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Abstract 

In this paper, we report a preliminary attempt to stabilize near limit premixed flamelets in Hele-Shaw cells. As 
a quasi-two-dimensional analog of flame balls, the flamelet is sustained by diffusive transport alone, with fuel 
supplied from the open ends of the Hele-Shaw cell, and heat dissipated to the ambient environment through 

conduction; radiative heat losses from both phases are neglected. Following Spalding’s “one-dimensional 
idealization” approximation, we construct a 2-D model to account for the heat and mass transfer processes 
in both the gas and the solid phases, with the gap height as a parameter controlling the heat exchange rate 
between the two phases. For each of the three kinds of wall materials considered, two steady solution branches 
are obtained as a function of the gap height, one corresponding to large flames and the other to small flames. 
The large flame branch is critically dependent on the boundary and is therefore of little physical value. Linear 
stability analysis shows that the small flame branch is unstable to random perturbations. 2-D time dependent 
numerical simulations indicate that a slightly perturbed steady state on the small flame branch either evolves 
into a single flamelet drifting to the boundary as a whole, or splits into two drifting to the boundary along 
opposite directions. A partially open square Hele-Shaw combustor has been proposed and is shown to be 
able to support stabilized flamelets for a certain range of the degree of opening. 

© 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 
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1. Introduction 

Flammability limits of premixed gases and the
mechanisms that lead to flame quenching consti-
tute one of the major topics in the study of pre-
mixed flames [1] . Near the flammability limit pre-
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mixed flames may exhibit unique features that are 
uncommon in premixed flames far from the limit. 
One example of such uncommon phenomena that 
are exclusive to near limit mixtures is flame balls, 
which are spherical premixed flames of vanishing 
flame speed sustained in quiescent near limit pre- 
mixtures by diffusive transport alone. The Lewis 
number of the mixture must be substantially lower 
than unity, a prerequisite to ensure the develop- 
ment of superadiabatic flame temperature to with- 
stand the excessive heat losses [2] . 
ier Inc. All rights reserved. 
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Fig. 1. A schematic diagram showing the cross-sectional 
view of a premixed flamelet stabilized in a Hele-Shaw cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zeldovich [3] was the first who pointed out
hat, in addition to the well-known planar flame
ront solution, 1-D steady solution of premixed
ame combustion can take a spherically symmet-
ical form, corresponding to a stationary flame
all stabilized in a quiescent mixture. Unfortu-
ately, the adiabatic Zeldovich flame ball solution
urned out to be unstable and therefore seemed
ot to be of much value. It was not until the

ate 1980s that flame balls began to attract much
ttention when they were accidentally observed
y Ronney in a drop tower experiment [4] . Sub-
equently, heat losses of various nature, includ-
ng radiative [5,6] , convective [7,8] and conductive
9] , have been identified as candidates of mech-
nisms to account for the observed stable flame
alls. 

The finding of stabilized flame balls is certainly
f great significance to combustion theory, espe-
ially to the understanding of flammability lim-
ts and chemical kinetics under limiting condi-
ions. However, from the practical perspective, as
 unique form of premixed combustion potential
pplications of flame ball combustion have been
arely explored. The reason may lie in the fact that
ame balls can only exist in a microgravity environ-
ent, a strict condition that is expensive to achieve

n ground-based facilities. 
In this paper, we report a preliminary attempt

oward the application of flame ball combustion
n a Hele-Shaw-type combustor. The inspiration
omes from the increasing interests among the
ombustion community in miniaturized combus-
ors. In the past years, many attempts have been
ade to explore the possibility of implementing

arious forms of combustion in micro- or meso-
cale combustors. Along this line, it has been found
hat under certain conditions both premixed and
on-premixed flames are possible to be stabilized

n narrow tubes or narrow channels [10–14] ; see,
.g. the review articles [15–17] for more references.
nspired by these findings, we explore in this work
he possibility of stabilizing flame balls in a con-
ned narrow channel, or in other words, a Hele-
haw cell. This amounts to squeezing a free flame
all from opposite sides by two parallel plates. The
queezed flamelet will take a pie shape in the nar-
ow channel, and therefore thermal interactions be-
ween the flame and the channel walls are expected
o play a significant role in the stabilization of the
remixed flamelet. In this connection, the configu-
ation under consideration is to some extent sim-
lar to that described by Shah et al. [18] , where
he structure and stabilization of flame balls in
orous media were explored. However, it should
e pointed out that, in their work the heat con-
uctivity of the porous media has been neglected,
o that the porous media merely behaves as a heat
ink and has no contribution to heat redistribution.
y contrast, in the present study, wall thermal con-

uction behaves as a dominant heat loss mecha- 
nism and therefore plays a critical role in the sta-
bilization of the premixed flamelets in Hele-Shaw
cells. 

2. Model and formulation 

We consider a Hele-Shaw cell consisting of two
parallel plates that are separated by a certain dis-
tance, as is schematically shown in Fig. 1 . Both
plates are made of the same material and have the
same thickness. The Hele-Shaw cell is initially filled
with a near limit fuel-lean combustible mixture,
which can support sustained premixed flame com-
bustion through the continual gas supply from the
open ends of the Hele-Shaw cell. The chemical re-
action taking place in the mixture is modeled by the
following single-step irreversible reaction: 

1 Fuel → 1 Products + 

{ Q 

} , 
implying that one unit mass of fuel is converted into
one unit mass of products, releasing an amount Q
of energy. 

Aiming at a qualitative understanding of the
problem, we employ the constant density model to
describe the combustion processes taking place in
the gaseous phase, and assume that all the involved
physicochemical parameters take constant values.
The outer surfaces of the two plates are assumed
to be perfectly insulated such that the only origin
of heat losses of the system comes from the bound-
aries of the Hele-Shaw cell, where the temperatures
of the gaseous and solid phases are assumed to
be equal to that of the ambient and the fuel mass
fraction is kept at the constant supply value. Fur-
thermore, the thickness of the plates is assumed
to be so small that the wall temperature can be
regarded as uniform along the normal direction.
Consequently, if length is scaled by D th / S L , where
D th is the gas phase thermal diffusivity and S L is the
laminar flame speed corresponding to the ambient
fuel mass fraction Y f , time is scaled by D th /S 

2 
L , fuel

mass fraction is scaled by Y f , and temperature is
scaled by T b − T f = QY f /c p where T b and T f are the
adiabatic flame temperature and the ambient tem-
perature, respectively, and c p is the specific heat (at
constant pressure) of the gaseous phase, then in the
coordinate system shown in Fig. 1 the governing
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equations describing the system can be expressed
in dimensionless form as: 

∂θ

∂t 
= ∇ 

2 θ + �, 

∂Y 

∂t 
= 

1 
Le 

∇ 

2 Y − �, 

1 
r D 

∂θw 

∂t 
= ∇ 

2 
⊥ θw ∓ 1 

τ r 
λ

∂θ

∂z 

∣∣∣∣
z = ±h 

, (1)

corresponding to energy balance of the gaseous
phase, mass balance of the fuel, and energy balance
of the wall, respectively. Here in Eq. (1) , θ = (T −
T f ) / (T b − T f ) and θw = (T w − T f ) / (T b − T f ) stand
for, respectively, the dimensionless temperature of 
the gaseous phase and the dimensionless wall tem-
perature, Y stands for the normalized fuel mass
fraction, r 

λ
= λw /λ and r D = D w /D th represent, re-

spectively, the ratios of heat conductivities and
thermal diffusivities between the solid and gaseous
phases, Le = D th /D is the Lewis number with D de-
noting the fuel mass diffusivity, and h and τ are,
respectively, the dimensionless half separation dis-
tance between the two plates and the dimensionless
plate thickness. In the wall energy balance equa-
tion, ∇ 

2 
⊥ = ∂ 2 /∂ x 

2 + ∂ 2 /∂ y 2 represents the Lapla-
cian on the xy plane, and the last term on the
r.h.s. describes the heat exchange between the gas
and the wall due to the vertical gas temperature gra-
dient. An Arrhenius type kinetics is assumed for the
chemical reaction so that the dimensionless reac-
tion rate � takes the form 

� = 

β2 

2 Le 
Y exp 

{
β(θ − 1) 

(1 + qθ ) / (1 + q ) 

}
, (2)

where β = E (T b − T f ) /RT 

2 
b is the Zeldovich num-

ber, with E and R the activation energy and the
universal gas constant, respectively, and q = (T b −
T f ) /T f denotes the thermal expansion parameter. 

The Hele-Shaw system under consideration is
symmetrical with respect to z = 0 and is main-
tained at the ambient condition at the inlets, so
the dimensionless boundary conditions satisfied by
Eq. (1) can be written as 

at the inlets , θ = 0 , Y = 1 , θw = 0 , 

at z = 0 , 
∂θ

∂z 
= 0 , 

∂Y 

∂z 
= 0 , 

at z = ±h , θ = θw , 
∂Y 

∂z 
= 0 . (3)

The 3-D gas phase conservation equations for-
mulated in Eq. (1) may be further simplified by tak-
ing advantage of the narrow character of the Hele-
Shaw cell. Similar to Spalding’s “one-dimensional
idealization” treatment for premixed flames in nar-
row ducts [1] , an average of θ and Y over the z
direction may be taken as a representation of the
gas temperature and fuel mass fraction distribu-
tions on the xy plane, while the gas temperature
gradients at the walls are determined by a linear 
approximation of the vertical temperature profiles. 
Specifically, under linear approximation the aver- 
age temperature θ̄ = θw − (h/ 2) ∂ θ/∂ z | z = h , so the 
wall temperature gradient can be approximated by 
∂ θ/∂ z | z = h = 2(θw − θ̄ ) /h . Consequently, Eq. (1) is 
simplified to the following 2-D form: 

∂θ

∂t 
= ∇ 

2 
⊥ θ + � − 2 

h 2 
( θ − θw ) , 

∂Y 

∂t 
= 

1 
Le 

∇ 

2 
⊥ Y − �, 

1 
r D 

∂θw 

∂t 
= ∇ 

2 
⊥ θw + 

2 
hτ r 

λ

( θ − θw ) , (4) 

where for conciseness the overline symbols in θ̄ and 

 have been omitted. 
Equation (4) and the inlet conditions presented 

in (3) define the mathematical problem to be stud- 
ied in this paper. There are totally 7 dimension- 
less parameters involved in the problem, namely 
Le, β and q , characterizing properties related to the 
gaseous phase, r 

λ
, r D and τ , characterizing proper- 

ties related to the wall material, and the half gap 

height h , which serves as the primary parameter 
controlling the heat exchange rate between the gas 
and solid phases. 

3. 1-D steady solutions 

In this Section, we examine 1-D steady solu- 
tions of Eq. (4) , corresponding to axisymmetric 
flame cylinders established in circular Hele-Shaw 

cells. The spatial derivatives involved in the 1-D 

steady form of Eq. (4) were discretized by a fourth- 
order central difference scheme, then the resulting 
system of nonlinear algebraic equations was solved 

by using a continuation method, which consists of 
an Euler predictor step and a Newton corrector 
step [19] . One of the merits of the continuation 

method is that it can capture all the possible solu- 
tions on multiple solution branches, whether stable 
or not. Three typical wall materials are considered, 
namely quartz glass, stainless steel and aluminum, 
whose thermophysical parameter values are given 

in Table 1 . Throughout this work we choose Le = 

0 . 3 , β = 8 , q = 1 , corresponding to typical near 
limit light fuel flames. For all materials considered 

the thickness of the wall is fixed at τ = 1 , so for a 
specified wall material the only control parameter 
is the half gap height h . 

Before presenting the steady solutions it is worth 

pointing out that a significant difference exists be- 
tween flame cylinders and flame balls in connection 

with their structural characteristics. Recall that un- 
der spherical symmetry both θ and Y vary as r −1 in 

the far field so the conservation equations admit a 
1 -D adiabatic steady solution in an infinite space, 
corresponding to the classical Zeldovich flame ball 
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Table 1 
Material thermophysical parameter values. 

Material Density Heat conductivity Specific heat 
(g/cm 

3 ) (J/cm/s/K) (J/g/K) 

Gas mixture 1 . 0 × 10 −3 4 . 0 × 10 −4 1.1 
Quartz glass 2.2 1 . 4 × 10 −2 0.8 
Stainless steel 8.0 0.162 0.5 
Aluminum 2.7 2.2 0.9 
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olution with a finite radius R Z [3] . By contrast, in
ylindrical geometry θ and Y vary as ln r in the far
eld, thereby negating the existence of a 1-D adia-
atic steady flame cylinder solution in an infinite
pace. In a study addressing the peristaltic insta-
ility of flame cylinders, Buckmaster [20] bypassed
he far field logarithmic singularity of flame cylin-
ers by assuming a prescribed flame cylinder radius

¯
 in the analysis, which was equivalent to choos-

ng a finite domain boundary r̄ B = R̄ · e 1 / ̄R , where
¯ B and R̄ are made dimensionless by the Zeldovich
adius R Z . The stability analysis results thus ob-
ained successfully accounted for the g -jitter effects
f flame balls observed in reduced-gravity exper-

ments on board parabolic flights. In the present
tudy we follow Buckmaster’s treatment by consid-
ring flamelets developed in Hele-Shaw cells of fi-
ite dimensions. The results herein presented may
e quantitatively dependent on the choice of the
ell size, yet it is believed that the qualitative fea-
ures revealed will not be significantly influenced by
uch choices. 

Typical 1-D steady solutions corresponding to
he above-mentioned three wall materials are illus-
rated in Fig. 2 (note the log scale for the r -axis),
here the Hele-Shaw cell radius is chosen to be
 B = 50 and the half gap height is kept at h = 3 . 5 .
t is evident that, for each wall material the gas
emperature around the flame cylinder is consider-
bly larger than that of the wall, such that besides
he heat lost to the boundary through gas phase
eat conduction, there is a substantial portion of 
eat transferred from the flame to the wall, and

s eventually dissipated to the boundary through
olid heat conduction. When the cell boundary is
pproached, however, the gas and wall temperature
rofiles tend to collapse and hence heat transfer be-
ween the two phases ceases. These observations in-
icate that, for the currently considered Hele-Shaw
onfiguration, heat transfer between the gas and
olid phases is always one-way, that is, from the
as to the solid; there is no recirculation of heat
rom the wall to the gas by preheating. Figure 2 also
hows that increasing the wall heat conductivity
ends to reduce the slope of the wall temperature
rofile, and as a result of the enhancement of heat

oss toward the wall, the flame cylinder shrinks and
he flame temperature rises. 

The dependence of the flame cylinder radius on
 for the three wall materials is illustrated in Fig. 3 ,
where the flame cylinder radius R is identified with
the location that achieves the maximum reaction
rate. As can be seen, for each wall material there
exist two solution branches when h is smaller than
a critical value h max , one corresponding to small
flame cylinders while the other corresponding to
large ones. Figure 4 shows the 1-D responses of 
flame cylinders in steel Hele-Shaw cells with three
different plate radii. It indicates that the large flame
branch is critically dependent on the location of the
boundary and is therefore of little physical value;
by contrast, the small flame branch is not quite
sensitive to the change of r B and hence constitutes
the main focus of the present study. For a specific
wall material and a given plate radius, on the small
flame branch the flame cylinder radius decreases
with decreasing h until a minimum half gap height
h ext is reached, where the flame is quenched due to
excessive heat loss to the wall. Results indicate that
the extinction half gap height h ext increases slightly
with the wall heat conductivity, changing from ≈
1.9 for glass to ≈ 2.2 for aluminum. The opposite
extinction limit h max is apparently due to the 1 -D
idealization approximation, which is no longer
valid when the gap height becomes too large. To
explore the flame behavior under such conditions,
the complete 3-D Eqs. (1) and (3) must be resorted
to instead. 

4. Linear stability analysis 

We examine the linear stability of the above
1-D steady solutions by numerical normal mode
analysis methods. To this end, an infinitesimal per-
turbation is introduced to the 1-D steady solution
such that the perturbed solution takes the form 

( θ, Y , θw ) = 

(
θ∗, Y 

∗, θ∗
w 

) + ε 
(
θ ′ , Y 

′ , θ ′ 
w 

)
e σ t+i mφ, 

(5)

where m is the perturbation wave number, σ is
the growth rate, and ε is an infinitesimally small
parameter characterizing the amplitude of the
perturbation. The variables with superscript ∗

denote the 1-D steady solution, whereas those with
superscript ′ denote the radial distribution of the
perturbation. Substituting Eq. (5) into (4) and dis-
carding the higher order terms yields the following
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Fig. 2. Typical 1-D axisymmetric steady solutions for 
flame cylinders established in circular Hele-Shaw cells of 
different wall materials. The Hele-Shaw cell radius r B = 

50 and the half gap height h = 3 . 5 for all the three cases. 

Fig. 3. Response curves showing the dependence of the 
flame cylinder radius R on the half gap height h for the 
three wall materials. The curves correspond, from left 
to right, to glass, steel and aluminum walls, respectively. 
Solid and dashed lines correspond, respectively, to solu- 
tions that are stable and unstable to radial perturbations 
( m = 0 ); filled circles mark the marginal stability points. 
Hele-Shaw cell radius r B = 50 . 

Fig. 4. Response curves showing the dependence of the 
flame cylinder radius R on the half gap height h for steel 
Hele-Shaw cells. The curves correspond, from left to right, 
to plate radius r B = 30 , 50 and 70, respectively. 

 

perturbation equations for θ ′ , Y 

′ and θ ′ 
w : 

0 = 

d 2 θ ′ 

dr 2 
+ 

1 
r 

dθ ′ 

dr 
−

(
σ + 

2 
h 2 

+ 

m 

2 

r 2 

)
θ ′ + 

2 
h 2 

θ ′ 
w + �′ , 

0 = 

1 
Le 

(
d 2 Y 

′ 

dr 2 
+ 

1 
r 

d Y 

′ 

dr 

)
−

(
σ + 

1 
Le 

m 

2 

r 2 

)
Y 

′ −�′ , 

0 = 

d 2 θ ′ 
w 

dr 2 
+ 

1 
r 

dθ ′ 
w 

dr 
−

(
σ

r D 
+ 

2 
hτ r 

λ

+ 

m 

2 

r 2 

)
θ ′ 

w 

+ 

2 
hτ r 

λ

θ ′ , (6)
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Fig. 5. A stability diagram characterizing the azimuthal 
stability of the steady solutions on the small flame branch 
of the steel plate case. The left and right extinction bound- 
aries are, respectively, h ext ≈ 1.9 and h max ≈ 8.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

here 

′ = �∗
[ 

Y 

′ 

Y 

∗ + βθ ′ 
(

1 + q 
1 + qθ∗

)2 
] 

, (7)

ith �∗ denoting the reaction rate corresponding
o the 1-D steady solution. 

All perturbations must vanish at the inlet so the
oundary conditions there are: 

t r = r B , θ ′ = 0 , Y 

′ = 0 , θ ′ 
w = 0 . (8)

he boundary conditions at r = 0 are contingent
n the perturbation wave number m . If only radial
erturbation is present, that is m = 0 , the symmet-
ical condition at the center requires 

t r = 0 , 
dθ ′ 

dr 
= 0 , 

d Y 

′ 

dr 
= 0 , 

dθ ′ 
w 

dr 
= 0 . (9)

or m > 0, the uniqueness condition at the center
equires 

t r = 0 , θ ′ = 0 , Y 

′ = 0 , θ ′ 
w = 0 . (10)

Upon discretization by a second-order finite dif-
erence scheme, the system of ordinary differential
quations (6) with boundary conditions ( 8 –10 ) is
ransformed to a matrix eigenvalue problem of the
orm A · x = σ · x , which can be solved numerically
y standard eigenpackages. For each 1-D steady so-

ution a dispersion relation can be obtained, char-
cterized by the growth rate σ as a function of the
iscrete perturbation wave number m . Negative and
ositive growth rates correspond, respectively, to
table and unstable states under the considered per-
urbation wave number. Figure 3 illustrates the sta-
ility analysis results for the 1-D steady solutions
ith the three wall materials under radial pertur-
ations ( m = 0 ). It is evident that for each wall ma-
erial, the entire large flame branch and a portion
f the small flame branch are unstable to radial per-
urbations. However, with the decrease of h radial
tability is achieved for the rest portion of the small
ame branch. 

2-D stability of the steady solutions is exempli-
ed by the stability diagram shown in Fig. 5 , where
he marginal stability boundary for m ≥ 1 is delin-
ated for the small flame branch of the steel plate
ase. It is evident that the entire small flame branch
s unstable to perturbations with wave number m =
 . Then, with the increase of m the marginal stabil-
ty boundary shifts rapidly to the right, until reach-
ng the right extinction boundary h max at m = 8 .

ence, the entire small flame branch is stable when
ubjected to azimuthal perturbations with m ≥ 8,
ut is unstable for at least one wave number over
he range 0 ≤ m < 8. Similar results have been
btained for the quartz glass and aluminum plate
ases, so we are led to the conclusion that practi-
ally no flame cylinders can be stabilized in the cur-
ently considered fully open Hele-Shaw cell config-
ration, at least for the three kinds of plate materi-
ls under consideration. 
5. 2-D numerical simulations 

2-D numerical simulations have been performed
to examine how the steady flame cylinder solutions
evolve in Hele-Shaw cells after the onset of insta-
bility. A square computational domain with side
length L = 100 has been employed. A rectangu-
lar coordinate system with origin at the center was
adopted and the computational domain was dis-
cretized using a mesh that is uniform in both the
x and y directions. For those grid points outside
or on the circle with a radius r B = 50 the inlet con-
ditions in (3) were applied throughout the calcula-
tions. This is equivalent to approximating the con-
tinuous circular domain boundary by a series of 
discrete grid points distributed along the periphery
of the circle. Time dependent calculations of the
unsteady Eqs. (4) were carried out, with the spa-
tial derivatives approximated by a fourth-order cen-
tral difference scheme, and the time derivatives by
an explicit first-order Euler scheme. Initial condi-
tions were taken as the axisymmetric steady solu-
tions perturbed by a random noise upon the gas
temperature field. 

Figure 6 displays the subsequent development
of a randomly perturbed flame cylinder in a cir-
cular steel plate Hele-Shaw cell, represented by re-
action rate contours at four time instants (note in
each graph only a square portion of the computa-
tional domain is illustrated to show the details of 
the flame). The half gap height of the Hele-Shaw
cell is h = 5 . 0 which, according to the linear stabil-
ity analysis results shown in Figs. 3 and 5 , corre-
sponds to a steady solution that is stable to pertur-
bations with all the wave numbers except m = 1 . As
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Fig. 6. Reaction rate contours showing the development 
of a slightly perturbed flame cylinder in a circular steel 
Hele-Shaw cell with radius r B = 50 and half gap height 
h = 5 . 0 . Horizontal axis: x ; vertical axis: y . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Reaction rate contours showing the development 
of a slightly perturbed flame cylinder in a circular steel 
Hele-Shaw cell with radius r B = 50 and half gap height 
h = 6 . 5 . Horizontal axis: x ; vertical axis: y . 

Y

can be seen, after an initial transient, the cylindrical
symmetry of the flame cylinder is gradually broken,
resulting in a polarized circular flamelet that drifts
toward the cell boundary. It is found that the re-
action rate at the head part of the flamelet is con-
tinuously intensified during this process and hence
the drift is accelerating with the approach of the
boundary. 

Time evolution of a perturbed flame cylinder
in a circular steel Hele-Shaw cell with h = 6 . 5 is
shown in Fig. 7 . The corresponding steady solution
is unstable to perturbations with two wave num-
bers, m = 1 and m = 2 , the latter having a larger
growth rate. As is shown, the flame cylinder even-
tually splits into two flamelets, which then drift to-
ward the boundary along opposite directions. 

The mechanism underlying the drifting flame
cylinders may be accounted for by the competition
between two counteracting factors, that is, heat
loss toward the ambient and fuel intake from the
boundary. The flame cylinder consumes fuel that is
fed from the boundary, generating heat that even-
tually dissipates back to the ambient through the
boundary. The closer the flame cylinder is to the
boundary, the steeper the temperature gradients in
both the gas and solid phases, and thus the larger
the amount of heat lost to the boundary. At the
same time, however, due to the increase of the fuel
mass fraction gradient, fuel supplying to the flame
cylinder is also enhanced with the approach of 
the flame cylinder to the boundary. The sub-unity 
Lewis number presently considered implies that 
fuel mass diffusion outperforms heat dissipation 

and therefore the flame cylinder is expected to drift 
toward the boundary. 

According to the above analysis of the drifting 
mechanism, possible measures that may be taken to 

stabilize the flame cylinders in Hele-Shaw cells are 
either to enhance the heat loss or to reduce the fuel 
supply at the cell inlets. We propose here a method 

that essentially follows the second line. As schemat- 
ically shown in Fig. 8 , we choose a square Hele- 
Shaw cell, on each side of which the boundary is 
partially sealed in the middle, such that only the 
four corners of the Hele-Shaw cell are open to the 
ambient atmosphere. Each corner is characterized 

by an opening width l on each side and the local fuel 
mass fraction at the opening mouth is still fixed at 
 = 1 . On all the boundaries the gas and wall tem- 

peratures are kept equal to that of the ambient, that 
is, θ = θw = 0 . As a result, compared with the previ- 
ous fully open cell case, the heat loss for the current 
partially open cell remains essentially unchanged 

but the fuel supply is significantly reduced. Time 
dependent calculations were carried out for a flame 
cylinder in such a partially open steel Hele-Shaw 

cell, which has a half gap height h = 6 . 5 , side length 

L = 100 and opening width l = 15 at each of the 
four corners. The corresponding perturbed axisym- 
metric steady solution with the same gap height was 
adapted to the square domain as the initial condi- 
tion. The calculation results indicate that the ini- 
tial perturbations are damped out and the steady 
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Fig. 8. A schematic diagram showing a partially open 
square Hele-Shaw cell. 

s  

F  

w  

b  

S  

o

6

 

S
a  

p  

w  

i  

m  

d  

fl  

l  

H
S  

i  

fi  

t  

c
h  

t  

c
 

t  

t  

l  

c  

s  

r  

Fig. 9. Contour plots showing the eventual steady state 
of a slightly perturbed flame cylinder in a partially open 
square steel Hele-Shaw cell with side length L = 100 and 
half gap height h = 6 . 5 . The opening width l = 15 on 
each side of the cell. Horizontal axis: x ; vertical axis: y . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tate flame cylinder is restored, as is illustrated in
ig. 9 by the contour plots. Further calculations
ith varying l indicated that stabilized flamelets can
e supported by such partially open square Hele-
haw combustors over a certain range of the degree
f opening. 

. Conclusions and discussions 

Near limit premixed flame combustion in Hele-
haw cells was studied within the framework of 
 constant density model by using numerical ap-
roaches. A low Lewis number fuel-lean mixture
as considered, such that near the inflammabil-

ty limit a stationary circular premixed flamelet
ay stabilize in the Hele-Shaw cell, as a quasi-two-

imensional analog of the well-known stationary
ame ball solution in an unconfined quiescent fuel-

ean mixture. By exploiting the narrowness of the
ele-Shaw cell, an approximation in the spirit of 

palding’s “one-dimensional idealization”has been
ntroduced to describe the gas phase combustion
eld. As a result, the problem becomes equivalent
o one that has a two-dimensional flame cylinder
onfined in a narrow channel, with the channel half 
eight h as the control parameter that determines
he heat exchange rate between the gas and the
hannel wall. 

For each channel wall material considered, with
he variation of h two axisymmetric steady solu-
ion branches were identified, one corresponding to
arge flame cylinders and the other to small flame
ylinders. Linear stability analysis showed that the
teady solutions on both branches are unstable to
andom perturbations, thereby eliminating the pos-
sibility of stabilized flame cylinders in fully open
Hele-Shaw cells. 2-D time dependent numerical
simulations indicated that the slightly perturbed
steady states either evolve into a curved flame front
drifting to the boundary, or split into two flame
fronts that drift to the boundary along opposite di-
rections. A partially open square Hele-Shaw com-
bustor has been proposed, and was shown to be
able to support stabilized flame cylinders for a cer-
tain range of the degree of opening. 

As a preliminary attempt, the present study ac-
counts only for conductive heat losses through the
Hele-Shaw cell boundaries and neglects radiative
heat losses from both the gaseous and solid phases.
Taking these radiative heat losses into account is
not likely to alter the physical picture in a qualita-
tive manner, as the experience from flame ball re-
search confirms that different types of heat losses
play a similar role in the stabilization of flame balls.
Another approximation made in the present study,
the “one-dimensional idealization”, is expected to
underestimate the maximum temperature and the
flame radius, especially when the channel height
becomes too large. However, we believe that such
an approximation is adequate for the purpose of 
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capturing the essential structural and stabilization
characteristics of near limit premixed flamelets in
Hele-Shaw cells. Hence, qualitative comparisons
may be made between the current numerical pre-
dictions and carefully designed experiments. 
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