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Based on the harmonic analysis [Liu et al., Phys. Plasmas 22, 112112 (2015)], the
analytical investigation on the harmonic evolution in Rayleigh-Taylor instability (RTI) at a
spherical interface has been extended to the general case of arbitrary Atwood numbers by
using the method of the formal perturbation up to the third order in a small parameter. Our
results show that the radius of the initial interface [i.e., Bell-Plessett (BP) effect] dramati-
cally influences the harmonic evolution for arbitrary Atwood numbers. When the initial
radius approaches infinity compared against the initial perturbation wavelength, the ampli-
tudes of the first four harmonics will recover those in planar RTI. The BP effect makes the
amplitudes of the zeroth, second, and third harmonics increase faster for a larger Atwood
number than smaller one. The BP effect reduces the third-order negative feedback to the
fundamental mode for a smaller Atwood number, and strengthens it for a larger one. Hence,
the BP effect helps the fundamental mode grow faster for a smaller Atwood number.
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I. INTRODUCTION

One of the most important factors, which can limit target
performance in inertial confinement fusion (ICF), is an
unstable growth of target nonuniformities leading to capsule
disruption during the implosion, reducing a neutron yield,
and Rayleigh-Taylor instability (RTI) is the most dangerous
one.' The RTI has been extensively investigated theoreti-
cally,*'* experimentally,'>'® and numerically.'”° Before
the RTI enters a strong nonlinear stage,”' % it will undergo a
linear stage, and then a weakly nonlinear stage.

Generally, the RTI occurs on an interface separating a
light fluid of density p,; and another heavier one of density p,,
(p; < py,) at cases: the light fluid supporting the heavier one in
a gravity field —ge, where g is acceleration or accelerating
the heavier fluid.*>~® The density difference of the fluids on
both sides of the interface is expressed as a normalized quan-
tity, namely, Atwood number A = (p, — p;)/(p, + p))-
Under the above conditions, any small amplitude perturbation
of the interface can stimulate the RTI. Assume that an initial
perturbation is in the form y = n(x,t = 0) = ecos(kx) with
ke < 1 on an interface, in which k = 27/ is wave number, 1
is perturbation wavelength, and ¢ is a perturbation amplitude
of the initial interface, then this interface will grow. Initially,
the initial cosine modulation with a small amplitude grows
exponentially in time ¢, n; = ee’', where 7 = \/Akg is the lin-
ear growth rate.”>*® When the perturbation amplitude is close
to its wavelength, the second harmonic, third harmonic and so
on are generated successively, and then the perturbation goes
into the weakly nonlinear regime.'>'* In the third-order
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weakly nonlinear theory,*”’ the interface position at time 7 can
be expressed as the form of 5(x, 1) = Z?:l 1; cos(ikx) with 5,
being the amplitude of the ith harmonic

1
M= = ¢ 34T+ Dy, (1a)
1 2
N, = —EAknL, (1b)
1 1
3 :E< Z—Z)kzng. (1c)

From these three expressions, one finds that the growth of the
fundamental mode is reduced by the nonlinear effect (i.e., third-
order negative feedback to the fundamental mode) [see Eq.
(1a)], for arbitrary Atwood numbers the amplitude of the second
harmonic is always negative, showing the corresponding phase
to be opposite to the initial cosine modulation’s (anti-phase) [see
Eq. (1b)] and the amplitude of the third harmonic can be positive
or negative, depending on the Atwood number: when A < 1/2,
it is positive; otherwise, it is negative [see Eq. (1¢)].'*"

For the spherical RTI in incompressible viscous fluids,
several investigations on linear stability analysis were carried
out. The analysis?’ in terms of spherical surface harmonics Y,
of degree n of the first kind was performed and the dispersion
relation was obtained. Mikaelian?® studied the linear stability
of arbitrary number N of spherical concentric shells undergo-
ing a radial implosion or explosion, by deriving the evolution
equation for the perturbations on every interface, and for the
N =2 case, obtained several analytical solutions just valid for
class A and class B. The class-A solutions are for the specific
nA(n), an expression of mode number n and Atwood number
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A [see Eq. (28b) in Ref. 20], but arbitrary evolutional radius
R(?); the class-B solutions are the reverse: valid for arbitrary
nA(n), but only specific R(f). The class-A solutions, respec-
tively, for nA(n) = —2 and 0, showed that the perturbation
amplitude is related closely to the radius of the interface and
the amplitude does not grow for the R(¢), and then a critical
Atwood number is determined. The class-B solutions mainly
discussed the four cases of the specific radial history R(¢). In
the above works, they assumed that the growing perturbations,
compared with the radius of the interface, are small, and a
source or a sink exists at the origin to keep a constant density
of the fluid inside of the spherical interface.

Based on the third-order weakly nonlinear theory in the
Cartesian coordinate system, several works have been per-
formed. Ref. 12 employed the method of the formal pertur-
bation up to the tenth order in a small amplitude parameter
to investigate the higher-order effect on nonlinear saturation
amplitude of the fundamental mode. Ref. 13 gave a second-
order theory in a cylindrical coordinate system for arbitrary
Atwood numbers to study the cylindrical effect on RTI,
namely, the effect of the initial radius of the interface known
as Bell-Plessett effect”®?’ motivated by compression and
geometrical convergence. As for the Bell-Plessett (BP)
effect, its importance and relative investigationsm*34 in RTI,
the detailed introduction can be found in Ref. 14, in which
the evolution of the first four harmonics in the spherical RTI
is analytically investigated just for the case of A = 1, without
assuming a source or a sink to exist at the spherical center to
maintain a constant density of the region inside of the spheri-
cal interface.

This work has been extended to the general case of arbitrary
Atwood numbers including A = 1. In other words, the evolution
of the first four harmonics in the spherical RTI for irrotational,
incompressible, and inviscid fluids with a discontinuous profile
for arbitrary Atwood numbers is investigated analytically.

Il. THEORETICAL FRAMEWORK AND ANALYTICAL
RESULTS

This section plans to devote to the detailed description
of the theoretical framework of this paper, and the explicit
results of amplitudes of the first four harmonics are
demonstrated.

In a spherical coordinate system (r, ¢, 0), in which r, ¢,
and 0 are, respectively, the radial coordinate, the angle mea-
sured down from the z-axis, and the azimuthal angle in the
x—y plane (here, the x, y, and z are coordinates in the
Cartesian system), there are two fluids with different densities
separated by a spherical interface r = ry. For some reasons,
there always exist perturbations at the material interface.
According to relations of the acceleration direction and fluid
distribution, two cases can motivate the spherical RTL'"® The
first means the acceleration pointing to the center of the spher-
ical system and the heavy (light) fluid occupying the outer
(inner) space of the spherical interface, and the other case is in
complete antithesis to the first. Here, we focus mainly on the
first case where the interface perturbation, for simplicity, just
distributes in the direction of the 0. In the following discus-
sion, we shall denote the properties of the fluid outside the
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interface by the subscript /2 and that inside the interface by the
subscript / unless otherwise stated. Assuming the two fluids in
a gravitational field —ge, to be irrotational, incompressible,
and inviscid, the governing equations for this system are

0 0o, 1 0%, . )
o <r2 8r> + sinp 00 =0 intwo fluids, (2a)

Os 1 0sd¢, 09, B
o smigau a0 or 0 A r=s@0, @b
Os 1 9s0¢, 0,

9 “an a. t = 0 2
8t+i smgoBH@Q or =0 at r=s(0,1), (20

99, ¢, 1 ¢,
o *3 <81 ) +21 sin® q)(a_>

9oy Iy Oy .
3+ (8) 21 sm<p< >+g’

+f(t)=0 at r=s(0,1), (2d)

(1-4)

—(1+A)

where the value of the angle ¢ is fixed as w/2, ¢;(r,0,1)
are velocity potentials for the two fluids with i denoting / or /,
and the interface perturbation s(6,7) corresponds to 7(x,?)
referring to the interface of two flat-substrate fluids in Cartesian
geometry. The Laplace equation (2a) comes from the incom-
pressibility condition in spherical geometry, Equations (2b) and
(2c) represent the kinematic boundary conditions in spherical
geometry (i.e., the normal velocity continuous condition on the
interface) that a fluid particle initially situated at the material
interface remains on the interface afterwards, and the Bernoulli
equation (2d) comes from the dynamic boundary condition
where the pressure continues across the interface.'
We consider an initial perturbation in the form

r=s(0,t=0)=ry+ ecos(xb), 3)

where ry is a positive constant, mode number k = 27ro/ 1
should be an integral and ¢ < /A. This simple perturbation,
according to Eq. (5) in Ref. 14, is easy to investigate BP
effect against planar RTI under the conditions that the pertur-
bation distributes in just one coordinate and the character
length is selected as wavelength, and the initial amplitude of
the perturbation is far less than wavelength. This spherical
perturbation is with the same mode number for variable polar
angle ¢. Because of the small amplitude perturbation in the
spherical interface, this perturbed interface is prone to RTI,
and higher harmonics (i.e., the second harmonic, the third
harmonic, and so on) will subsequently be generated by the
nonlinear process.'”> Hence, the s(0,7)¢,(r,0,7) and
¢, (r, 0, 1) can be expanded into a power series in & as

s(0,1) = rol(2) —l—Zs

0,0) + 0N, (4a)

N
$i(r 0,0 =D ¢"(r,0,0) +0G"),  (@b)

n=1

bu(r,0,1) Zc/)h r,0,1) + 0N, (4c)

n=1
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with

(=14 e"e*ay,,, (52)

s(0,1) = gnenbt Z pp—om cos(n — 2m)k0 + OGN+,

m=0
(5b)
g
(,ZS;n)(I‘,@ f . ?_‘nenﬁfzqslnn ol %(\/4;{2(}1 2m) 11— 1)
x cos(n — 2m)Kk0 + O(EN*1), (5¢)
4)57”)( o n/}tz d)h - \/41c (n—2m) +1+1>
x cos(n — 2m)k6 + O(zN*1). (5d)

Here, the normalized small parameter ¢ = ¢/1 < 1, the N is
set as 3, Gauss’s symbol [1/2] denotes a maximum integer
that is less than or equal to n/2, and f3 is the linear growth
rate in spherical RTI. As mentioned above, we just plan to
investigate the BP effect against planar RTI, so the perturba-
tion for parameter ¢ = n/2 is considered in this paper.
However, this perturbation is distributed in the whole spheri-
cal interface. In order to keep the same mode number for
different polar angles ¢, the smaller the absolute value of the
¢ is, the smaller the wavelength is. Therefore, the assump-
tion ¢ =¢/A < | can be valid for larger ¢. It should be
noted that the limitation of the & = ¢/1 < 1 is just for the
initial amplitude of the perturbation on the spherical inter-
face, different from that in the Mikaelian’s work?® where the
algebraic product of the evolution and mode number is far
less than the radius of the spherical interface.

The time function {(¢) is just the correction to the zeroth
harmonic from the higher orders including the second order,
the fourth order, and so on. That is to say, the first correction
to the function {(¢) comes from the second order, and then it
should contain factor &%, The nth correction from the 2nth
order should be with %", As a result, the series in {(z) pro-
ceeds in powers of &%, This function determines whether the
interface moves with time: the relation {(¢) = | means that
the position of the interface will keep resting; otherwise, it
will move from the 1n1t1al posmon r(t = 0) = rg. The func-
tions s (0, ¢) and (]5," (r,0,1) [d)h (r,0,1)] are, respectively,
nth-order perturbed interface and nth-order perturbed veloc-
ity potential for the inner light [outer heavy] fluid of the
interface. Regarding the (n — 2m) th Fourier harmonic at

(n) n/)’t

the nth-order, when m=0, s,", =¢&"e “om [q’),(';) o

¢hn wm — €€

2 .
¢h_n,n,2mi‘7< VA (n=2m)"+1+1)/ 2] is a generation coefficient of

the perturbation interface [generation coefficient of the
velocity potential for the light or heavy fluid]; while m > 0,
it is a correction coefficient of the nth-order for the perturba-
tion interface [a correction coefficient of the velocity

anenbt 412 (n=2m)*+1-1)/2 gl enPt
Py o VIR o P
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potential for the inner fluid or outer fluid of the interface].
Note that the perturbation velocity potentials ¢, (r, 6, ) and
¢,(r,0,t) have satisfied the Laplace equation (2a) and the
boundary conditions V¢,|._., . =0 and V¢,|._, = 0. And
the & = 1 according to the initial condition. The coupling
factors in the amplitudes of the Fourier harmonic &, ,—2m,
(n=2,---,N,andm=0, 1, ---, [n/2]) and j are what we
would like to determine. The above analysis includes that in
Ref. 14.

According to the solving method used in Ref. 35, this
nonlinear system can be solved order by order. The linear
growth rate and coupling factors of the first four harmonics
with corrections up to the third-order can be expressed as

- f2g A(A+ Va2 1)[A2(4k2 +1) — 1]
Vg | —AY (4K 1) 4 2A2(8KA 42+ 1) — 42 — 1

(6a)

20 = — — 6b
%20 22 (6b)

. A(—Ko) + Ko (AV/4AKy) —3 — )+A+\/W
22=—
4(V4Ky —3 — VKo)ro
(6¢)
5 A2(A%K,+2AKs+2K3) + 2K, (4AK* +A) + K, (4K +1)
3,1= )
64Ker2 (V1612 F141)(—A2+412+1)
(6d)
. 3A%Kg + A3K7 + A%K 1 + AKy — 2K 0(4K2 + 1)
%33 = , (6e)

48K 15K 312 (V162 +1+1)

where Ky — K3 are attached in the Appendix.

Formula (6a) expresses that the linear growth rates in
spherical and Cartesian geometries are of difference.
Keeping Atwood number A, acceleration g and mode number
K invariable, the smaller the initial radius of the interface r
is, the larger the linear growth rate in the spherical geometry
is. It is easy to find that when the critical Atwood number
A. = 1/(4x% 4 1), the normalized growth rate 3 is zero, and
when A < A., the f is an imaginary number. These show
that when A < A, the spherical RTI will vanish, and only
when A > A, it will happen. For example, A, = 1/5if k=1
and A, = 1/37 if k=3, and so on. As the mode number x
increases, the critical Atwood number A, will approach zero.
This trend of the critical Atwood number with mode number
is also predicted in Ref. 20. However, for the specific mode
number, the critical Atwood number in this paper is much
less than theirs. In addition, expressions (6¢)—(6e) demon-
strate that coupling factors are influenced by not only A but
also x and r

If the constant 4 is considered in both the spherical and
Cartesian geometries [i.e., x/ro = k], and 7 is large [i.e.,
7o — 4o0], the interface constructed by the above results of
the spherical RTI will be reduced to that corresponding to
the planar one. That is, the first four harmonics in spherical
RTI will be simplified to those [see Eqs. (1a)—(1c)] in planar
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RTL In this configuration, it should be noted that the feed-
back to the zeroth harmonic from the second-order will
vanish away, which can be easily confirmed in Eq. (6b).
Note that the generation of d,( is an essential character
completely different from the result in Cartesian geometry
where o g = 0.

Accordingly, the interface function at the framework of
the third-order theory in the spherical RTI takes the form
r=so+ Zi:l spcos(nkl), where the sy and the amplitude
of the nth harmonic, s,,, are

so = (ro, (7a)
(=14 a0y, (7b)
s1= s (1 + 3,017, (7c)
52 = oM} (7d)

53 = 8330} (Te)

where 3, = e is the linear growth amplitude of the funda-
mental mode in the spherical geometry. It should be pointed
out that just the amplitude of the fundamental mode is cor-
rected by the third harmonics, but the second and the third
harmonics are not. As stated just now, an essential character
different from the Cartesian case is that the zeroth harmonic
appears in spherical RTI [see Equation (7b)]. This means that
the position of the interface will be changed from the initial
unperturbed interface r = rq into r = {(¢)r¢ with the evolution
of the perturbation. The zeroth harmonic has an effect of
reducing the radius of the spherical interface. Substitute Eqgs.
(7b) and (6b) to Eq. (7a), one finds that the second-order nega-
tive feedback to the zeroth harmonic [i.e., the initial zeroth
interface r = r] decreases the radius of the spherical interface.
However, this phenomenon of the second-order negative

)112

t(g/n

feedback to the zeroth harmonic does not appear for the planar
RTI. That is to say, for the planar RTI, the zeroth interface
keeps invariable all the time, but for the spherical RTI, it
moves toward the center of the spherical space.

lll. HARMONIC EVOLUTION

Because of the nonlinearity, high harmonics will be gen-
erated in quick succession and the initial interface develop-
ing in linear growth will be reduced. The interface includes
two sections: the initial unperturbed interface known as the
zeroth harmonic and perturbed interface. Within the third-
order theory, the zeroth harmonic has a second-order correc-
tion, the fundamental mode (the first harmonic) does the
third-order one, and the second and third harmonics have no
feedback from higher orders. For unity, we use the character-
istic quantities 4 and g to normalize the initial radius and the
time. The evolution of the amplitude of these four harmonics
is considered in this paper. Figures 1-4 show the evolution
of the zeroth, first, second, and third harmonics and Fig. 6
shows the third-order feedback to the fundamental mode.
In order to better understand the spherical effect compared
with the planar case, at Atwood number A=0.3 or A =0.9,
we take the initial radius of the unperturbed interface as
Fo=17/2m, 14/2x, 70/2n, 7000/27, and infinity (i.e., the
amplitudes of the first, second and third harmonic expressed
by Egs. (1a)—(1c), and the amplitude of the zeroth harmonic
known as nothing), respectively. The initial amplitude of the
perturbed interface is set as &€ = 1,/1000.

Figure 1 shows that for the case of large 7, the ampli-
tude of the zeroth harmonic tends to zero (i.e., the planar
result). With the 7y decreasing, the amplitude of the zeroth
harmonic quickly increases. That’s to say, the spherical
effect inspires the appearance of the zeroth harmonic, which
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A=0.3 A=0.9
—=a— planar case ‘ —=— planar case
—e 1/A=7000/2r s —e1/A=7000/2r
Y
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0.1+

Amplitude of the fundamental mode

a1 A=T0/27
v /A=1412x
<« r=Ti2n

3.0

t(g/n

112
)

4.0

Amplitude of the fundamental mode

—v—r,/A=14/2n
019 —<—r /A=T/2n

e A=T0021 S

1/2

t(glr)

FIG. 2. The amplitude evolution of
the first harmonic, s;/4, versus time
t\/g/A for Atwood numbers A=0.3
(a) and A=0.9 (b). The initial ampli-
tude is ¢/4 = 1,/1000.
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vanishes in the planar RTI. The negative amplitude of the
zeroth harmonic indicates that the unperturbed interface
starts moving towards to the spherical center. The unper-
turbed interface in planar RTI, nevertheless, keeps rest.
Accordingly, the phenomenon that the unperturbed interface
evolves to the spherical center is an innate character in
spherical RTI. This character is more remarkable for the
larger Atwood number.

Figure 2 denotes that the fundamental mode has the same
trend as the planar result. With the time, the amplitude of the
fundamental mode increases to its maximum value (i.e., satu-
ration value) firstly, and then decreases. For the smaller
Atwood number (A = 0.3), the smaller the initial radius of the
interface is, the later the amplitude reaches its saturation value
[see Fig. 2(a)]; however, for the larger Atwood number
(A=0.9), the amplitude saturates at almost the same time [see
Fig. 2(b)]. In addition, especially for the smaller Atwood
number, the smaller the radius is, the larger the amplitude is.
Certainly, the phenomenon of the decreasing amplitude of the
fundamental mode is off normal, so our third-order weakly
nonlinear theory cannot predict the evolution of the funda-
mental mode any longer. That is to say, our theory is valid for
the normalized time 1(g/4)'/* <42 at A=03 and
t(g/7)"/* <25 at A=09. This abnormal phenomenon
appears when the third-order negative feedback to the funda-
mental mode is stronger than the linear growth of the funda-
mental mode. Therefore, if one wants to predict the amplitude
evolution of the fundamental mode for longer time, the con-
sideration of higher-order perturbations is needed.

The amplitude of the second harmonic in Fig. 3 is found
to grow negatively for the different initial radius of the inter-
face. When the normalized radius 7y tends to infinity, the
amplitude tends to be the result of the planar RTI. With the
decreasing 7, the amplitude grows fast, especially for the
larger Atwood number.
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-0.3

A=0.3
—=— planar case
—e—r,/A=7000/2r

—A— 1 /A=70/2n
v r/A=1412n
< r0/7\.=7/27'(

T
3.50 3.75 4.00

)1/2

t(g/n

4.50

Amplitude of the third harmonic

0.3

—a—r /A=70/2 A /A=70/2 .
0 " 03+ o 8 W\ T tude is &/ = 1/1000.
—v—r/A=14/2z by v r/A=14/2r \
< h=Ti2e “ 1 A=TI2n AR
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In Fig. 4, one finds that for A = 0.3, the amplitude of the
third harmonic grows negatively, while for A =0.9, it does
positively. Whatever its positive or negative growth, the
smaller the radius is, the faster it grows. This is more distinct
for the larger Atwood number.

Two puzzling questions in the above discussion need us
to further research. One is that the spherical effect makes the
zeroth, second, and third harmonics grow rapidly, especially
for the larger Atwood number, while for the fundamental
mode, the spherical effect makes it grow faster for the
smaller Atwood number than the larger one. The other is that
the amplitude of the third harmonic has the positive or nega-
tive growth.

In this paper, we just consider the harmonic to the
third order. Hence, the zeroth harmonic and the first one
are separately corrected by the second order and third
order, and the second and third harmonics are not. From
Fig. 5, one can see that for different initial radii, the linear
amplitude of the fundamental mode is strengthened by the
spherical effect, especially for the larger Atwood number.
Figure 6 shows that the smaller the radius is, the weaker
and the later the feedback to the fundamental mode is,
especially for the smaller Atwood number. This can help
us better understand the first question mentioned above.
The amplitude of the third harmonic grows either posi-
tively or negatively, depending on the factor &33;. When
the value of the &33 > 0 (&33 < 0), the amplitude grows
positively (negatively). When d33 = 0, it vanishes. From
Fig. 7, one finds that the factor &33 changes with the
Atwood number and the initial radius. It is obvious that
the critical Atwood number is 0.5. At A <0.5, the factor
@33 < 0 and for A >0.5, the factor &3 > 0. This means
that the amplitude of the third harmonic grows positively
at A > 0.5 or negatively at A < 0.5. When A =0.5, the third
harmonic will vanish.
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—=— planar case
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FIG. 4. The amplitude evolution of the
third harmonic, s3/4, versus time
t\/g/7 for Atwood numbers A=0.3
b (a) and A=0.9 (b). The initial ampli-
tude is ¢/ = 1/1000.
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FIG. 5. The linear amplitude of the
fundamental mode, 7,,//4, versus time
t\/g/A for Atwood numbers A=0.3
(a) and A=0.9 (b). The initial ampli-
tude is ¢/4 = 1,/1000.

FIG. 6. The amplitude evolution of the
third-order feedback to the fundamen-
tal mode, &3 117&_ /7, versus time
t\/g/4 for Atwood numbers A=0.3
(a) and A=0.9 (b). The initial ampli-
tude is ¢/ = 1/1000.
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FIG. 7. The factor @33 in the amplitude of the third harmonic versus
Atwood number and the initial radius (curved surface). The value of the zero
is indicated by the planar surface.

IV. CONCLUSION

In this investigation, we have used the method of
the small parameter expansion with nonlinear corrections up
to the third order to analytically explore the amplitude evolu-
tion of the first four harmonics in the classical RTI (irrota-
tional, incompressible, and inviscid fluids) with a
discontinuous profile in spherical geometry for arbitrary
Atwood numbers. Take the same initial wavelength and large
initial radius, then our spherical results will tend to those in
planar RTI where the zeroth harmonic does not appear.

Unlike the planar RTI, the second-order feedback to the
zeroth harmonic always grows negatively for the arbitrary
Atwood number and initial radius. This will lead to the initial
unperturbed interface to move towards to the center of the

T T
2.250 2375

[(g/)\‘)ﬂZ

2.500

spherical system. Especially for the large Atwood number,
the smaller the initial radius is, the faster the initial unper-
turbed interface moves. In another word, for the large
Atwood number, the spherical effect has a great influence on
the interface.

The spherical effect strengthens the amplitude growth of
linear harmonics, which are not corrected by the higher
order, e.g., the linear amplitude of the fundament mode #5Lc,
the second and third harmonics for the arbitrary Atwood
number. The larger Atwood number is, the faster they grow.
For the fundamental mode corrected by the third order, the
spherical effect still strengthens its growth. However, the
smaller Atwood number is, the faster the amplitude of the
fundament mode grows. This is due to the feedback quantity
from the third order. Although the third order gives the fun-
damental mode a negative correction, the stronger the spheri-
cal effect is (that is, the smaller the initial radius), the weaker
the feedback is. Thus, for the smaller Atwood number, the
spherical effect strengthens the linear growth of the funda-
mental mode, and weakens the feedback to the fundamental
mode from the third order.

The third harmonic grows positively or negatively,
depending on the factor d3 3, which is a function of coupling
the initial radius and Atwood number. The d33 >0
(@33 < 0) corresponds to the positive (negative) growth.
However, we find that for the arbitrary initial radius, the
Atwood number controls its growth. When the A <0.5
(A>0.5), it grows negatively (positively).

SUPPLEMENTARY MATERIAL

See supplementary material for factors of the mode
number.
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APPENDIX: FACTORS OF THE MODE NUMBER Ky-K13

The Ky — K13 in coupling factors of the first four harmonics are

Ko =4K> + 1,

Ki = 576i* + (—40\/16K2 +1V4K2 + 1 — 40V/4K2 + 1+ 3611612 + 1 +724) K2 — 43(\/4K2 +1-— 1) ( 162+ 1 1),
K, = K4<128\/4K2 +1-80V16Kk2+1— 80) + K2 (8\/16K2 + 1V4K2 + 1+ 1064v/4K2 + 1 — 3600/ 16K2 4 1 — 360)

+661/16K2 + 1412 + 1 + 661/4x2 + 1 — 85\/16K2 + 1 — 85,

Ky = —96K° (8 42 +1-3V16K2+ 1 — 3) + 8K4(76\/16K2 + 1V4AK2 + 1+ 10V4K2 + 1+ 9V 16K2 + 1 + 9)

+8K2(\/16K2 + 1V + 1 - 4542 + 1+ 21V 1682 + 1 +21) — (23 42+ 1 —42) (\/161@ +1+ 1),

K4:—48;c4<8 42 4+1-3 16K2+1—3>—4K2<6\/16K2+1\/4K2+1+86\/4K2+1—25\/16K2+1—25>

— (20\/4;c2 +1- 1) (\/161{2 + 1+ 1),
Ks = K4<144\/16K2 +1VAK2 + 1+ 144/ 42 + 1 — 960/ 16K2 + 1 — 1312) + 52 (80\/16K2 + 1V4K2 + 1 +80v/4K2 + 1
—76\/ 1612+ 1 — 764) — 1536K0 4+ 43412 + 1 + 43412 + 1V 16K2 + 1 — 431/16x2 + 1 — 43,
Ks = —AV4K2 + 1+ AV16K2 + 1 — 4 + V42 + 11612 + 1 — 1,

K7 = 12288x° — 96K4(11\/16K2 IV + 1+ 1142+ 1 — 8/ 16K2 + 1 + 3/ 16K2 + 11/36K2 + 1) — 961
x (3\/36;<2+ —58) —4K2<75\/16K2 + 1V/4K2 + 1+ 60v/361K2 + 11/4K2 + 1) —4;<2(75\/4x2 +1

—75v/16K2 + 1+ 91652 + 13V/36x% + 1 +9/3612 + 1 — 119)7

Ky = 16K4<32\/m— 11V16K2 + 1 — 11) —4K2(—8\/16K2 +1V4K2 + 1) —4K2(3\/16K2 +1v/36x2 + 1
X VAK2 + 1+ 3v/3612 + 142 + 1 — 120/412 + 1) —4K2(6\/16K2 + 1443612+ 1 +6)
- ( 162+ 1+ 1) (\/36K2+ 1War2 +1— Va2 + 14+ /3612 + 1+ 1),

Ko = —4608x° — (m-f— 1) (25\/36K2 TV F T4V 42 11— 3736k + 1 — 29) + 32K4(9¢m
X VAKE + 1 —361/3612 + 142 + 1+ 942 + 1 —9y/16x2 + 1) +32K4<21\/16K2 +1v/3612 + 1
+21v/36Kk2+ 1+ 13) —4K2(23\/16K2 F 1VA2 + 1+ 181612 4 11/36K2 + 13/4K2 + 1+ 118y/3612 + 1
x \/W) —4x2(23 42+ 1 — 11V16K2 + 1 — 791662 + 13/3612 + 1 — 79/36K2 + 1 — 127),

Ko = 12 (52@— 191662 + 1 + 124/3612 + 1 — 19) - K2<—39\/16K2 Va2 127162 + 1
% V/36K2 + 142 + 1 4+27V/3612 + 14K + 1) - K2(57\/4K2 F1+9vV16K2 + 1 — 9162 + 11/36K2 + 1

—73V362 + 1 + 9) — (\/161(?2 T+ 1) (7\/36K2 F VAR + 1+ 6V42 + 1 — /3612 + 1 — 12),
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K = «° (6144\/4;@ +1-2112/16K2 + 1 — 2112) +x* (384\/16K2 + 1V4K2 + 1 — 144/16K2 + 11/36K2 + 1

x Va2 + 1) + K4<—144\/36K2 T 1V4AK2 + 1+ 3552¢/4K2 + 1 — 1608+/16K2 + 1 — 16321/36x2 + 1 — 1608)

T K2<198\/16K2 T IVA2 1126V 1612 + 11/36K2 + 1V 412 + 1+ 12613612 + 11/4K2 + 1)

+ (598\/ 42 + 1 —3220/16K2 + 1 — 102¢/1612 + 11/36K2 + 1 — 5661/36K2 4 1 — 322) +25V16K2 4+ 1

X V/4K2 4+ 1+ 29V 16K2 + 11/36K2 + 1742 + 1 +29v/36K2 + 142 + 1 +25vV4r2 + 1 — 13V 16K2 + 1

—29v/16K2 + 11/36K2 + 1 — 294/36K2 + 1 — 13,

Ki» :A(\/4K2 +1— /3612 + 1) + 452

—VAK2 + 1362 + 1+ 1,

K1 ZA(\/16K2 1= Va2t 1) — 452

+ Va2 + 1V/16K2 + 1 — 1.
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