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We present a complex variable method to evaluate the transverse effective transport properties of composites with a
doubly-periodic array of fibers. The obtained complex variable solution is derived in a unified form for arbitrary doubly-
periodic fiber arrays, and different fiber-matrix interfaces, i.e., perfect interface, contact resistance interface and coating.
The present method can be seen as an extension of the method originated by Rayleigh only for symmetric fiber arrays.
The limitation of Rayleigh’s method is overcome by introducing a supplementary equation. Explicit formulae of the
effective transport properties approximated to finite orders are obtained, which are written in a regular form for different
fiber arrays, and reveal the reciprocal relations for symmetric fiber arrays. The validity and accuracy of the solution are
verified by numerical examples and comparisons with existing methods.
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1 Introduction

Effective transport properties such as thermal conductivity and dielectric constant, as well as their mathematically analogous
properties such as elastic modulus, are key parameters characterizing the macroscopic characteristics of composites.
Knowledge of such effective properties is of importance in designing and evaluation of composites [27].

For the fiber-reinforced composites, or more generally, an array of cylinders in matrix, the fiber distribution and the
fiber-matrix interface are two important factors influencing the effective transport properties. Resistance interface and
coating interface are two common models for investigating the influence of the real fiber-matrix interface. For investigating
the influence of fiber distributions, the model of a composite with a periodic array of fibers is usually used.

The research into the effective properties of a medium with a periodic array of cylinders was initiated by Rayleigh [24],
who presented the classic multipole method. Perrins et al. [23] extended Rayleigh’s method to enable the calculation of the
transport properties of circular cylinders in square arrays and in hexagonal arrays. Subsequently, Nicorovici [22] extended
the method to the case of coated cylinders. Furthermore, Moosavi and Sarkomaa [20, 21] extended the method to the case
of three-phase composite materials with interfacial resistance. However, due to the problems caused by a conditionally
convergent sum and the difficulty in solving by real variable function, the extension of Rayleigh’s method to consider
general doubly-periodic fiber arrays has not been reported.

Besides above researches based on Rayleigh’s method, there are also several other researches in different ways.
Balagurov and Kashin [1], and Godin [5–7] developed a method based on the use of elliptic function, where general lattices
are considered. Jiang et al. [11] developed a method by using Eshelby’s equivalent inclusion concept integrated with the
results from the doubly quasi-periodic Riemann boundary value problems. Rylko [26], Mityushev [17,19] and Castro et al.
[4] applied the method of functional equations to the cases of rectangular array of cylinders and the cases of imperfect
interface between matrix and inclusions. Rodriguez-Ramos et al. [8,14,25] applied an asymptotic homogenization method.
Lu and Lin [15] presented a boundary collocation scheme. Würkner et al. [28] developed a special procedure to handle the
primary non-rectangular periodicity and imperfect interface, with common numerical homogenization techniques based
on FE-models. The authors [30] also developed an eigenfunction expansion-variational method considering interfacial
thermal contact resistance and coating.

These methods were verified by comparison with each other in numerical examples and with experimental results.
However, as for giving explicit formulae of effective properties, there is a great deal of room for improvement. Explicit
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formulae with high accuracy are still highly desirable for designing of composites. This is the main motivation for this
work.

This work aims to propose a unified complex variable solution for the effective transport properties of fiber composites,
considering arbitrary doubly-periodic fiber distributions, and different fiber-matrix interfaces. The present method can be
seen as an extension of the methods originated by Rayleigh only for symmetric fiber arrays. It inherits the advantages
of Rayleigh’s method in extracting explicit formulae. For the considered two-dimensional problems, complex variable
method is powerful tool, by which the solution can be formulated in a concise form.

The problem of calculating the effective transport properties will be discussed here in the context of thermal conductivity.
This work is organized as follows: First, basic equations of the problem are outlined and formulated in complex variables
in Sect. 2. Then, a quasi-periodic complex potential in matrix is constructed and expanded into Laurent series in Sect. 3. In
Sect. 4, linear equations about the unknown expansion coefficients are derived from the fiber-matrix interface conditions,
and a supplementary equation making the solution complete is introduced. In Sect. 5, average fields are evaluated in complex
variables, from which the coefficient equations are modified and solved in Sect. 6. In Sect. 7, effective conductivities are
calculated by the average field method, also a series of explicit formulae of effective conductivities are given for different
fiber arrays. Finally, the physics of the present modification is further discussed, and the validity of the present solution is
verified by numerical examples in Sect. 8.

2 Basic equations and formulation of the problem

Consider a composite with a doubly-periodic array of fibers, whose transverse section is shown in Fig. 1a. For the problem
of steady-state heat conduction with no internal generation, the heat flux qj , temperature field T and temperature gradient
Hk satisfy the following three equations [10]:

Fourier’s law : qj = −kjkHk, (1a)

Temperature gradient : Hk = ∇kT , (1b)

Equilibrium equation : ∇j qj = 0, (1c)

where kjk is the thermal conductivity tensor. For isotropic materials, such as the matrix and fiber considered here, the
thermal conductivity can be denoted by a scalar k , then the in-plane temperature field satisfies Laplace’s equation [10]:

∂2T

∂x2
1

+ ∂2T

∂x2
2

= 0. (1d)

From (1a–d), in matrix and fibers, the temperature T, heat flux components {q1, q2} and heat transfer rate � can be
formulated by a complex potential f (z):

q1 − iq2 = −kf ′(z), (2a)

T = 1

2
[f (z) + f (z)], (2b)

Fig. 1 Composite with a doubly-periodic array of fibers: (a) Transverse section and a unit cell ABCD; (b) Unit cell
containing a fiber with resistance interface; (c) Unit cell containing a fiber with coating interface. The angle between the
two fundamental complex periods ω1 and ω2 is θ .
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� = −k

2i
[f (z) − f (z)]BA, (2c)

where i2 = −1, z = x1 + ix2 is a complex variable, the over bar denotes the complex conjugate, the prime denotes the
derivative with respect to z, [·]BA denotes the difference of the values of the bracketed function from point A to point B.

In Sect. 3 and Sect. 4, we construct a complex potential in matrix. The temperature, gradient and flux expressed by it and
its derivative satisfy the quasi-periodicity/periodicity condition, fiber-matrix interface condition and boundary condition of
prescribed external gradient.

3 Construction and expansion of the complex potential in matrix

As shown in Fig. 1a, the space is occupied by matrix and a doubly-periodic array of fibers of radius R. Without loss
of generality, unit area is assumed for the fundamental unit cell. The subscripts “m”, “f”, and “c” denote matrix, fiber,
and coating, separately, in the following. An external gradient H 0

j is applied to the matrix containing fibers. The internal
gradient in the matrix subjected to the external gradient should be uniform if there is no fiber in matrix, so the complex
potential in the matrix fm(z) should include two parts:

fm(z) = A0z + fm0(z), (3)

where the first part is corresponding to the external gradient, that is

A0 = H 0
1 − iH 0

2 . (4)

The second part in (3) is induced by the appearance of the fibers, which can be expressed by a summation:

fm0(z) = f0(z) +
∑
r,s

f0(z − ωrs), r2 + s2 �= 0, (5)

where ωrs denote the center locations of fibers in the doubly-periodic array. Introduce two fundamental complex periods
of the array denoted by ω1 and ω2 as shown in Fig. 1a, then ωrs are arbitrary complex periods of the doubly-periodic array,
which can be expressed by

ωrs = rω1 + sω2, r2 + s2 �= 0, (6)

where r and s are integers.
The complex potential f0(z − ωrs) is induced by the appearance of the fiber located at ωrs , which approaches 0 when

z − ωrs → ∞. Thus f0(z) can be expanded as follows:

f0(z) =
∞∑

n=1

An(
1

z
)
n

, (7)

And then fm(z) in (3) can be expressed as

fm(z) = A0z +
∞∑

n=1

An

(
1

z

)n

+
∑
r,s

∞∑
n=1

An

(
1

z − ωrs

)n

, r2 + s2 �= 0, (8)

where An are the unknown expansion coefficients.
Now we expand the complex potential into Laurent series. Note that(

1

z − ωrs

)n

=
(

1

−ωrs

)n

+
∞∑

j=1

(−1)j Cj
n+j−1

(
1

−ωrs

)n+j

zj , (9)

with

Cj
n+j−1 = (n + j − 1)!

j !(n − 1)!
. (10)

Then (5) can be rewritten as

fm0(z) =
∞∑

n=1

An

(
1

z

)n

+
∞∑

j=1

(−1)j
∞∑

n=1

AnCj
n+j−1

∑
r,s

(
1

−ωrs

)n+j

zj +
∞∑

n=1

An

∑
r,s

(
1

−ωrs

)n

. (11)
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After neglecting the constant, and due to the centrosymmetry of the fiber arrays, the complex potential in matrix is
centrosymmetric (fm(−z) = −fm(z)), which can be written as

fm(z) =
∞∑

n=1

A2n−1

(
1

z

)2n−1

+
∞∑

n=1

(
A0δ1,n −

∞∑
j=1

A2j−1C2n−1
2j+2n−3S2j+2n−2

)
· z2n−1, (12)

where δ1,n is the Kronecker delta symbol, being unity for n = 1 and zero otherwise. The quantities S2j+2n−2 in (12) are
sums of the form

S2j+2n−2 =
∑
r,s

(
1

ωrs

)2j+2n−2

, r2 + s2 �= 0. (13)

The constructed complex potential fm(z) in (8) is quasi-periodic, which will be proved in Sect. 5.1. Therefore, the
temperature gradient and heat flux fields expressed by its derivative satisfy the doubly-periodicity conditions. On the other
hand, the heat flux and temperature in the matrix have to satisfy the interface condition between fiber and matrix. This
interface condition is used to determine the unknown coefficients in (12).

4 Interface conditions and coefficient equations

Now three types of fiber-matrix interfaces, i.e., perfect interface, contact resistance interface and coating, are considered
separately. Because of the doubly-periodicity, a unit cell with one fiber, i.e., the fiber located at the origin is considered
without loss of generality, as shown in Fig. 1. The complex potential in the fiber region can be expanded into a Taylor
series, while in the coating region as shown in Fig. 1c, it can be expanded into Laurent series. The conductivities of fiber,
matrix and coating are denoted by kf , km, and kc, respectively, in the following.

4.1 Perfect interface

For the case of perfect interface, the heat transfer rate � and the temperature T across the fiber-matrix interfaces are
continuous:

�f = �m, Tf = Tm, at |z| = R. (14)

By substituting the complex potentials into (2a, b, c), and then into (14), the unknown coefficients in (12) satisfy the
equations [30]:

Ā2n−1 = ηfmR2(2n−1)

[
A0δ1,n −

∞∑
j=1

A2j−1C2n−1
2j+2n−3S2j+2n−2

]
, n = 1, 2, 3..., (15)

with ηfm = (km − kf)/(km + kf).

4.2 Contact resistance interface

For the case of contact resistance interface as shown in Fig. 1b, the heat transfer rate � is continuous, while the temperature
is discontinuous across the interface:

�f = �m, qf = qm = −h(Tf − Tm), at |z| = R, (16)

where h is the thermal contact conductance on the interface. By similar substitution, the unknown coefficients in (12)
satisfy the equations [30]:

Ā2n−1 = ηfm + (2n − 1)β(1 − ηfm)
1 + (2n − 1)β(1 − ηfm)

R2(2n−1)

[
A0δ1,n −

∞∑
j=1

A2j−1C2n−1
2j+2n−3S2j+2n−2

]
, n = 1, 2, 3..., (17)

with β = km/(2h R).
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4.3 Coating interface

For the case of coating interface as shown in Fig. 1c, the heat transfer rate � and temperature T are continuous across the
fiber-coating interfaces and coating-matrix interfaces:

�f = �c, Tf = Tc, at |z| = R1, (18)

�c = �m, Tc = Tm, at |z| = R. (19)

Similarly, a series of substitutions yield the following coefficient equations [30]:

Ā2n−1 = ηcm + ηfc(1 + ξ)2−4n

1 + ηcmηfc(1 + ξ)2−4n
R2(2n−1)

[
A0δ1,n −

∞∑
j=1

A2j−1C2n−1
2j+2n−3S2j+2n−2

]
, n = 1, 2, 3..., (20)

with

ηfc = (kc − kf)/(kc + kf), ηcm = (km − kc)/(km + kc), ξ = (R1 − R)/R. (21)

4.4 Unified coefficient equations

The coefficient equations (15), (17), (20) obtained from the three different interface conditions can be rewritten in a unified
linear equation:

Ā2n−1 = η2n−1R
2(2n−1)

[
A0δ1,n −

∞∑
j=1

A2j−1C2n−1
2j+2n−3S2j+2n−2

]
, n = 1, 2, 3..., (22)

where

η2n−1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ηfm perfect interface,
ηfm + (2n − 1)β(1 − ηfm)
1 + (2n − 1)β(1 − ηfm)

contact resistance,

ηcm + ηfc(1 + ξ)2−4n

1 + ηcmηfc(1 + ξ)2−4n
coating.

(23)

By an appropriate truncation and solution of (22), the unknown coefficients are obtained. However, the sum S2 is
conditionally convergent, which is dependent on the summation sequence. To avoid such a problem, a supplementary
equation is needed. Due to the periodicity, average gradient 〈Hj 〉 over any unit cell should be equal to the average gradient
over the whole transverse section of the composite, and that should be equal to the prescribed external gradient H 0

j in order
to satisfy the boundary condition. Therefore,

〈H1〉 + i 〈H2〉 = H 0
1 + iH 0

2 = Ā0. (24)

Before applying the supplementary equation (24), the average gradient 〈Hj 〉 should be expressed by the unknown coeffi-
cients in (22).

5 Evaluation of the average fields in complex variables

Now we calculate the average gradient 〈Hj 〉 and average flux 〈qj 〉 over a unit cell, in order to express the supplementary
equation (24) and to calculate the effective conductivities.

5.1 Average flux over a unit cell

Consider an arbitrary unit cell ABCD of unit area in Fig. 1a. Complex coordinates at the three corners A, B, and C satisfy

zB = zA + ω2, zC = zB − ω1. (25)

According to (2c), the heat transfer rate � across boundaries AB and BC can be written as

�AB = km Im[fm(zB) − fm(zA)], �BC = km Im[fm(zC) − fm(zB)]. (26)
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By application of the Green theorem and the periodicity of the flux field, the average flux over the unit cell in complex
form can be expressed by

〈q1〉 + i 〈q2〉 = �ABω1 + �BCω2. (27)

From the expression of the complex potential fm(z) in (8), and considering

∑
r,s

(
1

zA − ωrs

)n

=
∑
r,s

(
1

zB − ωrs

)n

=
∑
r,s

(
1

zC − ωrs

)n

, n ≥ 3. (28)

One obtains that

fm(zB) − fm(zA) = A0ω2 + A1
∑
r,s

( 1
zB−ωrs

− 1
zA−ωrs

),

fm(zC) − fm(zB) = A0(−ω1) + A1
∑
r,s

( 1
zC−ωrs

− 1
zB−ωrs

).
(29)

According to the Weierstrass ς function

ζ (z) = 1

z
+

∑
r,s

(
1

z − ωrs

+ 1

ωrs

+ z

ω2
rs

)
, r2 + s2 �= 0, (30)

and the sum S2 defined in (13), one obtains that

fm(zB) − fm(zA) = A0ω2 + A1[2ζ (ω2
2 ) − S2ω2],

fm(zC) − fm(zB) = A0(−ω1) + A1[−2ζ (ω1
2 ) + S2ω1].

(31)

Note that the unit cell ABCD is arbitrary, thus above derivation has, in fact, proved the quasi-periodicity of the constructed
potential fm(z) in (8).

By substituting (31) into (26) and then into (27), one obtains that

〈q1〉 + i 〈q2〉 = kmĀ0 − km(πA1 + S̄2Ā1 − ε̄Ā1), (32)

where

ε = 1

2i

[
2ς

(
ω2

2

)
ω̄1 − 2ς

(
ω1

2

)
ω̄2

]
. (33)

It can be seen that the average flux is related to the conditionally convergent sum S2. The values of ε for some typical
arrays are listed in the Table A1 in Appendix.

5.2 Relation of average gradient to average flux

Consider again the unit cell containing a fiber as shown in Fig. 1a. The area and the boundary of the unit cell are denoted
by V and ∂V , respectively. The boundaries of the unit cell are always assumed to be located at the matrix. From (1b, c) the
average fields can be calculated by

〈qi〉 − km 〈Hi〉 = 1

V

(∫
V

qidV − km

∫
V

HidV

)
= 1

V

∫
V

[∇j (xiqj ) − km∇iT ] dV . (34)

By application of the Green theorem,

〈qi〉 − km 〈Hi〉 = km

V

∮
∂V

(xiHj − δijT )nj dS. (35)

By substituting (2a) and (2b) into (35) and noting that

z = x1 + ix2, dz = dx1 + idx2, dz̄ = dx1 − idx2, (36)

dx2

dS
= n1,

dx1

dS
= −n2, (37)

one obtains the average fields expressed by the potential in matrix:

〈q1〉 + i 〈q2〉 − km(〈H1〉 + i 〈H2〉) = km

V

i

2

{∮
∂V

[f ′
m(z)zdz̄ + fm(z)dz] +

∮
∂V

[fm(z) − f ′
m(z)z]dz

}
. (38)
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For the first loop integration, we find

d[fm(z)z] = f ′
m(z)zdz̄ + fm(z)dz. (39)

Therefore,∮
∂V

[f ′
m(z)zdz̄ + fm(z)dz] = 0. (40)

For the second loop integration, according to the Residue theorem,∮
∂V

[fm(z) − f ′
m(z)z]dz = 2π i · 2A1. (41)

If V = 1, (38) can be rewritten as

〈q1〉 + i 〈q2〉 − km(〈H1〉 + i 〈H2〉) = −km · 2πA1. (42)

It is seen from (32) and (42) that the average fields are only related to the first coefficient A1 in the coefficient equation
(22).

6 Modification and solution of the coefficient equations

From (32) and (42), the supplementary equation (24) can be expressed by the unknown coefficient:

S2A1 = πĀ1 + εA1. (43)

By substituting (43) into the coefficient equations (22), we obtain the modified coefficient equations without S2:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ā1 = η1R
2

1+λη1

[
A0 − A1ε −

∞∑
j=2

A2j−1C1
2j−1S2j

]
, n = 1,

Ā2n−1 = −η2n−1R
2(2n−1)

∞∑
j=1

A2j−1C2n−1
2j+2n−3S2j+2n−2, n ≥ 2.

(44)

Note that the fiber volume fraction (total volume fraction of fiber and coating for the case of coating interface) λ = πR2,
if V = 1. Introduce vector and matrix notations, and apply a truncation to order N ,

A = {A2n−1}, n = 1, 2, 3, · · · N, (45a)

A0 = λη1

π(1 + λη1)
{A0δ1,n}, n = 1, 2, 3, · · · N, (45b)

M = [Mnj ], n, j = 1, 2, 3, · · · N, (45c)

Mnj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λη1

π(1 + λη1)
ε, n = 1, j = 1,

λη1

π(1 + λη1)
C1

2j−1S2j , n = 1, j ≥ 2,

η2n−1(
λ

π
)

2n−1

C2n−1
2j+2n−3S2j+2n−2, n ≥ 2.

(45d)

Then the coefficient equations can be rewritten as

Ā = A0 − MA. (46)

The coefficient vector can be solved as

A = (I − M̄M)−1(Ā0 − M̄A0) = (I − M̄M)−1Ā0 − (I − M̄M)−1M̄A0. (47)

Let us define

P = (I − M̄M)−1, Q = (I − M̄M)−1M̄. (48)
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Then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 = λη1

π(1 + λη1)
(P11Ā0 − Q11A0),

A2 = λη1

π(1 + λη1)
(P21Ā0 − Q21A0),

...

AN = λη1

π(1 + λη1)
(PN1Ā0 − QN1A0).

(49)

For orthotropic fiber arrays, including rectangular arrays and rhombic arrays, S2m (m ≥ 2) and ε are real, thus M̄ = M
in (48), and

P + Q = (I − M)−1, P − Q = (I + M)−1. (50)

After the expansion coefficients of the potential are determined by (49), the temperature, gradient and flux fields in
matrix are finally solved. It can be seen that this solution is unified for arbitrary doubly-periodic fiber arrays, and can be
reduced into the solution for the case of orthotropic fiber arrays.

7 Effective conductivities

The effective conductivities 〈kjk〉 are calculated by using the average field method:

〈
qj

〉 = − 〈
kjk

〉 〈Hk〉 , j, k = 1, 2. (51)

By applying (24), Eq. (51) can be rewritten in the following complex variable form:

〈q1〉 + i 〈q2〉 = 1

2
(〈k11〉 + 〈k22〉) Ā0 + 1

2
(〈k11〉 − 〈k22〉 + 2i 〈k12〉) A0. (52)

From (24), (42) and (49),

〈q1〉 + i 〈q2〉 = km

(
1 − 2

λη1

1 + λη1
P11

)
Ā0 + 2km

λη1

1 + λη1
Q11A0. (53)

Comparing (52) with (53), it can be obtained that

1

2
(〈k11〉 + 〈k22〉) = km(1 − 2

λη1

1 + λη1
P11),

1

2
(〈k11〉 − 〈k22〉 + 2i 〈k12〉) = 2km

λη1

1 + λη1
Q11,

(54a)

or

〈k11〉 + i 〈k12〉 = km

[
1 − 2

λη1

1 + λη1
(P11 − Q11)

]
,

〈k22〉 − i 〈k12〉 = km

[
1 − 2

λη1

1 + λη1
(P11 + Q11)

]
,

(54b)

where P11 and Q11 are given by (48). When an appropriate truncation to an enough high order for (45) is applied, (54)
gives numerical results of desired accuracy. When a truncation to finite order N is applied, explicit formulae of the effective
conductivities of order N are obtained, which are given for different fiber arrays in the following. The geometric parameters
S4, S6, and ε in the explicit formulae can be calculated by (A2), (A3), and (A9), which are also listed in Table A1 for some
typical arrays. The material parameters η2n−1 (n = 1, 2, 3 · · · N) in the explicit formulae are given by (23).
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7.1 General doubly-periodic array

For general doubly-periodic fiber arrays, the effective conductivities are anisotropic in general. By a square truncation to
order N, the formula for the effective conductivities in complex form is obtained as:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
〈k11〉 + i 〈k12〉 = km

π2c2
N + π(2πbN − εbN − ε̄b̄N )cNη1λ − (a2

N − |bN |2)(π2 − 2πε̄ + |ε|2)η2
1λ

2

π2c2
N + π(2πaN − εbN − ε̄b̄N )cNη1λ + (a2

N − |bN |2)(π2 − |ε|2)η2
1λ

2
,

〈k22〉 − i 〈k12〉 = km
π2c2

N − π(2πbN + εbN + ε̄b̄N )cNη1λ − (a2
N − |bN |2)(π2 + 2πε̄ + |ε|2)η2

1λ
2

π2c2
N + π(2πaN − εbN − ε̄b̄N )cNη1λ + (a2

N − |bN |2)(π2 − |ε|2)η2
1λ

2
,

(55)

where aN , bN , and cN are from the coefficient equation (46) for order N. When N = 1, a1 = 1, b1 = 0, c1 = 1, the first
order formula is⎧⎪⎪⎪⎨

⎪⎪⎪⎩
〈k11〉 + i 〈k12〉 = km

π2 − (π2 − 2πε̄ + |ε|2)η2
1λ

2

π2(1 + η1λ)2 − |ε|2η2
1λ

2
,

〈k22〉 − i 〈k12〉 = km
π2 − (π2 + 2πε̄ + |ε|2)η2

1λ
2

π2(1 + η1λ)2 − |ε|2η2
1λ

2
.

(56)

When N = 3,

a3 = 1 − 3

π4

∣∣S4

∣∣2
η1η3λ

4 − 5

π6

∣∣S6

∣∣2(20η2
3 + η1η5)λ6 − 270

π8

∣∣S4

∣∣4
η3η5λ

8

− 396900

121π10

∣∣S4

∣∣2∣∣S6

∣∣2
η2

5λ
10 + 5

π12

∣∣9S3
4 − 10S2

6

∣∣2
η1η

2
3η5λ

12

+ 648675

121π14

∣∣S4

∣∣4∣∣S6

∣∣2
η1η3η

2
5λ

14 + 2025

121π16

∣∣S4(33S3
4 − 140S2

6)
∣∣2

η2
3η

2
5λ

16,

(57a)

b3 = 30

π7
S6S̄

2
4η1η

2
3λ

7 + 90

π9

∣∣S4

∣∣2
S4S̄6η1η3η5λ

9 + 3150

11π11
S4

∣∣S6

∣∣2
S̄6η1η

2
5λ

11

+ 2250

121π17
S4S̄6(33S3

4 − 140S2
6)(18S̄3

4 + 11S̄2
6)η1η

2
3η

2
5λ

17,

(57b)

c3 = 1 − 6

π4

∣∣S4

∣∣2
η1η3λ

4 − 10

π6

∣∣S6

∣∣2(10η2
3 + η1η5)λ6

+ 9

π8

∣∣S4

∣∣4
η3(η

2
1η3 − 30η5)λ

8 + 30

121π10

∣∣S4S6

∣∣2(121η2
1η3 − 13230η5)η5λ

10

+ 5

π12
(2

∣∣9S3
4 − 10S2

6

∣∣2
η1η

2
3η5 + 5

∣∣S6

∣∣4
η2

1η
2
5)λ

12 + 1297350

121π14

∣∣S4

∣∣4∣∣S6

∣∣2
η1η3η

2
5λ

14

+ 2025

121π16

∣∣S4(33S3
4 − 140S2

6)
∣∣2

η2
3η

2
5λ

16 − 2500

121π18

∣∣S6(18S3
4 + 11S2

6)
∣∣2

η2
1η

2
3η

2
5λ

18.

(57c)

7.2 Orthotropic array

For orthotropic fiber arrays, including rectangular arrays and rhombic arrays, the transverse effective conductivities are
orthotropic in general. From (13) and (33), when the fiber array is rotated by π /2, the fiber array parameters (ε, S4, S6)
should be replaced by (−ε, S4,−S6) in the calculation, correspondingly. Therefore, the effective conductivity in direction
2 can be obtained from the formula of the one in direction 1, just by replacing the fiber array parameters. In addition,
the effective conductivities in two principle directions satisfy the reciprocal relations [12, 23]. The explicit formula can be
written in a regular form as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈k11〉 = 〈
k11(ε, S4, S6, η2n−1)

〉 = km
cN (1 − η1λ + ε

π
η1λ) + dNη1λ

4

cN (1 + η1λ + ε
π
η1λ) + dNη1λ4

〈k22〉 = 〈
k11(−ε, S4,−S6, η2n−1)

〉 = k2
m〈

k11(ε, S4, S6,−η2n−1)
〉

〈k12〉 = 0

, n = 1, 2, 3, · · · , N, (58)
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where cN and dN are from square truncation of the coefficient equation (46) for order N. When N = 1, c1 = 1, d1 = 0, the
first order explicit formula is obtained as

〈k11〉 = km
1 − η1λ + ε

π
η1λ

1 + η1λ + ε
π
η1λ

. (59)

It considers the orthotropy of the effective conductivities by introducing the parameter ε, which is a modification of the
classical estimation [2, 3, 13] . When N = 4,

c4 = 1 + 10

π3
S6η3λ

3 + 630

11π5
S4S6η5λ

5 + 360

π7
S2

4S6η7λ
7 − 45

11π8
S4(33S3

4 − 140S2
6)η3η5λ

8

+360000

121π10
S2

4S
2
6η3η7λ

10 − 1260

1859π12
(3564S6

4 − 20520S3
4S2

6 + 6875S4
6)η5η7λ

12

− 1800

224939π15
S6(5524497S6

4 − 17863650S3
4S2

6 + 5823125S4
6)η3η5η7λ

15,

(60a)

d4 = − 3

π4
S2

4η3 − 5

π6
S2

6η5λ
2 − 9

7π8
S4

4η7λ
4 − 50

11π9
S6(18S3

4 + 11S2
6)η3η5λ

5

−76590

77π11
S4

4S6η3η7λ
7 + 270

143π13
S2

4S6(93S3
4 − 770S2

6)η5η7λ
9

+ 135

143143π16
S2

4(5489649S6
4 − 17017560S3

4S2
6 − 11294500S4

6)η3η5η7λ
12.

(60b)

7.3 Square array

For a square fiber array and a hexagonal fiber array, the transverse effective conductivities are equal in two orthogonal
directions. For square array,

〈k12〉 = 0, 〈k11〉 = 〈k22〉 = km
cN (1 − η1λ) + dNη1λ

4

cN (1 + η1λ) + dNη1λ4
. (61)

When the order N = 1, it can be obtained that c1 = 1, d1 = 0. The obtained first order explicit formula is the classical
Maxwell-Garnett estimation [16]:

〈k11〉 = 〈k22〉 = km
1 − η1λ

1 + η1λ
, (62)

which is also derived in [2, 3, 13] for different fiber-matrix interfaces. This first order formula is without consideration of
the fiber distribution. For order N = 6,

c6 = 1 − 135

π8
S4

4η3η5λ
8 − 4860

169π12
S6

4(84η5η7 + 5η3η9)λ12 − 280665

289π16
S8

4(55η7η9 + 7η5η11)λ16

−1154736

π20
S10

4 η9η11λ
20 + 36260531897625

8254129π24
S12

4 η3η5η7η9λ
24

+6455729148660

48841π28
S14

4 η3η5η9η11λ
28 + 16086782983751865

14115049π32
S16

4 η5η7η9η11λ
32,

(63a)

d6 = − 3

π4
S2

4η3 − 9

7π8
S4

4η7λ
4 − 324

1859π12
S6

4η11λ
8

+6124815

1183π16
S8

4η3η5η7λ
12 + 10225198215

3760757π20
S10

4 η3(55η7η9 + 7η5η11)λ16

+ 6561

90795419π24
S12

4 (73689035η5η7 + 47682447552η3η9)η11λ
20

+430381943244

341887π28
S14

4 η7η9η11λ
24 − 66577240844129931600015

31041773415653π36
S18

4 η3η5η7η9η11λ
32.

(63b)

It can be seen that, cN and dN contain only the terms λl which have l divisible by four.
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7.4 Hexagonal array

For a hexagonal array,

〈k12〉 = 0, 〈k11〉 = 〈k22〉 = km
cN (1 − η1λ) + dNη1λ

6

cN (1 + η1λ) + dNη1λ6
. (64)

The obtained first order explicit formula for N = 1 is also the classical estimation [2, 3, 13]. For order N = 8,

c8 = 1 − 787500

169π12
S4

6η5η7λ
12 − 1750000

4693π18
S6

6(572η7η11 + 35η5η13)λ18

−87621187500

2197π24
S8

6η11η13λ
24 + 6925906651185156250000

48387275053π36
S12

6 η5η7η11η13λ
36,

(65a)

d8 = − 5

π6
S2

6η5 − 625

1859π12
S4

6η11λ
6 + 111861752187500

113415731π24
S8

6η5η7η11λ
18

+1723435365312500

8724287π30
S10

6 η5η11η13λ
24.

(65b)

It can be seen that, cN and dN contain only the terms λl which have l divisible by six.
It is worth noting that in formulae (57), (60), (63), and (65) the high-order terms of λ cannot be neglected for the

accuracy of the explicit formulae.

8 Discussions and numerical examples

8.1 The conditionally convergent sum S2

The sum S2 is conditionally convergent as mentioned above. It is this point which had led to the limitation and questioning
of the validity of the methods originated by Rayleigh. Though Perrins et al. [23] as well as Moosavi and Sarkomaa [20]

Table 1 For perfect interface, variations of the dimensionless effective conductivities with the truncation order N for different fiber
arrays, and the comparison with the numerical results obtained by EEVM [30] and Perrins et al. [23]. For material parameters, refer to
(23) with kf/km = 50.

N Hexagonal Array

λ = 0.8

λlim = 0.9069

Square Array

λ = 0.7

λlim = 0.7854

Rectangular Array
|ω2|
ω1

= 1

2
,

λ = 0.36

λlim = 0.3927

General Doubly Periodic
Imω2

ω1
= 1

2
, θ = π

3 ,

λ = 0.48

λlim = 0.5236

〈k11〉
km

= 〈k22〉
km

〈k11〉
km

= 〈k22〉
km

〈k11〉
km

〈k22〉
km

〈k11〉
km

〈k22〉
km

〈k12〉
km

1 7.64407 5.10778 1.66993 3.50961 2.69362 3.79330 0.943634

2 7.64407 6.18007 1.68932 4.02376 2.90209 4.32367 1.22573

3 8.21305 6.29151 1.68987 4.15497 2.94546 4.45468 1.29986

4 8.25787 6.32727 1.68988 4.18703 2.95635 4.48683 1.31857

6 8.25927 6.33552 1.68988 4.19710 2.95970 4.49690 1.32437

8 8.25999 6.33590 1.68988 4.19779 2.95993 4.49759 1.32476

10 8.26001 6.33592 1.68988 4.19784 2.95995 4.49764 1.32479

EEVM

[30]

8.26001 6.33592 1.68988 4.19765 2.95995 4.49768 1.32481

Perrins

et al. [23]

8.2600 6.3359 – – – – –
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modified Rayleigh’s method and extended the method to consider hexagonal array and orthotropic arrays, it is necessary
to explain further the physics and mathematics of the method for the general doubly-periodic arrays.

The value of the sum S2 is dependent on the summation sequence. Eisenstein [29] introduced a summation sequence as
follows:

S∗
2 = lim

N→∞

N∑
s=−N

(
lim

M→∞

M∑
r=−M

1

ω2
rs

)
, r2 + s2 �= 0. (66)

The sum S∗
2 can be expressed by Weierstrass ς function [29]:

S∗
2 = 2

ω2
ς

(
ω1

2

)
. (67)

From (33), (A7), and (67), we find

ε = S∗
2 − ω̄1

ω1
π. (68)

As discussed in Sect. 3 and in Sect. 5, in order to make sure the average gradient over the unit cell is equal to the external
gradient (24), the value of S2 should satisfy (43). Therefore, from (43) and (68),

S2 = S∗
2 +

(
Ā1

A1
− ω̄1

ω1

)
π. (69)

Table 2 For contact resistance interface, variations of the dimensionless effective conductivities with the truncation order N for different
fiber arrays, and the comparison with the numerical results obtained by EEVM [30] and Lu and Lin [15]. For material parameters, refer
to (23) with kf/km = 1001, β = 4.995×10−3.

N Hexagonal Array

λ = 0.8

λlim = 0.9069

Square Array

λ = 0.7

λlim = 0.7854

Rectangular Array
|ω2|
ω1

=
√

3

2
,

λ = 0.62

λlim = 0.6802

General Doubly Periodic
Imω2

ω1
=

√
3

2
,

θ = 5π

12
,

λ = 0.66

λlim = 0.7290

〈k11〉
km

= 〈k22〉
km

〈k11〉
km

= 〈k22〉
km

〈k11〉
km

〈k22〉
km

〈k11〉
km

〈k22〉
km

〈k12〉
km

1 8.20000 5.34483 3.88350 5.34695 4.16683 5.62170 0.666908

2 8.20000 6.52913 3.60232 6.43325 4.38226 6.45305 0.775892

3 8.82902 6.64249 3.60237 6.61906 4.43359 6.64675 0.862522

4 8.87065 6.67684 3.60286 6.66858 4.43406 6.68391 0.866679

6 8.87174 6.68386 3.60292 6.68037 4.43496 6.69323 0.869527

8 8.87230 6.68413 3.60293 6.68096 4.43499 6.69365 0.869641

10 8.87231 6.68414 3.60293 6.68099 4.43499 6.69367 0.869646

EEVM

[30]

8.87231 6.68414 3.60293 6.68099 4.43499 6.69367 0.869646

Lu and

Lin [15]

8.90664 6.68414 – – – – –
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For symmetric fiber arrays which are placed symmetric about the x-axis, when the external gradient H 0
i is also symmetric

about the x-axis, the expansion coefficient A1 is real, then Eq. (69) is rewritten as

S2 = S∗
2 +

(
1 − ω̄1

ω1

)
π. (70)

Furthermore, if the first period ω1 is placed along the x-axis, ω1 is real, and then Eq. (70) is reduced into S2 = S∗
2 . In this

case, the summation is over a so-called “needle”-shaped region [23]. Therefore, the existing solutions by setting S2 = S∗
2

are only applicable in the case of symmetric fiber arrays.
In other words, for general doubly-periodic arrays, in order to satisfy the boundary condition of prescribed external

gradient (24), the value of the sum S2 must satisfy Eq. (69). However, equation (69) contains an expansion coefficient A1
to be determined, thus for this case the sum S2 can only be determined by combing Eq. (69) and the coefficient equations
(22). Therefore, for the case of general doubly-periodic array, the modification introduced in Sect. 6 is necessary.

8.2 Validity and accuracy of the present solution

In order to verify the validity and accuracy of the present solution, convergence analysis and comparison with other methods
are made.

Different fiber arrays, including hexagonal array, square array, rectangular arrays, rhombic arrays and general doubly-
periodic arrays, are considered. The corresponding geometric parameters are listed in Table A1. The material properties
are chosen from the references for convenience of comparison. The predicted dimensionless effective conductivities for
three fiber-matrix interfaces, i.e., perfect interface, contact resistance interface and coating interface, are listed in Tables
1–3, respectively. The variations of the predictions with the truncation order N are shown. The limiting volume fraction of
fiber, λlim, for each fiber array is also given in the tables. With the fiber volume fraction, λ, approaching the limiting value,

Table 3 For coating interface, variations of the dimensionless effective conductivities with the truncation order N for different fiber
arrays, and the comparison with the numerical results obtained by EEVM [30] and Lu and Lin [15]. For material parameters, refer to
(23) with kf/km = 1/100, kc/km = 990.5, ξ = 0.1.

N Hexagonal Array

λ = 0.8

λlim = 0.9069

Square Array

λ = 0.7

λlim = 0.7854

Rhombic Array
Imω2

ω1
= 1,

λ = 0.7

λlim = 0.7854

General Doubly Periodic
Imω2

ω1
= 1,

θ = 5π

12
,

λ = 0.7

λlim = 0.7854

〈k11〉
km

= 〈k22〉
km

〈k11〉
km

= 〈k22〉
km

〈k11〉
km

〈k22〉
km

〈k11〉
km

〈k22〉
km

〈k12〉
km

1 8.22428 5.35492 6.47373 4.61585 5.97169 4.94750 0.452284

2 8.22428 6.63206 6.90262 4.68798 6.80287 5.44000 0.342860

3 8.92889 6.77930 7.22368 4.76057 7.05683 5.50599 0.454821

4 8.98960 6.82609 7.25461 4.76175 7.08825 5.51496 0.438090

6 8.99155 6.83743 7.26463 4.76176 7.09915 5.51601 0.440132

8 8.99255 6.83797 7.26515 4.76177 7.09963 5.51602 0.440131

10 8.99259 6.83800 7.26517 4.76177 7.09965 5.51602 0.440128

EEVM

[30]

8.99259 6.83800 7.26517 4.76177 7.09965 5.51602 0.440128

Lu and

Lin [15]

8.99004 6.83800 – – – – –
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the required truncation order N increases. In the tables, λ, are chosen to obtain convergent results to the accuracy shown in
the tables within N = 10.

It can be seen from Tables 1–3 that the present predictions are in good agreement with the results by the eigenfunction
expansion-variational method (EEVM) [30], the extended Rayleigh’s method by Perrins et al. [23] and the boundary
collocation method by Lu and Lin [15]. Note that Perrins et al. [23] and Lu and Lin [15] considered only the hexagonal
array and square array. The eigenfunction expansion-variational method is available for arbitrary periodic arrays, but it
gives explicit formulae of effective conductivities only for the hexagonal array and square array. The present method gives
a series of explicit formulae with moderate length for arbitrary periodic arrays. In the explicit formulae, the truncation
order N is up to 3 for general doubly-periodic arrays (formulae (55) and (57)), N = 4 for orthotropic arrays (formulae (58)
and (60)), N = 6 for the square array (formulae (61) and (63)) and N = 8 for the hexagonal array (formulae (64) and (65)).
From the comparison in Tables 1–3, high accuracy of the explicit formulae is observed.

9 Conclusions

A complex variable method is developed to solve the problem of steady-state heat conduction of composites with a doubly
periodic array of fibers. The present method can be seen as an extension of Rayleigh’s method to consider general doubly-
periodic fiber array and different fiber-matrix interfaces. The limitation of Rayleigh’s method caused by the conditionally
convergent sum is overcome by introducing a complementary equation.

Average fields are expressed by the first expansion coefficient of the complex potential, with the aid of Residue theorem,
Green theorem and Elliptic function theory. Then unified complex variable solution of the effective conductivities is
obtained in a concise form, for arbitrary doubly-periodic fiber arrays and different fiber-matrix interfaces. The validity of
the present solution is verified by comparing with other methods in the numerical examples.

By applying appropriate truncation to finite order, a series of explicit formulae of effective conductivities are given.
The explicit formulae for different fiber arrays are written in a regular form, which reveals the reciprocal relations for
conductivities. High accuracy of the explicit formulae is shown in the numerical examples.

Appendix

Evaluation of the sums S2m and ε

Let us first evaluate the sums S2m (m ≥ 2), which are defined by

S2m =
∑
r,s

(
1

rω1 + sω2

)2m

, r2 + s2 �= 0, m ≥ 2. (A1)

The sums S4 and S6 can be calculated by following rapidly convergent series [18]:

S4 = 1

60

(
π

ω1

)4
(

4

3
+ 320

∞∑
m=1

m3h2m

1 − h2m

)
, (A2)

S6 = 1

140

(
π

ω1

)6(
8

27
− 448

3

∞∑
m=1

m5h2m

1 − h2m

)
, (A3)

with h = e(ω2/ω1)π i. All the other higher-order sums can be evaluated by using the recurrence formulae [9, 18]:

S2m = 3

(4m2 − 1)(m − 3)

m−2∑
r=2

(2r − 1)(2m − 2r − 1)S2rS2m−2r , m ≥ 4. (A4)
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Table A1 Numerical results of S4, S6, and ε calculated by formulae (A2), (A3), and (A9) for some typical arrays. The area of the unit
cell shown in Fig. 1a is always set to be 1, and the first period is always set to be real (ω1 = α) without loss of generality.

Type of arrays Parameters S4 S6 ε

α = 1, θ = π/3 1.31600 − 0.439787i 3.66164 + 0.798631i 0.278184 + 0.068192i

α = 1, θ = 5π/12 2.03960 + 0.960266i 2.3647 − 1.87494i 0.165674 − 0.146324i

General arrays

ω1 = α

α =
√

2
√

3/3,

θ = π/4

2.74007 − 1.32525i −0.54364 + 2.57047i −0.489415 + 0.224841i

ω2 = 1
α tan θ

+ 1
α

i α =
√

2
√

3/3,

θ = 5π/12

1.74903 + 1.69162i 1.40321 − 2.94776i −0.322068 − 0.295271i

α = √
2, θ = π/3 −2.52763 + 4.23714i 6.68110 − 0.209052i −0.899597 − 1.54389i

α = √
2, θ = 5π/12 3.76139 + 6.51491i −13.2745i −2.59684 − 1.49929i

α = 1 1.21069 3.83332 0.294899

Rhombic arrays

ω1 = α

α =
√

2
√

3/3

(Hexagonal array)

0 3.80815 0

ω2 = α
2 + 1

α
i α = √

2 (Rotated

square array)

−3.15121 0 0

Rectangular arrays

ω1 = α

α = 1 (Square array) 3.15121 0 0

ω2 = 1
α

i α =
√

2
√

3/3 3.37869 −1.99103 −0.592671

α = √
2 8.66583 −16.2489 −3.43759

Then the expressions of some higher-order sums by S4 and S6 are

S8 = 3

7
S2

4 ,

S10 = 5

11
S4S6,

S12 = 1

143
(18S3

4 + 25S2
6),

S14 = 30

143
S2

4S6.

(A5)

Let us now evaluate ε, which is defined by

ε = 1

2i

[
2ς

(
ω2

2

)
ω̄1 − 2ς

(
ω1

2

)
ω̄2

]
. (A6)

According to the Weierstrass ς function [29],

2ς

(
ω1

2

)
ω2 − 2ς

(
ω2

2

)
ω1 = 2π i, (A7)
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and ς(ω1
2 ) can be calculated by the following series [18, 19, 26]:

ς
(ω1

2

)
= ω1

2

(
π

ω1

)2
(

1

3
− 8

∞∑
m=1

mh2m

1 − h2m

)
. (A8)

Then

ε =
(

π

ω1

)2
(

1

3
− 8

∞∑
m=1

mh2m

1 − h2m

)
− ω̄1

ω1
π. (A9)

Let us consider some particular arrays. Due to the symmetry of arrays, some special properties can be obtained:

� For orthotropic arrays including rectangular arrays and rhombic arrays, S2m = S̄2m, ε = ε̄, thus S2m and ε are real;
� For a square array, S2m = i2mS2m and ε = i2ε, thus besides S2m and ε are real, S2m = 0 for 2m �= 4l (m ≥ 2, l ≥ 1)

and ε = 0;
� For a hexagonal array, S2m = (eiπ/3)2mS2m = (ei2π/3)2mS2m and ε = (eiπ/3)2ε = (ei2π/3)2ε, thus besides S2m and ε

are real, S2m = 0 for 2m �= 6l (m ≥ 2, l ≥ 1) and ε = 0.

Numerical results of S4, S6, and ε calculated by formulae (A2), (A3), and (A9) for some typical arrays are listed in Table
A1. Note that the sums S2m and ε are related to the elliptic functions, thus they can also be evaluated directly in some
standard math software [5].
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