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ABSTRACT

Particle-laden turbulent flows are ubiquitous in natural and engineering flows. The preferential concentra-
tion and pair-statistics of heavy particles at small and intermediate Stokes numbers are mainly related to
the small-scale motions, which are missing in conventional large-eddy simulation (LES). Therefore, studies
on the effects of subgrid scale (SGS) motions on particle-pair statistics are significant. This paper will study
the effects of SGS motions on the collision-related statistics of a bidisperse system that involves two groups
of particles at different Stokes numbers using a direct numerical simulation (DNS), filtered DNS (FDNS) and
LES. Compared with a monodisperse system at a single Stokes number, the relative error of the collision
rates in the bidisperse system is much smaller than that in the monodisperse one. For given filter widths and
Stokes numbers, the relative errors between the FDNS and LES are much smaller than their relative errors
to DNS, implying that the error caused by the filtering operation in LES plays a leading role in the overall
error of the particle collision rate at Stokes numbers less than 3. A particle SGS model is, thus, necessary to
consider the effect of SGS motions on bidisperse heavy particles.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Heavy particle-laden turbulent flows are ubiquitous in environ-
mental and engineering flows. Typical examples include the particles
in a turbulent fluidized bed and a pneumatic system [1-10], the
radioactive particles in nuclear reactors and pipes in a plant [11-14],
and warm rain droplets in a cloud [15,16]. The inertia of heavy
particles is usually characterized by the Stokes number, Stx, which
is the ratio of the particle relaxation time scale 1, to the turbulent
Kolmogorov time scale 7. There are two clustering mechanisms of
heavy particles at different Stokes numbers caused by the dynamic
interaction between the particles and turbulent structures at differ-
ent space-time scales. When the particle Stokes number is small,
the divergence of the particle velocity field (a measure of the com-
pressibility of the particle velocity field or the level of the clustering
of particles) is determined by V-.v, = —1'1,(52 — 0%) [17], where
S and Q are the strain rate tensor and the vorticity tensor, respec-
tively. Thus, the heavy particles at small Stokes numbers tend to
accumulate in the regions of low vorticity and high strain rate
in turbulent flow fields with a negative divergence of the particle
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velocity field. This mechanism, which is termed preferential concen-
tration, is caused by the centrifugal force of the eddies acting on the
particles and can enhance the particle collision kernel up to one or
two orders [18-20]. It is observed that the preferential concentra-
tion of heavy particles at small Stokes numbers is mainly related to
the small-scale motions. Although the small-scale motions possess
very little turbulent kinetic energy, they possess a large portion of
enstrophy, which indicates that the vorticity is strong at small scales,
leading to a large negative divergence of the particle velocity field.
However, the “centrifuge mechanism” is no longer appropriate when
the particle Stokes numbers are very large (Stx > 1). Instead, a very
different clustering mechanism, named the multiplicative random
process, is found to contribute significantly to the clustering of heavy
particles. In this regime, small volume elements in the dissipative
dynamical systems randomly expand and contract. Depending on
whether the random product of expansion and contraction factors
increases or decreases at long times, we can observe fractal cluster-
ing [21-23]. The two clustering mechanisms compete for particles
at intermediate Stokes numbers. In addition, gravity has also been
proven to play a critical role in particle-pair statistics|24-29], such
as the radial distribution function (RDF) and the radial relative veloc-
ity (RRV) of inertial particles. In the monodisperse systems, gravity
reduces the RDF of particles when Sty < 1 whereas it enhances the
RDF of particles when St > 1. Both the RRV and the collision rate
of inertial particles are reduced by gravity over the whole range of
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Stk [30]. It is noteworthy that the effects of gravity on the particle-
pair statistics are small when Stx < 1; therefore, simply neglecting
the gravity effect for heavy particles at small Stokes numbers in
LES might lead to the over-prediction of the particle-pair statis-
tics. We shall leave the effects of gravity on particle-pair statistics
of bidisperse particle for a future study and focus on the effects
of small-scale turbulent motions on the particle-pair statistics of
bidisperse particles in this work. Particles in turbulent flows usually
have a broad size spectrum because of coagulation or atomization;
thus, they have different relaxation time scales. These polydisperse
particles will selectively respond to eddies of different time scales
in turbulent flows. A bidisperse system consisting of two groups of
particles at Stokes number Styx; and St was systematically studied
using a direct numerical simulation (DNS) [31]. The two groups
of particles were found to cluster in different regions of a vortex,
resulting in a reduction in the accumulation effect for the bidis-
perse system. The radial relative velocity is bounded below by the
level of clustering in a monodisperse system due to a differential
inertia effect. The inertial polydispersity enhances the turbulent
transport effect but weakens the accumulation effect relative to a
monodisperse system. The turbulent collision kernel determined by
the accumulation effect and the turbulent transport effect is one of
the essential components in the classical Smoluchowski coagulation
equation [32], which governs the population balance of particle
number density in a polydisperse system.

In recent years, large-eddy simulation (LES) of turbulent flows has
become a potential method and attracted intensive studies [33-37].
In LES, the large scale unsteady turbulent motions can be explicitly
resolved, whereas the effects of the smaller scale motions are mod-
eled. Therefore, LES can characterize the non-equilibrium relaxation
processes due to the interaction between inertial particles and
turbulent coherent structures. Zhou [34] has reviewed the recent
developments in the LES method for the two-fluid model in pre-
dicting swirling flows. The two-fluid LES method provides better
performance in predicting particle statistics than two-fluid RANS
modeling. Large eddy simulations have been performed to simu-
late the triboelectric charging in pneumatic powder transport using
the Eulerian-Lagrangian method, where the complex interaction
between turbulence and the triboelectric charging is resolved [36].
Four-way coupled Eulerian-Lagrangian LES predictions of particle
agglomeration in a vertical turbulent channel flow are conducted,
and different influencing parameters on the agglomeration process
are systematically studied [35]. In the above studies, the unsteady
interaction between particles and the turbulent structures can, thus,
be described more accurately than the Reynolds averaged Navier-
Stokes (RANS) method (which is widely used in engineering flows).
However, the preferential concentration of heavy particles at small
and intermediate Stokes numbers is mainly related to the small-scale
motions that are missing in LES. Therefore, the study on the effects
of the subgrid scale (SGS) motions on the collision-related statistics
of heavy particles is of significance.

We have previously studied the effects of SGS motions on the
collision-related statistics of a monodisperse system, that is, the
effects of the SGS motions on the relative velocity and radial distri-
bution function at contact and the collision rates [20]. Our previous
work suggests that a particle SGS model is necessary to represent
the effects of SGS fluid motions on monodisperse systems. Differ-
ent types of particle SGS models have been developed for improv-
ing the predictive accuracy of particle statistics using LES [38-41].
The Approximate Deconvolution Method (ADM) [39,42,43] and
the differential filter method [44] are used to recover the turbu-
lent energy near and above the resolved scales in LES. Although
ADM can partially recover the energy spectrum near the cut-off
wavenumber [45,46], it cannot recover the SGS fluid motions below
the filter width, which can strongly affect the level of cluster-
ing of heavy particles at small Stokes numbers. The Langevin-type

models have been constructed for SGS motions experienced by par-
ticles [39,47,48]. However, this type of model only works well for
predicting single-particle statistics [38]. To predict two-particle and
multi-particle statistics, a Lagrangian subgrid model (LSGS) was
introduced by Mazzitelli et al. [40]. The LSGS model describes both
the turbulent temporal and spatial correlations; thus, it works well
for the pair and tetrad dispersions. Recently, Ray and Collins [33,49]
used the Kinematic Simulation based SubGrid Model (KSSGM) to
predict RDF and RRV of inertial particles. The KSSGM recovers the
subgrid spectrum well and accurately predicts the RDF for Sty > 2
and RRV for the whole range of Stx. Because all these models are
developed primarily for the monodisperse systems, a proper parti-
cle SGS model for bidisperse systems must be constructed. To check
whether the above models can be applied in a bidisperse system, the
effects of SGS motions on the statistics of a bidisperse case must be
first investigated. The objective of this paper is to extend the method
used in [20] to study the effects of SGS motions on the collision-
related statistics of a bidisperse system using the DNS, FDNS and
LES.

The organization of this paper is as follows: the mathematical
equations used for turbulent flows and particle motions are given in
Section 2. The flow parameters are also presented in Section 2. We
discuss the effects of filtered width on the collision rate in Section 3.
Next, we discuss the effects of filtering operation and the subgrid
scale model error on the collision rate in Section 4. We present the
conclusions drawn in Section 5.

2. Mathematical equations and flow parameters
2.1. Navier-Stokes equations for DNS

In spectral space, the Navier-Stokes equation for the isotropic and
incompressible turbulence in a box of (2)? can be represented as

(% + ka) ii(k, t) = P)F(u x @) + f (K1), (1)

where #(k, t) is a Fourier coefficient of fluid velocity u, k = (kx, ky, k)
the wavenumber vector with k = |k|, v fluid kinematical viscosity.
® = V x u is the vorticity in physical space. The projection tensor
P = &; — kikm/K*(j,m = 1,2,3), and F denotes a Fourier transform.
The random artificial force f(k, t) proposed by Eswaran and Pope [50]
is used to drive and maintain the turbulent flow.

2.2. Filtered DNS

The filtered velocity field is calculated from the Fourier coeffi-
cients obtained from DNS using a sharp spectral filter:

ix ) = 71 u(k,t) ?f [kl e [1, kel 2)
0 if 1kl e (kes, kmax],

where #(x,t) is the filtered velocity in physical space, k the cutoff

wavenumber and kpax the maximum wavenumber used in DNS. By

varying the cutoff wavenumber k., we can study the effects of filter

width on the particle collision-related statistics.

2.3. Large-eddy simulation (LES)
The LES of isotropic turbulence is performed on coarser grids

using the same pseudo-spectral method and large-scale forcing
scheme as DNS. The governing equation in LES is given by

{% + [V + Ve(klke)]K? l:l(a), t) = P(k)F(it x @) + f(k,t), (3)
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where u and @ are the resolved velocity and vorticity in physical

space, ii(k, t) is the resolved velocity in spectral space, ve(k|k.) the
spectral eddy viscosity which can be expressed as [51,52]

vk = i (k/ ko) B, )
and
vy (k/ke) = C*/*[0.441 +15.2exp  (—3.03k/k)], (5)

where Cx = 2.1, k. is the cutoff wavenumber used in LES and E(k) is
the energy spectrum of turbulent energy. If we neglect the numerical
error by virtue of the spectral method, there are filtering error and
SGS modeling error in real LES. Filtering error comes from the miss-
ing of SGS velocity due to the filtering operation [53]. The modeling
error comes from the fact that the LES only gives an approximation
and cannot provide the same filtered velocity as FDNS due to the
limitations of currently available SGS models [54-56].

2.4. Equations for particle motion

The discrete phase is composed of 400,000 solid, spherical parti-
cles with diameter d, = 0.51. Since the particle density p, is much
larger than the fluid density py, p, > py, the forces on a small particle
can be simplified as drag force. Then, the governing equations for a
single particle can be written as [57]

dx, (1)

dt = Vp(t), (6)
dvp(t) _ (@x(0). 1) ~vp(0)) f 7)
dt Tp '

where x,(t) and v,(t) are particle position and velocity at time t.
u(x,(t),t) is the fluid velocity seen by a particle. The velocity is
obtained from flow field by a three-dimensional six-point Lagrangian
interpolation scheme [58]. f is the nonlinear drag correction
coefficient:

f(Rep) =1+ 0.15Re{ %7, (8)

which is determined by the instantaneous value of the particle
Reynolds number:

_ lu- vpldp

Re
P v

(9)

2.5. Parameters of the turbulent flow field

Table 1 lists the flow parameters of the isotropic turbulent flow
simulated in the present study. The root mean square (rms) of turbu-
lent fluctuation velocity, v/, is computed from the turbulent energy
spectrum E(k),

, 1 2 kmax
u = §(u-u>— §/1<0 E(k)dk, (10)

and the average dissipation rate ¢ is defined as,

kmaX
= / 2WICE(k)dk. (11)
ko

Table 1

Flow parameters of the isotropic turbulent flow.
Parameters DNS (2563) LES (643)
Reynolds number Rey 102.92

rms velocity v’ 19.42 18.52

Dissipation rate e 3771.4 3434.8
Kolmogorov length scale n 0.0134 -
Kolmogorov time scale 7 0.0037 -
Kolmogorov velocity scale vk 3.628 -
Spatial resolution kmax7 1.124 -
Integral length scale Ly 0.9946 -
Large eddy turnover time scale Tg 0.1056 -
Viscosity v 0.0488 0.0488
The turbulent Kolmogorov scales are
n=0?/e*?, 1=/ vk = (). (12)

Taylor-microscale Reynolds number Ry = u'A/v, where A is the
transverse Taylor microscale A = (15vu'?/€)?3, large-eddy turnover
time scale Tp = u’? /€, and the integral length scale

Lf _ (341.[ ./kmax k—1E(]<)dk>/ Kmax E(k)dk (_13)

ko Jko

In LES, the dissipation rate is calculated as,
ke
€= / 2[V + velkike)K?E(k)dk. (14)
ko

Fig. 1 plots the energy spectrum from the DNS of isotropic turbu-
lence at a resolution of 2563. Here, the vertical dashed lines shown
in Fig. 1 represent the different cutoff wavenumbers in the FDNS. As
shown in Fig. 1, the energy spectrum does not decrease to zero but
increases and goes up a bit near the cutoff wavenumber kp,x in the
DNS result. This is a truncation error when we use finite wavenum-
bers in spectral space to express the nonlinear advection term in the
Navier-Stokes equations. If the cutoff wavenumber kpnax cannot fully
resolve the minimum length scale in the turbulent flow, ornk .. ~ 1,
then the turbulent energy will transfer to a smaller scale through
the cascade process and accumulate near the cutoff wavenumber.
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—
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S

Fig. 1. The energy spectrum of the simulated flow in DNS (2563). The vertical dashed
lines denote different cutoff locations in FDNS.



284 J. Chen, G. Jin / Powder Technology 314 (2017) 281-290

For E(k) to drop to zero, we must increase 7), that is, we can increase
the value of kmax7) to a large value (nk,,, > 1) at the cost of a
simulated flow at a lower Reynolds number, such that the energy
spectrum will decrease to nearly zero, and all the turbulent energy
will be dissipated by molecular viscosity.

3. Effects of filter width on collision-related quantities of the
bidisperse system

For a monodisperse system with N, particles, the turbulent colli-
sion rate in a turbulent flow can be expressed as [18,19]

2
(Ne) = 2m(Wr(R)) (¢(R) 2 (15)
where ((Wr(R)|) is the mean radial relative velocity at contact, R is
the collision radius, (g(R)) is the mean radial distribution function at
contact, n is the average number density, and np = N,/(2m)>. For a
bidisperse system with two groups of particles, the particle numbers
are Ny and N, and the collision rate between the two groups of
particles (N¢q2) is [31]

(Ne12) = 2m(IWrpa(R))(gr2(R)nny, (16)
where (|Wri2(R)|) is the mean radial relative velocity at contact
between the two groups of particles, (g;,(R)) is the mean radial dis-
tribution function between the two groups of particles at contact,
and ny = Np/(2m)® and ny = Nyp/(2m)3.

To study the effects of filter width on the collision-related quan-
tities, we compute the RDF, RRV and collision rates of particles
at different values of the Stokes number Sty, = 0.2,0.5 and 1.5
while we keep Stg; = 1 in the FDNS flow fields at different cutoff
wavenumbers k; = 64,42 and 21 (or k¢/kmax = 0.75,0.5 and 0.25)
with kmax = 84 in the DNS. We have discussed the effects of filter
width on the collision-related quantities for the monodisperse parti-
cles in Ref. [20]; however, the effects of filter width on these statistics
for bidisperse particles are still unknown. Therefore, we would seek
to compare the effects of filter width on the two different systems
in this study. Figs. 2-4 show the variations of the relative errors of
the RDF, the RRV, and the collision rate to the results of the DNS
with dimensionless filter width, respectively. We can observe that,

o
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o
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o
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Fig. 3. Effects of filter width on the relative error rErr = (atgpns — Qpns)/@pns of RRVS
for monodisperse and bidisperse of particles at different Stokes number. The legends
are the same as Fig. 2.

for particles at a given Stokes number, the relative error increases
with filter width and the relative errors are not the same for the
RDF, the RRV and the collision rate. In the bidisperse system, when
ke = 21 (kg/kmax = 0.25) and Stx, = 0.5, the relative errors for
the RDF, the RRV, and the collision rate are —0.10459, —0.07789, and
—0.18863, respectively. For a given filter width, the filtering oper-
ation has different effects for particles at different Stokes number
because particles with different Stokes numbers respond to eddies at
different scales. Compared to the monodisperse system, the relative
errors of the RDF, the RRV and the collision rate are different. We can
observe that for ks = 21 (k¢f/kmax = 0.25) and St < 1, the relative
errors are less than the errors in the monodisperse system, whereas
for Stx, > 1, the relative error of the RDF is greater than that in the
monodisperse system.

4. Effects of SGS model error on collision-related quantities of
the bidisperse system

The spectral eddy viscosity model used to close the Navier-Stokes
equation is over-dissipative, making the vortical structures in the LES
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Fig. 2. Effects of filter width on the relative error rErr = (appns — Qpns)/0tpns of RDFs
for monodisperse and bidisperse of particles at different Stokes number. Solid lines
denote bidisperse system, dashed lines denote monodisperse system. Square symbol:
Stio = 0.2; circle symbol: Sti, = 0.5; delta symbol: Sti; = 1.5.

kcf/kmax

Fig. 4. Effects of filter width on the relative error rErr = (otrpns — Qpns )/ 0tpns Of mean
collision rate for monodisperse and bidisperse of particles at different Stokes number.
The legends are the same as Fig. 2.
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flow field smoother than that in the ideal LES, that is, the FDNS. In
this section, we study the effects of the spectral eddy viscosity and
the SGS turbulent motions on the RDF and the RRV by comparing
the results from the DNS, the FDNS and the LES, where the cutoff
wavenumber kg in the LES and the FDNS are the same. For a given
cutoff wavenumber k., the differences between the results from the
DNS and the FDNS denote the contributions of the SGS motions and
the differences between the FDNS and the LES denote the contribu-
tions of the SGS model error because the FDNS can be regarded as an
ideal LES.

4.1. Radial distribution function

In this subsection, we set ks = 21, the spatial resolution in the
2563 DNS is four times of those in the FDNS and the LES, that is,
AXxips = Axppns = 4AXpns.

Fig. 5 shows the variation of the RDF at contact with particle
Stokes number Sty,, where Styg; = 1. The solid lines denote the
results of the bidisperse system, whereas the dashed lines denote
the results of the monodisperse system. To validate our DNS results,
we also plot the DNS results from Ref. [30] for comparison, where
the particle radii range from 0.0177 to 0.1017. These particle radii
are smaller than the particle radius, a, = 0.257), used in this study.
Because g(r) decreases with increasing r, it is reasonable that the
RDFs in Ref. [30] are larger than our DNS results. However, our results
are in good qualitative agreement with those from Ref. [30] with the
same tendency that g(r) reaches a maximum value at Sty ~ 1 and
g(r) - 1atvery small and very large Stokes numbers. From Fig. 5, the
RDFs in the monodisperse system are found to be larger than those in
the bidisperse system for DNS, FDNS and LES. For finite inertial parti-
cles, the RDF in the monodisperse particles is the upper limit of that
in the bidisperse system. In the bidisperse system, the two groups
of particles with different relaxation times respond to the eddies at
different scales; therefore, the two groups of particles accumulate
in different regions in the turbulent flow field. The level of cluster-
ing of the two groups of particles is, thus, reduced. The correlation
coefficient of the concentration fields can be defined as [31]

((c1 = C1)(c2 = C2))
[(c1 =& )2 (cs — &))"

P12 = (17)

where ¢; = N,;/V is the mean number density of group i(i = 1,2),
V is the volume of the flow domain, c¢; and ¢, are the local number

[ —X-— 64, R,=48,Rosaetal (2013) T

[ —4- — 128", R, =84, Rosa etal. (2013)
b —% . - 3 = -
256", R, =144, Rosa et al. (2013) %~ }\ .
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Fig. 5. Variation of RDF with Stx, while Sty is fixed to be 1.0 for bidisperse systems
and Sty is equal to Sty, for monodisperse systems.

density. For the bidisperse system, the RDF (g;,(R)) can be expressed
as [31]

(@12(R) = 1+ pra[((gn(R)) — 1) ({g22(R) — 1)]"/2, (18)

where (g;1(R)) and (g,,(R)) are the RDFs of the monodis-
perse system for groups 1 and 2, respectively. We find
(22(R))pNs > (822(R))pns > (822(R))1es for St < 1. This is expected
because small-scale motions are responsible for the clustering of
particles at small Stokes numbers. The filtering operation reduces
the level of clustering of particles at Sty < 1, whereas for Sty > 1,
(€22(R))pns < (€22(R))epNs < (822(R))1es, implying that the resolved
motions are responsible for the clustering of particles at large Stokes
numbers, and the random SGS motions tend to make particles
homogeneous.

The results for the bidisperse system show that for Sty >1,
(12(R))pns > (812(R))rons >(812(R))1es. In our simulated system, the
Stokes number for the first group is Stg; = 1. When Stx, > 1, the
large scale resolved scale motions are responsible for the clustering
of particles and (g5, (R))es > (g22(R)) rons > (822(R))pns. In contrast, the
small-scale motions are still responsible for the clustering of the first
group of particles, (g11(R))es < (g11(R))rons < (€11(R))pns- Thus, the
under-prediction of (g;1(R)) in the LES and the FDNS cancels out the
over-prediction of (g,,(R)) in the LES and the FDNS.

Fig. 6 shows the relative error of the RDF in the FDNS and the
LES for the monodisperse and bidisperse particles. The relative errors
are found to reach maximum values at Sty = 0.5 for the monodis-
perse particles. The relative errors decrease with increasing Stokes
numbers, implying that the contribution of the SGS motions play
diminishing roles in the clustering of particles with the increase of
particles Stokes numbers.

From Fig. 6, we also find that for bidisperse system and fixed
Stokes number Stg; = 1, the relative error to DNS is much smaller
than that for the monodisperse system overall. When St, < 1,
the maximum relative error in the bidisperse system is half of that
in the monodisperse system. When Sty > 2, the FDNS and the LES
slightly under-predict the RDFs with relative errors of less than 5% for
the bidisperse system but over-predict the RDFs with larger relative
errors of approximately 10% for the monodisperse case.

0.2 T —T—TT T T
/A —A
B
o b £ _u
~~
&
—
=Y)) I -
~
3
;::: -0.2 |- -
= J o
B B [3\ )Z }
A &-0o KX | — O — FDNS, St =St,,
y » — A — LES, St =St
0.4 \A AA ——#—— FDNS, St =1.0
g —a— LES, St =10
1l 1 1 PR B A A 11 1 1 PR T
10" 10°
St

K2

Fig. 6. Variation of the relative error of RDF with Sti, while Sty is fixed to be 1.0 for
bidisperse systems and Sty is equal to Stx, for monodisperse systems.
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4.2. Radial relative velocity

Jin et al. [20] have shown that, although the turbulent fluctuating
velocity filtered out in the LES and the FDNS are negligible, the turbu-
lent structure and the spatial-temporal correlation of the turbulent
flow field become strong, leading to a large relative error of the radial
relative velocity at contact for particles at small Stokes numbers. For
the bidisperse system, the radial relative velocity increases with the
increase of the inertia difference between the two groups of particles,
and the relative velocity of the monodisperse system is the lower
limit of the bidisperse system. Fig. 7 shows the variation of the rela-
tive velocity of the monodisperse system and bidisperse system with
Stokes number Sty,. The relative velocity of the bidisperse system in
the DNS, the FDNS and the LES are all found to be above those of the
monodisperse system. There is a point of intersection at St, = 1.
As Sty departs from Sti, = 1, the difference between the bidisperse
system and monodisperse system becomes larger.
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Fig. 8 shows the variations of relative errors of RRV with particle
Stokes number Sty,. The dashed lines denote the results of monodis-
perse particles with Stx; = Sty,, whereas the solid lines denote the
results of the bidisperse case with Sty; = 1.0. The relative errors
in the monodisperse system are found to decrease with increas-
ing Stokes number. This may be explained by the fact that the
effects of SGS motions on the RRV decrease with increasing Stokes
numbers [20]. Next, we consider the new findings of the relative
errors in the bidisperse system. From Fig. 8, the relative errors are
observed to reach the maximum values of approximately 25% at
Sty, = 1.0 in both the FDNS and the LES. When Sty, departs from 1.0,
the relative errors gradually decrease to the level of under 10% for the
simulated Stokes numbers. Further discussion on the phenomenon
will be presented in Section 4.4.

4.3. Collision rate
The collision rate is the combination of particle clustering, mea-

sured by (g(R)), and the transport effect, measured by the mean RRV.
For the monodisperse system, the collision rate increases rapidly
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Fig. 10. Variation of relative error of the collision rate with Stx, while St is fixed to
be 1.0 for bidisperse systems and St is equal to St, for monodisperse systems.
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for small Stokes numbers. Because of the canceling of the over-
prediction of (g(R)) and the under-prediction of ({Wr(R)|), the LES and
the FDNS can predict the collision rate well for Stx > 3.

Fig. 9 shows the variation of collision rate in the monodisperse
and bidisperse systems with Stokes number Stx,. Compared with the
monodisperse system, the curves for the bidisperse system saturate
more slowly. For St < 1, the collision rate for the binary system is
higher than that for the monodisperse system, whereas for Sty, > 1,
the collision rate for the binary system is smaller than that for the
monodisperse system. From Figs. 7 and 8, the relative velocity for
the bidisperse system is found to be much higher than that for the
monodisperse system, making the collision rate higher for St, <
1. In contrast, for Stx, > 1, the radial distribution function for the
bidisperse system is smaller than that of the monodisperse system,
resulting in a lower collision rate. Because the relative errors for the
RDF and the RRV in the bidisperse system are much smaller than
those in the monodisperse system, the relative error in the collision
rate is much smaller than that in the monodisperse system.

Fig. 10 shows the variations of the relative errors of the colli-
sion rate to the DNS with particle Stokes number Sty,. Fig. 10 reveals
that the relative errors in the binary system are much smaller than
those in the monodisperse system. The maximum error reduces from
45% to 30%, and the Stokes number shifts to Sty; = 1, where the
relative error reaches its maximum. Because Stix; = 1, the bidisperse
system becomes a monodisperse system when Stg, approaches 1.0.

The relative error is smaller in the binary system, and when St > 3,
the LES and the FDNS can give reasonable results. In the bidisperse
system, the difference between the DNS and the LES or the FDNS is
much larger than that between the FDNS and the LES, implying that
the dominating factor of the error in the collision rate is the filtering
operation.

4.4. General combination of a bidisperse system with varied Styx; and

In the previous sections, we have considered the bidisperse
system with Stg; fixed to be 1.0. To further understand the effects
of filtering and SGS eddy viscosity model on the collision-related
quantities of a bidisperse system, we consider two cases, in which
Stx1 = 0.5 and Stg; = 3.0, and St varies to produce a more general
combination of the bidisperse systems.

We first discuss the variations of the RDFs and their relative errors
with Sti, under different Sty;, as shown in Fig. 11, where (a)-(b) cor-
respond to the case with Stg; = 0.5 and (c)-(d) correspond to the
case with Sty; = 3.0. Panels (a) and (c) in Fig. 11 show that the
RDFs in both bidisperse systems still obey the observation that the
RDFs in the monodisperse system are the upper limit of those in
the bidisperse system, and the RDFs reach the maximum values at
Stio = St [31]. A quantitative comparison of the relative errors due
to filtering and the SGS eddy viscosity model in the FDNS or the LES is
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shown in Fig. 11 (b) and (d). The new finding is that the relative errors
achieve maximum values at Sty; = Stgy, and they decrease with
increasing particle inertia differences. The reason for this result is
that particles at different Stokes numbers cluster in different zones of
the turbulent field. The influence of filtering on the RDF of bidisperse
particles, thus, decreases with increasing inertia differences. It is
interesting that FDNS or LES under-predicts the RDF in the bidisperse
system with Sti; = 0.5 but over-predicts the RDF in the bidisperse
system with Stg; = 3.0. The reason for this observation is that the
bidisperse system with Stx; = 3.0 is reduced to the monodisperse
case at Sti, = 3.0, and, thus, the filtering of SGS motions enhances
the particle clustering. We can draw a conclusion that there are two
important factors affecting the accuracy of the FDNS or the LES in
predicting the RDF in the bidisperse system. The first factor is the
relative error in the monodisperse case at Sty = Styq, which is the
upper limit of the error in the bidisperse case. The second factor is the
inertia difference between Sty; and Stx,, which reduces the influence
of filtering.

Fig. 12 shows the variations of the RRVs and the relative errors
in the FDNS and the LES results to the DNS results for different Sty;.
From Fig. 12 (a) and (c), the bidisperse systems with Stx; = 0.5 or
Sty1 = 3.0 are found to still obey the observation that the RRV of
monodisperse particles is the lower limit of that of bidisperse parti-
cles and the later reaches the minimum value at Sty, = Sty; [31]. By
comparing the relative errors of the FDNS or the LES to the DNS, as

shown in Fig. 12 (b) and (d), the relative errors in the monodisperse
systems are found to be the upper limit of those in the bidisperse
systems, where Stx; = 0.5 or Stx; = 3.0. The relative errors shift to
the maximum values at Sty, = Stx; and then decrease with increas-
ing inertia differences. For RRV, the larger particle inertia difference
leads to the smaller correlation between the two particles, and, thus,
filtering and the SGS eddy viscosity model contribute less to the
particle velocity correlation.

Finally, we consider the variations of the collision rates and their
relative errors, as shown in Fig. 13. Because the collision rate is the
combination of the RRV and the RDEF, it is expected that the relative
error of collision rate in the FDNS or the LES is determined by the
particle inertia differences and the relative error at Sty; = St in
the monodisperse system, which is shown in Fig. 13 (b) and (d).
When Stg; = 0.5, the maximum relative error reaches 50%-60%
at Sti; = 0.5, and the relative error gradually decreases with St
departing from 0.5; when Stg; = 3.0, the relative errors of collision
rates remain small during the whole inertial range because of the
small relative error at Sty = 3.0 in the monodisperse system.

5. Conclusions

Particle-laden turbulent flows are ubiquitous in natural and engi-
neering flows. The preferential concentration and pair statistics of
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(a)-(b): Stx; = 0.5; (c)-(d): Stg; = 3.0.

heavy particles at small and intermediate Stokes numbers are mainly
related to the small-scale motions, which are missing in large-eddy
simulation (LES). Therefore, we focused on the effects of the subgrid
scale (SGS) motions on the particle-pair statistics of a bidisperse
system involving two groups of particles using direct numerical sim-
ulation (DNS), filtered DNS (FDNS) and LES. Compared with the
monodisperse system, the relative error of the collision rate in the
bidisperse system was found to be much smaller than the monodis-
perse one. This result can be explained by two important factors.
The first factor is the relative error in the monodisperse case at
St = Sty1, which is the upper limit of the error in the bidisperse
case. The second factor is the inertia difference between Sty and Sty,
which reduces the influence of filtering. For given filter widths and
Stokes numbers, the relative error between FDNS and LES is much
smaller than their relative errors to DNS, implying that the error
caused by the filtering operation in LES plays a leading role in the
overall error of particle collision rate at Stokes numbers less than
3. Thus, a particle SGS model is necessary to recover the effects of
SGS fluid motions on bidisperse particles with different relaxation
time scales in future studies. In future work, particle SGS models may
be constructed based on the space-time correlation models [59-61].
In these models, the small-scale motions with proper spatial and
temporal correlations will be taken into accounted to predict the
collision rate of bidisperse particles in turbulent flows [37].
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