(
2WSσ

M
− A

)
mod 2π . (58)

The change of θ and φ during one period is of the kind shown
in Fig. 4.

The terminus of t moves in the ring between the parallels
θmin and θmax. The condition for its path to be closed is that
the angle φ(Sσ ) should be a fractional of 2π, i.e., φ(Sσ ) =
2πm/n. In that case, after n periods, the vector t will occupy
its original position, so that the path is closed. However, such
cases are exceptional. In general, therefore, the path of t is not
closed, and it repeatedly passed through the θmin and θmax.
After many times, t will covers the entire band between the
two bounding circle without exactly returning to its original
position. In Fig. 5, several examples are presented to illustrate
orbits of the tangent vector t .

Aswehave discussed concisely inSect. 3, a better physical
understandingof the phase formula (Eq. (40)) canbeobtained

Fig. 5 Paths of the tangent t in the unit sphere. a r = 0.5. b r = 0.6.
c r = 0.9. d r = 1.4

from the study of current configurations of the underlying rod
model. We presented the behavior of the case r = 0.5 in a
visual way to illustrate this abstract idea.

The angle φ(Sσ ) and the position vector ϕ(Sσ ) together
define a rigid-body motion via

(R, u) = (exp(φ(Sσ )ez), ϕ(Sσ )) .

Figure 6a shows the projection onto the xy-plane of a part
of the deformed center line from 0 to Sσ , defined via the
restriction of the map ϕ

ϕ[1] = ϕ|[0,Sσ ] .

As we claimed in Eq. (36), the segment ϕ[2] can be obtained
directly from ϕ[1] through the affine transformation (R, u)

(ϕ[2],Λ[2]) = (Rϕ[1] + u, RΛ[1]).

S

0.0 0.2 0.4 0.6 0.8 1.0 1.2
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a b

Fig. 4 The variation of θ and φ during one stress-period Sσ . a The change of θ . b The change of φ
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a b

Fig. 6 (Color online) The process of affine transformation that pro-
duces ϕ[2] from ϕ[1]. In plot b, the green line is the xy-projection of
ϕ[1], the dashed line is the rotation of ϕ[1] around the ez axis through an
angle φ(Sσ ), and the blue line gives the visual representation of ϕ[2]. a
ϕ[1]. b ϕ[1] �→ ϕ[2]

a b c

Fig. 7 The xy-plane projection of the center-line with r = 0.5 for
several period. a 4 period. b 10 period. c 20 period

Fig. 8 The xy-plane projections of center-lines for typical r values.
a r = 0.5. b r = 0.6. c r = 0.9. d r = 1.4

Figure 6b is used to illustrate this process.
Figure 7 shows what happens when one starts with just

one segment ϕ[1] and then applies the affine transformation
(R, u) over and over again. What one see is quite startling.
The complex deformed shape of the center-line is build grad-
ually from the simple rule specified in Eq. (38).

Figure 8 presents several xy-plane projections of center-
lines with different r values. Despite their apparent intricate
behavior, the underlying rule for them is simply given in
Eq. (38) similar to the case r = 0.5 discussed before.

5 Conclusions

In this paper, we have analyzed, within the framework of
geometrically exact rod theory, the deformed shapes of equi-
librium states subjected to external moment of the forces
applied at the free end. It follows from the Kirchhoff kinetic
analogy that the material moment, and hence, the strain of
the rod is periodic along the length of the rod. When the
material moment vector returns to its original state, the con-
figuration acquires a rotation with a nontrivial angle, which
records not only informations of the local deformation expe-
rienced by the rod, i.e., dynamics phase, but also the peculiar
structure associated with the global geometric nature of the
closed curve traced by the material moment vector. The sig-
nificance of this results allow us to break the rod down to find
its underlying segments. Then the whole deformed rod can
be build up through affine transformation of each individual
part. The numerical results in Sect. 4 confirm this insight shed
by the geometric phases and illustrate how the complex pat-
terns exhibited by the rod deformation could be understood
with the help of our theoretic findings.

The helical and helix-like shapes are ubiquitous both
in nature and in artificial objects, and can be found on
many scales from microscopic structures such as α-helices
in protein, nanowires, and the famous DNA double helix to
macroscopic structures such as human hairs, springs, and ten-
drils of plants. In particular, the geometric exact rod model
provides a reasonable approximation of these soft and fila-
mentary bodies. Therefore, it is very plausible to expect that
the geometric phases here have some very significant roles to
play in these structures from the physical world. The poten-
tial practical applications of geometrical phases in the fields
such as nano-science and polymer science should deserve
serious studies.

Appendix

From the view ofmathematics, the exterior differential forms
give unique insight into the geometry of themechanical prob-
lem concerned with here. The concept of differential form,
and the mathematical formalism for manipulating them,
called exterior calculus , arise when concepts such as the
work of a force along a path and the flux of a fluid through
a surface are generalized to a curved manifold. Readers who
have not been familiar with these mathematical tools should
refer to the introductory materials presented in excellent
books of Arnol’d [16] and Misner et al. [21].

The key to understanding this result is based upon the inte-
gration of the right invariant 1-form m� associated with the
conserved moment vector m. Identifying the tangent bundle
TSO(3) with the right trivialization SO(3)×R

3 (physically,
using spatial variable), the vector θΛ ∈ TΛSO(3) has repre-
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Fig. 9 Curves and surfaces in the proof

sentation θ̂Λ. Then the 1-formm�|Λ ∈ T ∗
ΛSO(3) at the point

Λ is naturally defined via

m�(θΛ) = m · θ for all θΛ ∈ TΛSO(3). (A1)

Consider the following two curves lying on SO(3). The
first is the physical curve defined by the rotation field of the
rod (Fig. 9)

γp: s �→ Λ(s) for s ∈ [0, Sσ ]. (A2)

In order to constructed a closed curve, we define an auxiliary
curve to connect the two end points of γp

γa : s �→ exp(αμ)Λ(0) for α ∈ [0, α∗], (A3)

which satisfies γp(0) = γa(0) and γp(Sσ ) = γa(α
∗). There-

fore, γ = γp −γa (the curve obtained by first going along γp

and then backward along γa) is a closed curve on the SO(3).
The mystery hidden in Eq. (40) can be revealed through the
investigation of the integral of the 1-form m� along γ :

∫
γ

m� =
∫

γp

m� −
∫

γa

m�. (A4)

First, we consider the integral
∫
γp

m� along the physical
curve. The tangent of γp can be expressed asωΛ. Noting that
m�(ωΛ) = m · ω = 2W , we obtain

∫
γp

m� =
∫ Sσ

0
m�(ωΛ) ds = 2WSσ . (A5)

Next, for the auxiliary curve γa , its tangent is simply the form
μ exp(αμ). Since

m�(μ exp(αμ)) = m · μ = M,

the value of the integral of m� along it can be obtained

∫
γa

m� =
∫ α∗

0
m�(μ exp(αμ)) dα = Mα∗. (A6)

Finally, with previous results, the integral around the closed
curve γ takes the form

∫
γ

m� = 2WSσ − Mα∗. (A7)

By applying theStokes’ theorem,we can relate the integral∫
γ
m� to the integral over an arbitrary surface σ ⊂ SO(3)

encircled by γ , i.e., ∂σ = γ

∫
σ

dm� =
∫

γ

m�. (A8)

In order to obtain the relation Eq. (40), we just need to prove
that

∫
σ

dm� = MA. (A9)

We establish the linkage between quantities on the left
and right hand side of Eq. (A9). To do so, we first need to
compute the 2-formdm�. This can be done by employing two
arbitrary right invariant vector fields ξΛ and ηΛ. Bearing in
mind that [ξΛ, ηΛ] = − skew(ξ × η)Λ, we obtain

dm�(ξΛ, ηΛ) = ξΛ

(
m�(ηΛ)

)
− ηΛ

(
m�(ξΛ)

)
− m�([ξΛ, ηΛ])

= −m�([ξΛ, ηΛ])
= m · (ξ × η) .

Note that although this calculation is carried out with help
of the right invariant vector field, values of dm� just linearly
depend on vectors at TΛSO(3). Therefore, dm� is determined
via the relation

dm�(ξΛ, ηΛ) = m · (ξ × η) (A10)

for all ξΛ, ηΛ ∈ TΛSO(3).
With an appropriate choice of a surface σ ⊂ SO(3), the

map φm|σ , which is the restriction of φm on the surface σ ,
is an diffeomorphism to the surface Σ ⊂ S 2 capping the
reduced closed curve defined by image of the map φm ◦ γ .
Let ψ denote the inverse (φm|σ )−1 : Σ �→ σ , according to
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the change of variables theorem, we have

∫
σ

dm� =
∫

�

ψ∗ dm�. (A11)

The integral on the surface � can be calculated by taking
the following strategy. We note that every differential 2-form
on the sphere can be written in the form f ε, where ε is the
standard area element of S 2, and f is a scalar function. In
particular, the pull back of dm� can be written into this form

ψ∗ dm� = K ε, (A12)

where K is a smooth function on the subset Σ of S 2.
To determine the function K , let us first take an arbitrary

point z ∈ Σ and choose two unit vectors x, y ∈ TzS 2

tangent toS 2 at the point z, which satisfy the relations

x · y = 0 and x × y = n,

where n is the normal to S 2 at z. Here two facts need to
be keep in mind: the first is that the definition of standard
volume form gives us ε(x, y) = 1; the second is that the
matrix ψ(z) rotate the normal n to the direction of m, i.e.,
μ = ψ(z)n.

Let us denote Λ to be the rotation matrix ψ(z), and take
the vectors ξΛ, ηΛ ∈ TΛSO(3) which are the images of the
vectors x, y under the tangent map Tzψ

ξΛ = Tzψ · x, ηΛ = Tzψ · y.

Since the value of ψ∗ dm�(x, y) is defined by the equation

ψ∗ dm�(x, y) = dm�(ξΛ, ηΛ),

and ε(x, y) = 1, the value K at the point z can be determined
by the relation

K (z) = dm�(ξΛ, ηΛ).

By recalling that φm(Λ) = ΛTm, for an arbitrary vector
θΛ ∈ TΛSO(3), the transformation of θΛ under the tangent
map of φm at Λ takes a simple form

TΛφm · θΛ = ΛT(m × θ). (A13)

Therefore, we have

m × ξ = Λx and m × η = Λ y.

By taking the cross product of m × ξ and m × η, we find

(m × ξ) × (m × η) = Λ(x × y) = Λn = μ.

However, with the help of the identity of the cross product
and Eq. (A10) concerning dm�, the left hand side can also
be expressed in the form

(m × ξ) × (m × η) = (m · (ξ × η))m = dm�(ξΛ, ηΛ)m .

Comparison of μ and dm�(ξΛ, ηΛ)m leads to

K (z) = dm�(ξΛ, ηΛ) = 1/M . (A14)

Since the choice of z is arbitrary, this result holds for all
poinst z ∈ Σ . Hence, K is a constant function, and the 2-
form ψ∗ dm� can be expressed in the form

ψ∗ dm� = 1

M
ε . (A15)

With this result, the integral
∫
σ
dm� can be carried out in the

following manner

∫
σ

dm� =
∫

�

ψ∗ dm� = 1

M

∫
�

ε = 1

M
area(�) . (A16)

Remembering that the solid angle A can be expressed as
A = area(�)/M2, we arrive at the equation

∫
σ

dm� = MA . (A17)

Therefore, the demonstration of phase formula (40) is com-
pleted.

In summary, the phase formula (40) is established through
a direct application of Stokes’ theorem on the integral of dif-
ferential 1-formm� along the path γ defined at the beginning
of this appendix (see the Eq. (A8)). The surface integral is
directly related to the global geometric property of the dis-
tribution of the stress field M along the rod. After careful
analysis, we find it could be expressed as the product of the
magnitude of the moment and the solid angle enclosed by
the closed orbit described by the stress vector M.
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