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ABSTRACT
This study explores the effects of wheel set gyroscopic action on
hunting stability by calculating linear and nonlinear critical speeds.
First, a dynamic model for a high-speed vehicle with 23 degrees of
freedom is developed by considering wheel set gyroscopic action.
The linear and nonlinear critical speeds are calculated by eigenvalue
analysis and drawing a bifurcation map, respectively. Two computer
programs for linear and nonlinear stability analysis are developed.
Second, based on an actual high-speed vehicle in China, the effects
of wheel set gyroscopic action on hunting stability are quantitatively
investigated using computer simulation. Furthermore, the difference
between the effects of gyroscopic moments about the x-axis and z-
axis is discussed. The results showthat themoment about the x-axis is
harmful tohunting stability, but themoment about the z-axis is bene-
ficial to hunting stability. However, the integrated effect of these two
moments can enhance the critical speeds and suppress the hunting
motion.
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1. Introduction

Currently, the running speed of high-speed rail in China is about 300 km/h, and it will
probably exceed 400 km/h in the future. When the train is running at high speeds, there
are new safety challenges. The hunting stability is an important index of safety for rail-
way vehicles. Regarding hunting stability, certain factors that can be ignored at low speeds
become very important at high speeds, and wheel set gyroscopic action is the most rep-
resentative among them. At a running speed of 300 km/h, the rotational frequency of the
wheel set reaches 30 r/s, and the angular velocity can reach 83 rad/s. If the wheel set incurs
roll and yawmotion in this condition, thewheel set gyroscopic actionwill be fairly obvious.

Extensive investigations in linear and nonlinear hunting stability of railway vehicles on
straight and curved tracks have been reported. Kim et al. [1], Lee and Cheng [2,3], Cheng
and Lee [4], Cheng [5] and Cheng and Hsu [6] study the linear stability characteristics
of railway vehicles using the eigenvalue analysis, and analyse the influence of suspension
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parameters and creep models on linear critical speed. Allen and Iwnicki [7] compare the
critical speeds of vehicles on a track and on a roller rig. True [8] defines the nonlinear crit-
ical speed in such a way that it is theoretically guaranteed that no hunting motion can take
place at speeds below the critical speed. He hypothesises that the nonlinear critical speed
should be taken as the criterion for the speed limit. True [9,10] and True andKaas-Petersen
[11] describe the basic theory of bifurcation analysis of nonlinear vehicle systems, and show
that the correct approach for determining the nonlinear critical speed is to find the smallest
bifurcation point using the path-following method. Kim and Seok [12] perform a bifurca-
tion analysis on a nonlinear railway vehicle with dual bogies to examine the coupling effect
of the bogies on the vehicle’s hunting behaviour. Polach and Kaiser [13] analyse the hunt-
ing behaviour of a vehicle system using two different methods: a path-following method
and a brute-force method. The results using these two methods are compared. True [14],
Jensen and True [15] and True and Jensen [16] study chaos and asymmetry hunting on
railway vehicle dynamics, present bifurcation diagrams, and investigate the dynamics of
bogie models with realistic wheel and rail profiles. Sedighi and Shirazi [17] present 2-D
and 3-D bifurcation diagrams, and investigate the effect of suspension parameters, wheel
set mass, and wheel conicity on critical speed. Eom et al. [18] carry out theoretical anal-
ysis and experimental study using a small-scale bogie model. Dong et al. [19] obtain the
bifurcation diagrams of a vehicle system by the shooting method, and perform an exten-
sive analysis on bifurcation characteristics of the CRH vehicles. Huang et al. [20] study
low-frequency hunting motion of high-speed vehicles by numerical simulation and field
experimentation, and the results regarding the influence of suspension parameters are pro-
vided. Zeng et al. [21,22] investigate the influence of aerodynamic loads onhunting stability
of high-speed vehicles. Zboinski and Dusza [23–26] conduct numerous of studies on the
nonlinear stability of railway vehicles running on a curved track by drawing bifurcation
diagrams. The studies involve the influence of suspension parameters, rail radius and incli-
nation, and wheel–rail profile and mean rolling radius on the hunting stability. Zeng and
Wu [27] study the critical speed at the Hopf bifurcation point on a circular curved track.
The influences of track curve radius and super elevation on nonlinear critical speed are
investigated.

The wheel set gyroscopic action is a significant factor that influences the hunting stabil-
ity of high-speed railway vehicles. There are few studies on the effect ofwheel set gyroscopic
action on hunting stability. Hirotsu [28] calculates the change of huntingmotion after con-
sidering wheel set gyroscopic action. According toHirotsu’s research, the vehicle vibration
becomes weak because of wheel set gyroscopic action. He qualitatively indicates that the
wheel set gyroscopic action is beneficial for hunting stability. Based on the research regard-
ing the stability of cone tread wheel sets, Huang [29] obtains the contribution rate of wheel
set gyroscopic moment by matrix operations. He analyses the influence of vehicle speed,
equivalent conicity, and primary stiffness on the contribution rate. He concludes that gyro-
scopic action is induced by the spin creep coefficient and pitch moment of inertia, and that
the contribution rate increases with increasing vehicle speed.

The above research provides a certain understanding of the wheel set gyroscopic effect,
and provides references for us. However, there are three points about the current research
that require explanation. First, the above research is limited to qualitative research; the
influence of wheel set gyroscopic action on critical speed has not been studied. Second,
Huang’s research [29] is conducted for cone tread wheel set and linear stability, and is
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much different from the situation of the whole vehicle. Third, it is known that the wheel
set gyroscopic action behaves as the moments about the x-axis and z-axis. The difference
between these two moments is the focus of our research.

In consideration of these points, the effect of wheel set gyroscopic action on hunting sta-
bility should be quantitatively analysed in detail. In order to conduct this study, a dynamic
model of high-speed vehicles considering wheel set gyroscopic action is developed. The
mechanics of the effect of wheel set gyroscopic action on hunting stability is discussed on
the basis of the governing equations. On the basis of previous [21,22] studies, we develop
computational programs to analyse the effect of wheel set gyroscopic action. We calculate
the influence of wheel set gyroscopic action on the characteristics of hunting stability, such
as linear critical speed, nonlinear critical speed, bifurcation diagrams, and amplitude of
hunting motion.

This paper is structured as follows. In Section 2, we introduce the vehicle dynamical
system and themethod of stability analysis. Section 3 describes the effect of wheel set gyro-
scopic action on linear stability. Section 4 describes the effect on nonlinear stability. The
two aspects of effects on yaw motion and normal contact force, namely the influences of
the moment about the z-axis and the moment about the x-axis, are compared in Section 5.
Finally, the conclusions are presented in Section 6.

2. Model and theory

2.1. Vehicle dynamical model

To quantitatively study the effects of gyroscopic action on hunting stability, a dynami-
cal model of a high-speed railway vehicle is developed, referring to an actual high-speed
railway vehicle that is widely used in China. Figure 1 is a sketch of the railway vehicle

Figure 1. A sketch of the railway vehicle dynamical system [22].
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Table 1. DOF of the vehicle.

Motion

Vehicle Parts Lateral Vertical Roll Yaw Pitch

Body yc zc φc ψc βc
Bogies (n = 1,2) ytn ztn φtn ψtn βtn
Wheel sets (i = 1–4) ywi ψwi

dynamical system [22]. The dynamical model contains 23 degrees of freedom (DOF).
Table 1 shows the 23 DOFs.

The wheel set roll angle φw and the vertical displacement zw are not independent vari-
ables, but are subject to wheel/rail geometric constraints and lateral motion of the wheel
set. The wheel/rail profile LMA/UIC60 is adopted in this study.

In this study, both lateral dampers and the yaw dampers are modelled by the con-
nection of spring and damping in series. We consider the lateral displacements of the
spring–damping connecting point of the lateral dampers yhi(i = 1, 2), and the longitu-
dinal displacements of the spring–damping connecting point of four yaw dampers ysLi and
ysRi(i = 1, 2). There are six DOFs of the connecting points.

Consider a railway vehiclemoving on a flat and straight track. The governing differential
equations for motion of the vehicle are given as Equations (1)–(14).

For the wheel sets,

mwÿwi − 2kpy[−ywi + ytn + htzφtn − (−1)iltψtn]

= −NLi sin(λri + φwi)+ NRi sin(λli − φwi)+ FyLi + FyRi, (1)

Iwzψ̈wi + Iwy
V
R0
φ̇w + 2dzxkpx(dzxψwi − dzxψtn)

= d0(FxRi − FxLi)+ d0ψwi(FyRi − FyLi)

+ Mzi + d0ψwi[NRi sin(λri − φwi)+ NLi sin(λli + φwi)] cosψwi, (2)

where n = 1 for i = 1, 2 and n = 2 for i = 3, 4. It is noted that in Equations (1) and (2), the
subscript n = 1 or 2 denote the front and the rear frame, and the subscript i = 1–4 denote
the ith wheel set, respectively. The wheel set roll angle φw and the vertical displacement zw
are not independent variables, but subject to wheel/rail geometric constraints and lateral
motion of the wheel set. Hence, there are no independent equations with respect to roll
motion and vertical motion similar to the equations of lateral motion and yaw motion
given by Equations (1) and (2).

For the bogies,

mtÿti + 2kpy(2yti − yw(2i) − yw(2i−1) + 2htzφti)

− 2kty1(−yti + yc + htkφti + hckφc − (−1)ilcψc)

− kty2(yhi − yti + hthφti) = 0, (3)

mtz̈ti + 2kpz(2zti − zw(2i) − zw(2i−1))+ 2cpz(2żti − żw(2i) − żw(2i−1))

− 2ktz1[zc − zti + (−1)ilcβc] = 0, (4)
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Itxφ̈ti + 2kpyhtz(yw(2i−1) + yw(2i) − 2yti − 2htzφti)

+ 2kpzd2zx(2φti − φw(2i−1) − φw2i)+ 2cpzd2zx(2φ̇ti − φ̇w(2i−1) − φ̇w2i)

− 2htkkty1[yti − yc − htkφti − hckφc + (−1)ilcψc]

+ hthkty2(yhi − yti + hthφti)+ 2d2khktz1(φti − φc) = 0, (5)

Itzψ̈ti − 2kpylt(yw(2i−1) − yw(2i) − 2ltψti)− 2kpxd2zx(ψw(2i−1) + ψw(2i) − 2ψti)

− 2d2khktx1(ψc − ψti)− dsxksx(ysRi − ysLi − 2dsxψti) = 0, (6)

Ityβ̈ti − 2ltkpz(−zw(2i−1) + zw(2i) − 2ltβti)− 2ltcpz(−żw(2i−1) + żw(2i) − 2ltβ̇ti)

+ 4h2tzkpx1βti + htsksx(2htsβti + ysLi + ysRi)+ 2htkktx1(hckβc + htkβti) = 0, (7)

where i = 1, 2. The subscripts i = 1 and 2 in Equations (3)–(7) denote the front and the
rear frame, respectively.

For the car body:

mcÿc − 2kty1(yt1 + yt2 − 2yc − htkφt1 − htkφt2 − 2hckφc)

+ kty2(−yt1 + hthφt1 + yh1)+ kty2(−yt2 + hthφt2 + yh2) = Fy_wind, (8)

mcz̈c + 2ktz1(2zc − zt1 − zt2) = Fz_wind, (9)

Icxφ̈c − 2kty1hck(yt1 + yt2 − 2yc − htkφt1 − htkφt2 − 2hckφc)

+ hchkty2(−yt1 + hthφt1 + yh1)+ hchkty2(−yt2 + hthφt2 + yh2)

− 2ktz1d2kh(φt1 + φt2 − 2φc) = Mx_wind, (10)

Iczψ̈c − 2kty1lc(yt1 − yt2 − htkφt1 + htkφt2 − 2lcψc)

+ lckty2(−yt1 + hthφt1 + yh1)− lckty2(−yt2 + hthφt2 + yh2)

+ dsxksx(−2dsxψt1 + ysR1 − ysR1)+ dsxksx(−2dsxψt2 + ysR2 − ysL2)

− 2ktx1d2kh(ψt1 + ψt2 − 2ψc) = Mz_wind, (11)

Icyβ̈c − 2ktz1lc(zt2 − zt1 − 2lcβc)+ 2ktx1hck(2hckβc + htkβt1 + htkβt2)

− hcsksx(2htsβt1 + ysL1 + ysR1)− hcsksx(2htsβt2 + ysL2 + ysR2) = My_wind. (12)

For the connecting point of lateral dampers and yaw dampers,

kty2(yti − hthφti − yhi)− cty2[ẏhi − ẏc − hckφ̇c + (−1)ilcψ̇c] = 0, (13)

ksx(htsβti + ysLi + dsxψti)+ csx(hcsβ̇c + dsxψ̇c + ẏsLi) = 0,

ksx(htsβti + ysRi − dsxψti)+ csx(hcsβ̇c − dsxψ̇c + ẏsRi) = 0. (14)

where i = 1 and 2 denote the dampers on the front and on the rear frame, respectively.
All the physical quantities in Equations (1)–(14) are defined in Appendix 1. The nomi-
nal design parameters of the vehicle system are provided in Appendix 2. Fy_wind, Fz_wind,
Mx_wind, Mz_wind, and My_wind are the components of aerodynamic loads. The interest in
this study is on the analysis of the effect of wheel set gyroscopic action on hunting stability
of a railway vehicle on a straight track, so they are set to zero.
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2.2. Normal contact force and creep force

The nonlinear wheel/rail relationship is themost important nonlinear factor in the dynam-
ical system of a railway vehicle. In this study, the LMA/UIC60 wheel/rail profile is adopted.
The profile of a wheel/rail includes several curves, and the wheel/rail contact relationship
includes wheel set rolling radius, contact angle, roll angle of the wheel set, transverse radius
ofwheel profile, and transverse radius of rail profile. Thewheel/rail contact relationship can
be considered as nonlinear functions of wheel set lateral displacement yw. Because of the
difficulty of expressing those contact parameters as explicit functions of yw, the profiles of
wheel and rail are described as a discrete point set in terms of yw. The contact parame-
ters are calculated by using spline interpolation. The wheel/rail normal contact forces and
creep forces can then be calculated by the obtained contact parameters.

The normal contact forces can be obtained by the motion equations of roll angle φw and
vertical displacement zw of the wheel set (φw and zw are subject to wheel/rail geometric
constraints, not independent), as shown in Equation (15). FpzL and FpzR are the change of
the stiffness force of primary suspension fpzL and fpzR are the change of the damping force
of primary suspension. The others are defined in Appendix 1.

NL = 2 cos(λL + φw)(W + Mwz̈w − FpzL − FpzR − fpzL − fpzR)

+ 2 cos(λL + φw)

d0

⎛
⎝−Iwy

V
R0
ψ̇w − dzxFpzL + dzxFpzR − dzxfpzL + dzxfpzR

−FyLRL − FyRRR − RRNR sin(λR − φw)+ RLNL sin(λL + φw)

⎞
⎠

NR = 2 cos(λR − φw)(W + Mwz̈w − FpzL − FpzR − fpzL − fpzR)

− 2 cos(λR − φw)

d0

⎛
⎝−Iwy

V
R0
ψ̇w − dzxFpzL + dzxFpzR − dzxfpzL + dzxfpzR

−FyLRL − FyRRR − RRNR sin(λR − φw)+ RLNL sin(λL + φw)

⎞
⎠ .

(15)

According to Kalker’s linear creep theory [30], the creep forces and moments are calcu-
lated by Equation (16), where Fx is the longitudinal creep force and Fy is the lateral creep
force. The terms γx, γy, and γs are the longitudinal, lateral and spin creepages, respectively.

Fx = −f11γx,

Fy = −f22γy − f23γs,

Mz = f23γy − f33γs.

(16)

The creep coefficients are calculated as follows:

f11 = G(ab)C11,

f22 = G(ab)C22,

f23 = G(ab)3/2C23,

f33 = G(ab)2C33,

(17)

where G is the combined modulus of rigidity, a and b represent the contact ellipse semi-
axes, and C11, C22, C23, and C33 are the coefficients that have been tabulated in Ref. [31].
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In order to evaluate the wheel/rail creep forces more accurately, Shen–Hedrick–Elkins’
nonlinear creep force model [32] is used:

F =
√
F2x + F2y , (18)

F′ =

⎧⎪⎪⎨
⎪⎪⎩
f · N

[
F

f · N − 1
3

(
F

f · N
)2

+ 1
27

(
F

f · N
)3

]
(F ≤ 3fN),

f · N (F > 3fN),

(19)

where f is the friction coefficient. Saturation constant ε is calculated by Equation (20).

ε = F′

F
. (20)

The modified creep forces and moments are obtained as

F′
x = ε · Fx,

F′
y = ε · Fy,

M′
z = ε · Mz.

(21)

2.3. Method of analysis of linear and nonlinear stability

To investigate the effect of wheel set gyroscopic action on linear stability, we linearise the
nonlinear dynamic equations of the vehicle system at the centre of the track. The governing
differential equations for the motion of the vehicle can be re-expressed by the following
system of first-order differential equations [33]:

ẋ = f[x(t)]. (22)

For any given vehicle speed, the following matrix can be defined:

A =
(
∂f
∂x

)∣∣∣∣
x=0

. (23)

The stability of the nonlinear system described by Equation (22) in the neighbourhood
of its equilibrium point can be determined by the eigenvalues of matrix A. If all the eigen-
values have negative real parts, the system is asymptotically stable. If there is at least one
eigenvalue with a positive real part, the system is unstable. When the maximum real part
turns out to be zero, the vehicle system reaches a critical state, and the corresponding speed
is the critical speed of hunting stability. A computer program capable of incorporating the
effects of wheel set gyroscopic action is developed.

As for the dynamical system of a railway vehicle with subcritical bifurcation, the non-
linear critical speed should be the smallest bifurcation point [9]. An appropriate way to
determine the smallest bifurcation point is to apply the method known as path follow-
ing. In order to calculate the nonlinear critical speed, the governing differential equations
are solved by the Runge–Kutta method, and a computer program capable of calculat-
ing the response of the nonlinear vehicle dynamical system is developed. According to
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Figure 2. A schematic diagram of nonlinear critical speed [22].

True’s method, we change the vehicle speed manually in small steps and solve the initial-
value problem for obtaining the dynamic response in each step. In each step, the solution
of the previous step is taken as the initial condition. When the solution of the previ-
ous step is stationary, the speed is increased in the next step, and the initial condition of
the subsequent calculation is given by a small disturbance (yw1 = 0.5mm in this study).
The speed where the nonlinear system tends to a periodic solution is called the Hopf
bifurcation speed vb, as shown in Figure 2. The speed is increased continually until the
amplitude of the periodic solution becomes quite large. Then, we begin to decrease the
vehicle speed. The solution of a periodic solution for a slightly greater vehicle speed is
taken as the initial condition for subsequent calculation. At a certain speed, the initial-value
problem of the nonlinear system tends to a stable zero solution. This speed is the small-
est bifurcation point, which corresponds to the nonlinear critical speed vn, as shown in
Figure 2 [22].

2.4. Gyroscopic action of wheel set

A schematic diagram of wheel set motion is presented in Figure 3. The positive direction
of the x-axis is the heading direction of the vehicle. The yaw motion and roll motion of

Figure 3. A schematic diagram of wheel set motion.
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the wheel set can result in obvious gyroscopic action when the train is running at a high
speed. The gyroscopic action behaves as two moments – the moment about the x-axis
and the moment about the z-axis. As shown in Equations (24) and (25), the value of the
gyroscopic moment of a wheel set is proportional to vehicle speed.

The moment about the x-axis:

Mgx = Iwy
V
R0
ψ̇w. (24)

The moment about the z-axis:

Mgz = −Iwy
V
R0
φ̇w (25)

Since the roll motion of the wheel set is calculated by the lateral motion and the
wheel/rail relationship, the roll angular velocity in this study is calculated by the following
equation:

φ̇w = ẏw(λL + λR)

2d0
. (26)

3. Effect of wheel set gyroscopic action on linear stability

In order to analyse the effect of wheel set gyroscopic action on linear stability, the linear
critical speeds in situations with and without gyroscopic action are calculated. Figure 4
shows the variation of the real part of the instabilitymode with respect to the vehicle speed.
Figure 5 shows the root locus diagram of the instability mode. The instability mode in
Figures 4 and 5 is the hunting motion of the railway vehicle, which behaves as the swing
and yaw motion of the vehicle parts. According to the description in Section 2.3, when
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Figure 4. Plot of the real part of the instability mode with respect to speed.
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Figure 5. Root locus diagram of the instability mode.

the maximum real part of the eigenvalues of the eigenmatrix in Equation (23) is equal to
or greater than zero, the amplitude of hunting motion will not converge to zero. In other
words, the mode of hunting motion becomes unstable. To show the root locus briefly and
clearly, we plotted only the locus of the eigenvalue corresponding to the mode of hunting
motion in Figures 4 and 5. The results in Figures 4 and 5 are obtained on the basis of the
nominal design parameters presented in Appendix 2. Figures 4 and 5 show that the linear
critical speed is 541.5 km/h in the situation without gyroscopic action, and 631 km/h in the
situation considering gyroscopic action. The percentage change is 16.5%. This indicates
that the gyroscopic action plays a beneficial role in hunting stability.

It is known from Equations (24) and (25) that the value of the gyroscopic moment is
proportional to the vehicle speed. From Figure 4, we can also learn that the gyroscopic

Table 2. Linear critical speeds calculated in the situation with gyroscopic action and the situation
without gyroscopic action using different values of primary longitudinal stiffness.

Primary
longitudinal
stiffness (N/m)

Linear critical
speed in the

situation without
gyroscopic action

(km/h)

Linear critical
speed in the
situation with

gyroscopic action
(km/h)

Increase of linear
critical speed (km/h) Percentage change

1.096E+ 07 730.5 1004.4 273.9 37.50%
1.151E+ 07 679.2 882.1 202.9 29.87%
1.206E+ 07 636.4 794.6 158.2 24.86%
1.260E+ 07 599.7 727.9 128.2 21.38%
1.315E+ 07 568.1 674.6 106.5 18.75%
1.370E+ 07 541.5 631.1 89.6 16.55%
1.425E+ 07 517.8 595.5 77.7 15.01%
1.480E+ 07 497.3 565.3 68.0 13.67%
1.534E+ 07 478.6 538.8 60.2 12.58%
1.589E+ 07 463.0 516.0 53.0 11.45%
1.644E+ 07 447.9 496.5 48.6 10.85%
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action has little effect at low speeds, i.e. less than 200 km/h, but significant effect at high
speeds. In other words, the effect of gyroscopic action on linear stability becomes more
and more significant with an increase in vehicle speed.

Further analysis is carried out by comparing the linear critical speeds in situations with
and without gyroscopic action, when the suspension parameters are varied. According to
our previous study [22], critical speed is sensitive to the primary longitudinal stiffness and
the damping of the yaw damper. Hence, the comparison is presented in Tables 2 and 3.
To show these data more intuitively, Figures 6 and 7 are plotted according to Tables 2
and 3.

Comparing the situations with and without gyroscopic action, the change and percent-
age change increases with increasing linear critical speed. This phenomenon is consistent
with the results in Figure 4 and Equations (24) and (25).

Table 3. Linear critical speeds calculated in situations with and without gyroscopic action using differ-
ent damping values of the yaw damper.

Damping of yaw
damper (N·s/m)

Linear critical
speed in the case
without gyroscopic

action (km/h)

Linear critical
speed in the case
with gyroscopic
action (km/h)

Change of linear
critical speed(km/h) Percentage change

1.962E+ 05 427.4 465.1 37.7 8.82%
2.061E+ 05 445.6 489.6 44.0 9.87%
2.159E+ 05 466.1 517.8 51.7 11.09%
2.257E+ 05 488.7 550.5 61.8 12.65%
2.355E+ 05 513.5 588.4 74.9 14.59%
2.453E+ 05 541.5 631.3 89.8 16.58%
2.551E+ 05 571.7 682.6 110.9 19.40%
2.649E+ 05 606.3 743.9 137.6 22.70%
2.747E+ 05 644.2 818.7 174.5 27.09%
2.845E+ 05 685.8 911.7 225.9 32.94%
2.944E+ 05 732.4 1035.6 303.2 41.40%

Figure 6. Linear critical speeds calculated in situations with and without gyroscopic action using
different values of primary longitudinal stiffness.
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Figure 7. Linear critical speeds calculated in situations with and without gyroscopic action using
different damping values of the yaw damper.

4. Effect of wheel set gyroscopic action on nonlinear stability

In this section, the effect of wheel set gyroscopic action on nonlinear stability is stud-
ied. We conduct the study by plotting bifurcation diagrams in situations with and without
gyroscopic action.

The bifurcation diagram, which is calculated by nominal design parameters related to
the lateral motion of the first wheel set in the two situations, is shown in Figure 8. The
bifurcation diagram of the dynamical system is a subcritical bifurcation, and there are two
non-zero branches (or stable periodic solutions) and a zero branch (or stationary solution).

Figure 8. Bifurcation diagram of the lateral motion of the first wheel set.
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Figure 9. Phase portraits at 600 km/h.
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Figure 10. Phase portraits at 690 km/h.

The phase portraits at 600 km/h and 690 km/h are plotted in Figures 9 and 10. The results
in Figures 8–10 indicate that the bifurcation characteristics change significantly because of
wheel set gyroscopic action.

As shown in Figure 8, compared to the situation without wheel set gyroscopic action,
the Hopf bifurcation speed increases from 556 to 660 km/h when the wheel set gyroscopic
action is taken into account. The percentage change is 18.7%. Similarly, the nonlinear crit-
ical speed increases from 385 to 402 km/h, and the percentage change is 4.4%. If there
was no wheel set gyroscopic action, the speed interval of the lower branch would be
556–632 km/h. However, due to the wheel set gyroscopic action, the speed interval of
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the lower branch becomes 660–750 km/h. The extension of the speed interval means an
improvement of hunting stability.

Assuming that the gyroscopic action does not exist in the speed interval 556–630 km/h,
the vehicle will incur a stable periodic motion of small amplitude (the lower branch in
the bifurcation diagram) when the vehicle suffers a small disturbance, and incurs a stable
periodic motion of large amplitude (the upper branch in the bifurcation diagram) when
the vehicle suffers a large disturbance. However, regardless of whether the disturbance is
small or not, the vehicle will incur a stable periodic motion of large amplitude in the speed
interval 630–660 km/h. In practice, themotion caused by disturbances will decay and con-
verge to the stationary solution in the two speed intervals mentioned above due to wheel
set gyroscopic action.

When the vehicle speed exceeds 660 km/h, in the absence of gyroscopic action, the
motion undergoing any disturbance would be a stable periodic motion of large amplitude.
However, owing to the existence of wheel set gyroscopic action, only a large disturbance
can result in a stable periodic motion of large amplitude.

Though the nonlinear critical speed, the Hopf bifurcation speed, and the speed interval
of the lower branch are much different between cases with and without gyroscopic action,
the amplitudes of the stable periodic solutions in these two cases are quite close. The influ-
ence of wheel set gyroscopic action on the amplitude in the stable periodic solutions is
limited.

A further analysis is carried out by calculating the variation of the nonlinear critical
speeds and the Hopf bifurcation speeds with respect to the primary longitudinal stiff-
ness and the damping of the yaw damper. The nonlinear critical speeds as these two
parameters change are shown in Tables 4 and 5. The nonlinear critical speeds and Hopf
speeds in situations with gyroscopic action are always greater than in situations without
gyroscopic action. This effect on hunting stability is unaffected by changes in suspension
parameters.

Table 4. Nonlinear critical speeds andHopf speeds calculated in situationswith andwithout gyroscopic
action using different values of primary longitudinal stiffness.

Parameter: Primary longitudinal stiffness

1.315E+ 07 1.370E+ 07 1.425E+ 07

Value(N/m) vb (km/h) vn (km/h) vb (km/h) vn (km/h) vb (km/h) vn (km/h)

With gyroscopic action 709 379 660 402 619 390
Without gyroscopic action 603 366 556 385 542 353

Table 5. Nonlinear critical speeds andHopf speeds calculated in situationswith andwithout gyroscopic
action using different damping values of the yaw damper.

Parameter 2: Damping of yaw damper

2.355E+ 05 2.453E+ 05 2.551E+ 05

Value(N·s/m) vb (km/h) vn (km/h) vb (km/h) vn (km/h) vb (km/h) vn (km/h)

With gyroscopic action 606 380 660 402 727 388
Without gyroscopic action 533 368 556 385 611 375
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5. Comparison of the gyroscopic moments about the x- and z-axes

The effects of the two kinds of gyroscopic moments shown in Equations (24) and (25) are
different. The gyroscopic moment about the z-axis works on the yaw motion of the wheel
set, as shown in Equation (2). It is known from Equation (25) that the gyroscopic moment
is proportional to the roll angular velocity of the wheel set; hence, it can be regarded as
a damping moment. When this moment is considered, an extra positive damping term is
attached to the vehicle dynamical system.

The moment about the x-axis works on the roll motion of the wheel set. However, as
mentioned in Section 2.1, the roll and verticalmotions of thewheel set are not independent,
but determined by the wheel/rail geometrical relationship and the lateral motion of the
wheel set. The differential equations of roll and vertical motions of the wheel set are used
in this study to derive normal contact forces between the wheel and rail. As a consequence,
the effect of moments about the x-axis can be regarded as the effect on normal contact
forces, as shown in Equation (15).
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Figure 11. Time history in the situation considering only themoment about the x-axis and the situation
without gyroscopic action at 600 km/h.
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Figure 12. Comparison of the lateral motion of the first wheel set at 600 km/h.
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Based on the above analysis, it can be concluded that the effect of gyroscopic action on
hunting stability is mainly reflected in yaw motion and normal contact forces. The effects
of these two gyroscopic moments are compared in this section. For this comparison, the
time histories of 600 km/h in two situations (considering only themoment about the x-axis,

0 10 20 30 40
-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006
Y

aw
 A

ng
le

 o
f 

Fi
rs

t W
he

el
se

t(
ra

d)

Time(s)

 the situation without gyroscopic action
 the situation only considering the moment about z axis

Figure 13. Comparison of the yawmotion of the first wheel set at 600 km/h.
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600 km/h: (a) the motion converges to zero; (b) periodic motion.
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and considering only the moment about the z-axis) are calculated. Comparisons with the
situation without gyroscopic action are presented below.

Figure 11 shows a comparison between the situation considering only themoment about
the x-axis and the situation without gyroscopic action. It is seen from Figure 11 that the
wheel set vibration amplitude considering only the moment about the x-axis is slightly
larger, and evolves to a limit cycle faster. In other words, the moment about the x-axis is a
negative factor for hunting stability.

The comparison between the situation considering only moment about the z-axis and
the situation without gyroscopic action is presented in Figures 12 and 13. The results in
Figures 12 and 13 show that the wheel set motion converges to zero in the situation con-
sidering only the moment about the z-axis, and evolves to a limit cycle if gyroscopic action
is not considered. Figures 12 and 13 indicate that themoment about the z-axis is a beneficial
factor for hunting stability.

Comparing the results in Figure 11 with the results in Figures 12 and 13, it can be con-
cluded that the effect of the moment about the z-axis is much more significant than the
effect of the moment about the x-axis.

To better understand the effect, the moment about the z-axis has in improving the
hunting stability, Figure 14 shows the time history of the wheel set yaw moment and the
gyroscopicmoment about the z-axis, which is obtained in two states ofmotion (stable peri-
odic solutions and stationary solutions, as shown in Figure 8) at 600 km/h. Figure 15 shows
the results obtained in these two states of motion at 690 km/h.
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Figure 15. Time history of the moment about the z-axis and total yawmoment of the first wheel set at
690 km/h: (a) periodic motion of small amplitude; (b) periodic motion of large amplitude.
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When the vehicle motion is evolving to a stationary solution or a stable periodic solu-
tion of small amplitude, the moment about the z-axis is close to the total yaw moment.
When the vehicle motion is a stable periodic solution of large amplitude, the frequency
and amplitude of the total yaw moment are both larger than those of the moment about
the z-axis. However, the amplitudes are of the same magnitude. The results in Fig-
ures 14 and 15 also show that there is a 190° phase difference between the dominant
vibration of gyroscopic moment and the dominant vibration of yaw angle. This phase
difference indicates the inhibiting effect of gyroscopic moment on the wheel set yaw
motion.

6. Conclusions

In this study, the effects of wheel set gyroscopic action on linear and nonlinear hunting
stability were investigated. To this end, a dynamic model for a high-speed vehicle with 23
DOF was developed by considering wheel set gyroscopic action. The influence of wheel
set gyroscopic action on the hunting stability was analysed. Root locus for a linear model
and a bifurcation diagram for a nonlinear model in situations with and without gyroscopic
action were plotted. Additionally, the effects of the gyroscopic moment about the x-axis
and the gyroscopic moment about the z-axis were compared.

The mechanism analysis shows that the effects of wheel set gyroscopic action origi-
nate from two kinds of gyroscopic moments. The effects of these two kinds of gyroscopic
moments are different. The moment about the z-axis can be considered as an extra damp-
ing term attached to the vehicle dynamical system; it is a beneficial factor for hunting
stability. The effect of the moment about the x-axis reflects in normal contact forces; it is
detrimental to the hunting stability. The simulation of time history indicates that the effect
of the moment about the z-axis is much more significant than the effect of the moment
about the x-axis. The integrated effect of wheel set gyroscopic action can enhance the
critical speeds and suppress the amplitude of periodic motion; it is a beneficial factor for
hunting stability. The simulation finds the effect to be small at low vehicle speeds, and
becomes larger as the vehicle speed increases.

On the basis of the nominal design parameters of an actual high-speed railway vehicle,
the quantitative result of the effect of wheel set gyroscopic action is obtained. Compared to
the situation without wheel set gyroscopic action, the linear critical speed increases from
541.5 to 631 km/h, and the nonlinear critical speed and theHopf bifurcation speed increase
from 385 and 556 km/h to 402 and 631 km/h, respectively, when the wheel set gyroscopic
action is taken into account.When the designed parameters are changed, the critical speed
may be different; however, the effect ofwheel set gyroscopic action onhunting stability does
not change.
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Appendix 1. Explanation of parameters

mw Mass of wheel set htk Height of secondary suspension above centre of
gravity of bogie

mt Mass of bogie hck Vertical distance from secondary suspension to
centre of gravity of car body

mc Mass of car body lc Half of longitudinal distance of secondary
suspension

Iwx Roll moment of inertia of wheel set kty2 Stiffness of spring–damping connecting point of
lateral damper

Itx Roll moment of inertia of bogie cty2 Damping of spring–damping connecting point of
lateral damper

Icx Roll moment of inertia of car body hth Height of lateral damper above centre of gravity of
bogie

Iwy Pitch moment of inertia of wheel set hch Vertical distance from lateral damper to centre of
gravity of car body

Ity Pitch moment of inertia of bogie ksx Stiffness of spring–damping connecting point of
yaw damper

Icy Pitch moment of inertia of car body csx Damping of spring–damping connecting point of
yaw damper

Iwz Yawmoment of inertia of wheel set dsx Half of lateral distance of yaw damper
Itz Yawmoment of inertia of bogie hts Height of yaw damper above centre of gravity of

bogie
Icz Yawmoment of inertia of car body hcs Vertical distance from yaw damper to centre of

gravity of car body
kpx Longitudinal stiffness of primary suspension NL Left normal contact force
kpy Lateral stiffness of primary suspension NR Right normal contact force
kpz Vertical stiffness of primary suspension λL Left contact angle
cpz Primary vertical damping λR Right contact angle
d0 Half of track gauge FyL Left lateral creep forces
dzx Half of lateral distance of primary suspension FyR Right lateral creep forces
lt Half of longitudinal distance of primary suspension FxL Left longitudinal creep forces
htz Vertical distance from primary suspension to

centre of gravity of bogie
FxR Right longitudinal creep forces

ktx1 Longitudinal stiffness of secondary suspension Mz Creep moment
kty1 Lateral stiffness of secondary suspension R0 Normal wheel radius
ktz1 Vertical stiffness of secondary suspension W Axle weight
dkh Half of lateral distance of secondary suspension
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Appendix 2. Nominal design parameters

Parameters Value

Mass of wheel set mw = 1780 kg
Mass of bogie mt = 3300 kg
Mass of car body mc = 31374 kg
Roll moment of inertia of wheel set Iwx = 967 kg·m2

Roll moment of inertia of bogie Itx = 2673 kg·m2

Roll moment of inertia of car body Icx = 120, 800 kg·m2

Pitch moment of inertia of wheel set Iwy = 118 kg·m2

Pitch moment of inertia of bogie Ity = 1807 kg·m2

Pitch moment of inertia of car body Icy = 1, 555, 000 kg·m2

Yawmoment of inertia of wheel set Iwz = 967 kg·m2

Yawmoment of inertia of bogie Itz = 3300 kg·m2

Yawmoment of inertia of car body Icz = 1, 467, 400 kg·m2

Longitudinal stiffness of primary suspension kpx = 1.37 × 107 N/m
Lateral stiffness of primary suspension kpy = 5.49 × 106 N/m
Vertical stiffness of primary suspension kpz = 1.176 × 106 N/m
Primary vertical damping cpz = 19, 600 Ns/m
Half of track gauge d0 = 0.7465m
Half of lateral distance of primary suspension dzx = 1.0m
Half of longitudinal distance of primary suspension lt = 0.75m
Vertical distance from primary suspension to centre of gravity of bogie htz = 0.064m
Longitudinal stiffness of secondary suspension ktx1 = 1.597 × 106 N/m
Lateral stiffness of secondary suspension kty1 = 1.597 × 106 N/m
Vertical stiffness of secondary suspension ktz1 = 9.9 × 105 N/m
Half of lateral distance of secondary suspension dkh = 1.23m
Height of secondary suspension above centre of gravity of bogie htk = 0.39m
Vertical distance from secondary suspension to centre of gravity of car body hck = 0.62m
Half of longitudinal distance of secondary suspension lc = 8.75m
Stiffness of spring–damping connecting point of lateral damper kty2 = 3.43 × 107 N/m
Damping of spring–damping connecting point of lateral damper cty2 = 1.176 × 105 Ns/m
Height of lateral damper above centre of gravity of bogie hth = 0.281m
Vertical distance from lateral damper to centre of gravity of car body hch = 0.719m
Stiffness of spring–damping connecting point of yaw damper ksx = 8.82 × 106 N/m
Damping of spring–damping connecting point of yaw damper csx = 2.89 × 105 Ns/m
Half of lateral distance of yaw damper dsx = 1.35
Height of yaw damper above centre of gravity of bogie hts = −0.03m
Vertical distance from yaw damper to centre of gravity of car body hcs = 1.04m
Normal wheel radius R0 = 0.43m
Axle weight W = 1.1 × 105 N
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